Introducing Microsoft SQL Server 2019 - Kellyn Gorman - E-Book

Introducing Microsoft SQL Server 2019 E-Book

Kellyn Gorman

0,0
32,36 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Explore the impressive storage and analytic tools available with the in-cloud and on-premises versions of Microsoft SQL Server 2019.




Key Features



  • Gain insights into what's new in SQL Server 2019

  • Understand use cases and customer scenarios that can be implemented with SQL Server 2019

  • Discover new cross-platform tools that simplify management and analysis



Book Description



Microsoft SQL Server comes equipped with industry-leading features and the best online transaction processing capabilities. If you are looking to work with data processing and management, getting up to speed with Microsoft Server 2019 is key.







Introducing SQL Server 2019 takes you through the latest features in SQL Server 2019 and their importance. You will learn to unlock faster querying speeds and understand how to leverage the new and improved security features to build robust data management solutions. Further chapters will assist you with integrating, managing, and analyzing all data, including relational, NoSQL, and unstructured big data using SQL Server 2019. Dedicated sections in the book will also demonstrate how you can use SQL Server 2019 to leverage data processing platforms, such as Apache Hadoop and Spark, and containerization technologies like Docker and Kubernetes to control your data and efficiently monitor it.






By the end of this book, you'll be well versed with all the features of Microsoft SQL Server 2019 and understand how to use them confidently to build robust data management solutions.




What you will learn



  • Build a custom container image with a Dockerfile

  • Deploy and run the SQL Server 2019 container image

  • Understand how to use SQL server on Linux

  • Migrate existing paginated reports to Power BI Report Server

  • Learn to query Hadoop Distributed File System (HDFS) data using Azure Data Studio

  • Understand the benefits of In-Memory OLTP



Who this book is for



This book is for database administrators, architects, big data engineers, or anyone who has experience with SQL Server and wants to explore and implement the new features in SQL Server 2019. Basic working knowledge of SQL Server and relational database management system (RDBMS) is required.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB

Seitenzahl: 452

Veröffentlichungsjahr: 2020

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Introducing Microsoft SQL Server 2019

Reliability, scalability, and security both on premises and in the cloud

Kellyn Gorman, Allan Hirt, Dave Noderer, Mitchell Pearson, James Rowland-Jones, Dustin Ryan, Arun Sirpal, and Buck Woody

Introducing Microsoft SQL Server 2019

Copyright © 2019 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy of the information presented. However, the information contained in this course is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this course by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Kellyn Gorman, Allan Hirt, Dave Noderer, Mitchell Pearson, James Rowland-Jones, Dustin Ryan, Arun Sirpal, and Buck Woody

Additional material: Mitchell Pearson

Managing Editor: Alexander Mazonowicz

Acquisitions Editor: Alicia Wooding

Production Editor: Nitesh Thakur

Editorial Board: Shubhopriya Banerjee, Bharat Botle, Ewan Buckingham, Mahesh Dhyani, Taabish Khan, Manasa Kumar, Alex Mazonowicz, Pramod Menon, Bridget Neale, Dominic Pereira, Shiny Poojary, Erol Staveley, Ankita Thakur, Nitesh Thakur, and Jonathan Wray

First Published: April 2020

Production Reference: 1160420

ISBN: 978-1-83882-621-5

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

About the Authors

Kellyn Gorman is an Azure Data Platform Architect for Microsoft with a long history in multi-platform technology. She spends a 60/40% split between Oracle on Azure and Analytics with her present team at Microsoft. A recent Idera ACE, a current friend of Redgate in the Microsoft community and an Oracle ACE Director alumnus, she has been awarded numerous awards over the years for her technical contributions and community volunteerism. She is one of only six women part of the Oak Table, a network for the Oracle scientist. She has extensive experience in environment optimization, automation and architect of robust environments, specializing in multi-terabyte management of OLAP/DSS systems. A consistent advocate for logical tuning of code and design before hardware solutions. She's recently become known for her expertise in DevOps, Enterprise Manager, AWR, (Automatic Workload Repository) Warehouse and virtualization of database environments with complex cloud management. The technical knowledge required to support these features offers great educational opportunities to learn by attending her technical presentations, engaging with her on social media presence as DBAKevlar or reading her blog, https://dbakevlar.com/.

Boston-based Cloud and Data Center and Data Plaform Dual MVP Allan Hirt has been working with SQL Server since 1992 and clustering in Windows Server since the days just after Wolfpack. He got his start with databases as an intern at SQL Solutions, which then got purchased by Sybase where he remained an intern until the end of college. Allan has used every version of SQL Server that Microsoft has released for Windows. He founded his own company, Megahirtz, in 2007 and is now partners with Max Myrick in SQLHA.

You will often find Allan speaking at local user groups, SQL Saturdays, and various conferences like PASS Summit, SQLBits, and TechEd as well as doing various webcasts during the years. He has authored quite a bit of content over the years including articles for SQL Server Magazine and whitepapers for Microsoft that are up on TechNet and MSDN. He is the author or co-author of a quite a few books, and is working on his latest, Mission Critical SQL Server, which will be due out soon.

Dave Noderer is the CEO / President and founder of Computer Ways, Inc., a software development company in Deerfield Beach, FL. Dave is an electrical engineer by training, designed computers for 20 years and has been writing software since founding Computer Ways, Inc. in 1994. Dave spent three years as an officer and director of INETA (International .NET Association) where he oversaw the enrollment and support of hundreds of user groups worldwide and 16 years as a Microsoft MVP. He co-founded Florida .NET User groups in 2001 and has been holding meetups in South Florida ever since. Since 2005, he has led the annual, free South Florida Code Camp. This event attracts over 1000 developer attendees. Dave is involved in local community activities as a board member of the Deerfield Beach Historical Society, the Hillsboro Lighthouse Society, and TechLauderdale.org.

James Rowland-Jones (JRJ) is a Principal Program Manager at Microsoft. He is currently part of the SQL Server team working on SQL Server 2019 Big Data Clusters and data virtualization. Prior to joining SQL Server, JRJ worked extensively on Azure SQL Data Warehouse. He helped the team launch Gen 1 of the service and led the product management effort to bring Gen 2 into preview.

JRJ is passionate about delivering highly scalable solutions that are creative, simple and elegant. He is also a keen advocate for the worldwide SQL community; previously serving on the Board of Directors for PASS while also helping to build SQLBits—Europe's largest data event. JRJ was awarded Microsoft's MVP accreditation from 2008 to 2015 for his services to the community.

For Jane, Lucy, Kate, and Oliver. Forever x.

Dustin Ryan is a Senior Cloud Solution Architect at Microsoft. Dustin has worked in the business intelligence and data warehousing field since 2008, has spoken at community events such as SQL Saturday, SQL Rally, and PASS Summit, and has a wide range of experience designing and building solutions featuring SQL Server and Azure. Prior to his time at Microsoft, Dustin worked as a business intelligence consultant and trainer for Pragmatic Works. Dustin is also an author, contributor, and technical editor of books.

Dustin resides outside Jacksonville, Florida with his wife, three children, and a three-legged cat and enjoys spending time with his family and serving at his local church.

Arun Sirpal is a SQL Server consultant and currently a Microsoft Data Platform MVP. Specializing in both SQL Server and Microsoft Azure, he has over 12 years' experience architecting, designing, and performance tuning physical and virtualized SQL Servers and has a wealth of experience with designing solutions using the Azure Data Platform including Azure SQL Database, Azure SQL Database Managed Instances, elastic pools, and hybrid concepts. Arun is also a frequent writer, speaker, and technical reviewer and a member of Microsoft's Azure Advisors and SQL Advisors groups.

Buck Woody works on the Azure Data Services team at Microsoft and uses data and technology to solve business and science problems. With over 35 years of professional and practical experience in computer technology, he is also a popular speaker at conferences around the world; author of over 700 articles and eight books on databases, machine learning, and R, he also sits on various Data Science Boards at two US Universities, and specializes in advanced data analysis techniques.

Table of Contents

Preface   i

1. Optimizing for performance, scalability and real-time insights   1

Hybrid transactional and analytical processing (HTAP)   2

Clustered Columnstore Indexes   3

Adding Clustered Columnstore Indexes to memory-optimized tables   5

Disk-based tables versus memory-optimized tables   5

In-memory OLTP   6

Planning data migration to memory-optimized tables   7

Natively compiled stored procedures   18

TempDB enhancements   21

Enabling memory-optimized TempDB metadata   21

Limitations of memory-optimized TempDB metadata   21

Intelligent Query Processing   22

Hybrid Buffer Pool   24

Query Store   25

Changes to default parameter values   27

QUERY_CAPTURE_MODE   27

QUERY_CAPTURE_MODE: CUSTOM   27

Support for FAST_FORWARD and STATIC Cursors   29

Automatic tuning   29

Automatic plan correction   29

Lightweight query profiling   32

New functionality in 2019   32

sys.database_scoped_configurations   33

Activity monitor   34

Columnstore stats in DBCC CLONEDATABASE   34

Columnstore statistics support   35

DBCC CLONEDATABASE validations   35

Understanding DBCC CLONEDATABASE syntax   35

Estimate compression for Columnstore Indexes   36

sp_estimate_data_compression_savings Syntax   37

Troubleshooting page resource waits   39

sys.dm_db_page_info   39

sys.fn_pagerescracker   41

2. Enterprise Security   45

SQL Data Discovery and Classification   46

SQL Vulnerability Assessment   51

Transparent Data Encryption   55

Setup   57

New features – suspend and resume   59

Extensible Key Management   60

Always Encrypted   60

Algorithm types   61

Setup   61

Confidential computing with secure enclaves   61

Dynamic Data Masking   64

Types   64

Implementing DDM   64

Row-Level Security   67

Auditing   71

Securing connections   73

Configuring the MMC snap-in   73

Enabling via SQL Server Configuration Manager   74

Azure SQL Database   74

SSL/TLS   75

Firewalls   75

Azure Active Directory (AD) authentication   75

Advanced data security   77

Advanced threat detection   78

3. High Availability and Disaster Recovery   81

SQL Server availability feature overview   82

Backup and restore   82

Always On features   83

Log shipping   91

What About Database Mirroring and Replication?   92

Availability improvements in SQL Server 2019   92

Accelerated database recovery   92

Configuration-only replica   92

Certificate management in SQL Server Configuration Manager   94

Clustered columnstore index online rebuild   95

Database scoped default setting for online and resumable DDL operations   95

Failover Cluster Instance Support for Machine Learning Services   96

Increased number of synchronous replicas in the Enterprise edition   96

Online builds or rebuilds for Clustered Columnstore Indexes   97

Read-only routing configuration in SQL Server Management Studio   98

Replication for Linux-based configurations   99

Secondary-to-primary read/write connection redirection   100

Windows Server 2019 availability enhancements   102

Changing domains for a Windows Server Failover Cluster   103

Cluster Shared Volumes support for Microsoft Distributed Transaction Coordinator   103

File share witness without a domain   103

Improved Windows Server Failover Cluster security   104

Storage Replica in the Standard edition   104

Storage Spaces Direct two-node configuration   106

Windows Server Failover Cluster improvements in Azure   107

4. Hybrid Features – SQL Server and Microsoft Azure   111

Backup to URL   112

Benefits   112

Requirements   112

The storage account   113

Setup   114

SQL Server data files in Azure   118

Setup and concepts   119

Considerations   121

File-snapshot backups   123

Setup   123

Extending on-premises Availability Groups to Azure   125

Replication to Azure SQL Database   126

Classic approach   127

Transactional replication   127

Prerequisites   129

Setup   129

5. SQL Server 2019 on Linux   143

2019 platform support   144

Why move databases to SQL Server on Linux?   145

Installation and configuration   146

Improvements in SQL Server 2019   150

Machine Learning Services on Linux   150

Kubernetes   152

Working with Docker and Linux   154

Change data capture   155

Hybrid Buffer Pool and PMEM   155

Distributed Transaction Coordinator on Linux   157

Replication   158

SQL Server tools   159

Azure Data Studio   159

Command-line query tools for SQL in Linux   163

SQLCMD   163

MSSQL-CLI   164

Enhanced focus on scripting   165

The SQL DBA in the Linux world   165

Users and groups   166

Azure Cloud Shell   166

Windows Subsystem for Linux   167

Root, the super-user   167

6. SQL Server 2019 in Containers and Kubernetes   171

Why containers matter   172

Container technical fundamentals   173

Deploying an SQL Server container using Docker   174

Using Docker and Bash   179

Using local SQL Server utilities   179

Customizing SQL Server containers   180

Availability for SQL Server containers   180

7. Data Virtualization   185

Data integration challenges   186

Introducing data virtualization   186

Data virtualization use cases   188

Data virtualization and hybrid transactional analytical processing   188

Data virtualization and caching   188

Data virtualization and federated systems   188

Data virtualization and data lakes   189

Contrasting data virtualization and data movement   189

Data virtualization in SQL Server 2019   190

Secure data access   190

The database master key   191

Database scoped credentials   191

External data sources   192

Supported data sources   193

Extending your environment using an ODBC external data source   194

Accessing external data sources in Azure   196

External file formats   197

PolyBase external tables   198

Creating external tables with Azure Data Studio   200

Contrasting linked servers and external tables   201

Installing PolyBase in SQL Server 2019   202

General pre-installation guidance   203

Installing PolyBase on Windows   204

Installing PolyBase on Linux   205

Installing PolyBase on SQL Server running in Docker   206

Post-installation steps   208

Installing PolyBase as a scale-out group   209

Tip #1: Use different resource groups for each part of the architecture   210

Tip #2: Create the virtual network and secure subnets before building virtual machines   210

Tip #3: Place your scale-out group SQL Server instances inside one subnet   210

Tip #4: Complete this pre-installation checklist!   211

Scale-out group installation   212

Bringing it all together: your first data virtualization query   215

8. Machine Learning Services Extensibility Framework   219

Machine learning overview   220

How machine learning works   220

Use cases for machine learning   221

Languages and tools for machine learning   222

SQL Server 2019 Machine Learning Services architecture and components   224

Components   226

Configuration   228

Machine learning using the Machine Learning Services extensibility framework   230

R for machine learning in SQL Server 2019   230

Python for machine learning in SQL Server 2019   232

Java and machine learning in SQL Server   233

Machine learning using the PREDICT T-SQL command   237

Machine learning using the sp_rxPredict stored procedure   239

Libraries and packages for machine learning   240

Management   241

Security   242

Monitoring and Performance   242

Using the team data science process with Machine Learning Services   244

Understanding the team data science process   244

Phase 1: Business understanding   245

Phase 2: Data acquisition and understanding   245

Phase 3: Modeling   245

Phase 4: Deployment   245

Phase 5: Customer acceptance   246

9. SQL Server 2019 Big Data Clusters   249

Big data overview   250

Applying scale-out architectures to SQL Server   250

Containers   251

Kubernetes   253

SQL Server on Linux   254

PolyBase   255

SQL Server 2019 big data cluster components   256

Installation and configuration   257

Platform options   258

Using a Kubernetes service   258

Using an on-premises Kubernetes installation   259

Working with a Dev/Test environment   259

Deploying the big data clusters on a Kubernetes cluster   260

Programming SQL Server 2019 big data clusters   262

Azure Data Studio   262

Relational operations   264

Creating scale-out tables   266

Creating a data lake   268

Working with Spark   269

Submitting a job from Azure Data Studio   270

Submitting a Spark job from IntelliJ   272

Spark job files and data locations   273

Management and monitoring   273

SQL Server components and operations   273

Kubernetes operations   273

SQL Server 2019 big data cluster operations   274

Monitoring performance and operations with Grafana   275

Monitoring logs with Kibana   276

Spark operations   277

Security   277

Access   278

Security setup and configuration   278

Authentication and authorization   280

10. Enhancing the Developer Experience   283

SQL Graph Database   285

Why use SQL Graph?   287

Edge constraints   287

SQL Graph data integrity enhancements   290

SQL Graph MATCH support in MERGE   290

Using a derived table or view in a graph MATCH query   294

Java language extensions   296

Why language extensions?   296

Installation   297

Sample program   300

JSON   307

Why use JSON?   307

JSON example   308

UTF-8 support   309

Why UTF-8?   309

Temporal tables   310

Why temporal tables?   311

Temporal table example   311

Spatial data types   314

Why spacial data types?   315

Dealer locator example   315

11. Data Warehousing   319

Extract-transform-load solutions with SQL Server Integration Services   320

Best practices for loading your data warehouse with SSIS   321

Clustered Columnstore Indexes   322

Partitioning   324

Online index management   325

Enabling online DML processing   326

Resuming online index create or rebuild   327

Build and rebuild online clustered columnstore indexes   329

Using ALTER DATABASE SCOPE CONFIGURATION   329

Creating and maintaining statistics   330

Automatically managing statistics   331

The AUTO_CREATE_STATISTICS option   331

The AUTO_UPDATE_STATISTICS option   331

The AUTO_UPDATE_STATISTICS_ASYNC option   331

Statistics for columnstore indexes   332

Modern data warehouse patterns in Azure   332

Introduction to Azure SQL Data Warehouse   333

Control node   333

Compute nodes   334

Storage   334

Data movement services (DMSes)   334

Best practices for working with Azure SQL Data Warehouse   334

Reduce costs by scaling up and down    335

Use PolyBase to load data quickly    335

Manage the distributions of data   336

Do not over-partition data    336

Using Azure Data Factory   337

New capabilities in ADF   337

Understanding ADF   338

Copying data to Azure SQL Data Warehouse   340

Hosting SSIS packages in ADF   343

Azure Data Lake Storage   344

Key features of Azure Data Lake Storage Gen2   345

Azure Databricks   346

Working with streaming data in Azure Stream Analytics   347

Analyzing data by using Power BI – and introduction to Power BI    349

Understanding the Power BI ecosystem   349

Connecting Power BI to Azure SQL Data Warehouse   352

12. Analysis Services   355

Introduction to tabular models   356

Introduction to multidimensional models   358

Enhancements in tabular mode   359

Query interleaving with short query bias   360

Memory settings for resource governance   360

Calculation groups   361

Dynamic format strings   362

DirectQuery   363

Bidirectional cross-filtering   366

Many-to-many relationships   367

Governance settings for Power BI cache refreshes   368

Online attach   368

Introducing DAX   369

Calculated columns   370

Calculated measures   370

Calculated tables   372

Row filters   373

DAX calculation best practices   375

Writing DAX queries   376

Using variables in DAX   379

Introduction to Azure Analysis Services   380

Selecting the right tier   381

Scale-up, down, pause, resume, and scale-out   382

Connecting to your data where it lives   382

Securing your data   383

Using familiar tools   383

Built-in monitoring and diagnostics   384

Provisioning an Azure Analysis Services server and deploying a tabular model   384

13. Power BI Report Server   389

SSRS versus Power BI Report Server   389

Report content types   391

Migrating existing paginated reports to Power BI Report Server   392

Exploring new capabilities   395

Performance Analyzer   396

The new Modeling view   398

Row-level security for Power BI data models   398

Report theming   400

Managing parameter layouts   401

Developing KPIs   402

Publishing reports   405

Managing report access and security   406

Publishing mobile reports   409

Viewing reports in modern browsers   409

Viewing reports on mobile devices   412

Exploring Power BI reports   415

Using the FILTERS panel   416

Crossing-highlighting and cross-filtering   416

Sorting a visualization   417

Displaying a visualization's underlying data   417

Drill-down in a visualization   418

Automating report delivery with subscriptions   418

Pinning report items to the Power BI service   420

14. Modernization to the Azure Cloud   423

The SQL data platform in Azure   424

Azure SQL Database managed instance   424

Deployment of a managed instance in Azure   425

Managed instance via the Azure portal   426

Managed instance via templates   427

Migrating SQL Server to Managed Instance   430

Azure Database Migration Service (DMS)   431

Application Connectivity   431

Requirements for the DMS   432

Data Migration Assistant   433

Managed Instance Sizing   433

Migration   433

Monitoring Managed Instance   434

SQL Server in Azure virtual machines   435

Creating an Azure VM from the Azure portal   436

Storage options for VMs   438

Diagnostics and advanced options   438

Creating a SQL Server 2019 VM from the command line in Azure   440

Security for SQL Server on an Azure VM   443

Backups of Azure VM SQL Server instances   444

Built-in security for Azure VMs   444

SQL Server IaaS agent extension   446

Disaster Recovery environment in the cloud   447

Azure Site Recovery   447

Extended support for SQL 2008 and 2008 R2   448

Preface

About

This section briefly introduces the coverage of this book, the technical skills you'll need to get started, and the hardware and software required to complete the book.

1. Optimizing for performance, scalability and real-time insights