Definition dynamischer Systeme durch Differentialgleichungen - Steven Dendl - E-Book

Definition dynamischer Systeme durch Differentialgleichungen E-Book

Steven Dendl

0,0
15,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Studienarbeit aus dem Jahr 2014 im Fachbereich Mathematik - Angewandte Mathematik, , Sprache: Deutsch, Abstract: Was sind Dynamische Systeme? - sind die Lehre von allen Dingen, die sich mit der Zeit ändern - das beeinhaltet das Universum, das Leben und den ganzen Rest • Himmelsmechanik • biologische Populationen • das Wetter • physikalisches Pendel • Computersimulationen • mathematische Iterationsverfahren Besonders wichtig in der Technik sind lineare und zeitinvariante Systeme, die durch lineare gewöhnliche Differentialgleichungen mit konstanten Koeffizienten beschrieben werden. Dies kann durch ein System von n-Differentialgleichungen 1. Ordnung geschehen. Die darin auftretenden Koeffizienten sind wegen der Zeitinvarianz konstant. Was ist eine Differentialgleichung? 1Eine Differentialgleichung ist also eine Gleichung, in der eine Funktion(hier: Signal), deren Ableitungen, die Variable(hier: Zeit), von der die Funktion abhängt und Konstanten vorkommen. Die Ordnung bezeichnet dabei die höchste Ableitung, die vorkommt. Man spricht auch von einem System von g Differentialgleichungen für die q Komponenten w1,…,wq von w. Gesucht ist die Menge aller Funktionen, die diese Differentialgleichung erfüllt. Also das Ziel ist, die Lösungen zu finden.

Das E-Book können Sie in einer beliebigen App lesen, die das folgende Format unterstützt:

PDF

Veröffentlichungsjahr: 2014

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.