Multivariates GARCH Modell -BEKK - Irina Götsch - E-Book

Multivariates GARCH Modell -BEKK E-Book

Irina Götsch

0,0
17,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Studienarbeit aus dem Jahr 2005 im Fachbereich BWL - Allgemeines, Note: 1,3, Johann Wolfgang Goethe-Universität Frankfurt am Main, Veranstaltung: Angewandte Zeitreihenanalyse, Sprache: Deutsch, Abstract: Zur Berücksichtigung der bei Finanzmarktrenditezeitreihen häufig vorhandenen Volatilitätscluster und leptokurtischen Verteilung wurden univariate Modelle: ARCH und GARCH entwickelt. Nachteil von diesen Modellen ist jedoch, dass sie die bei Finanzmarktdaten häufig anzutreffende gegenseitige Einflüße mehrerer Zeitreihen vernachlässigen. Beispiel für enge Zusammenhänge der Zeitreihen sind Kurse verschiedener Aktien vergleichbarer Firmen. Um diese zu berücksichtigen, wurden univariate GARCH-Spezifikationen auf den multivariaten Fall erweitert. Bei den multivariaten Modellen werden mehrere Prozesse simultan analysiert und die bedingten Varianzen und Kovarianzen verschiedener Prozesse gemeinsam betrachtet. Dies führt zu einer Verbesserung der Modellqualität und damit zu einer besseren Prognose. Multivariate GARCH-Modelle sind wichtige Hilfsmittel in vielen Anwendungsgebieten der Kapitalmarkttheorie, denn in vielen Gebieten sind kontemporäre Beziehungen der Zeitreihen zu beobachten. Die Schätzungen der bedingten Varianzkovarianzmatrix finden Anwendung in den bedingten Asset Pricing Modellen, in der Portfolio-Optimierung, bei der Erforschung der Zusammenhänge zwischen den Volatilitäten verschiedener Märkte, beim Value at risk, der Bewertung von Optionen, welche mehrere Basiswerte haben und beim Min-Varianz Hedging.

Das E-Book können Sie in einer beliebigen App lesen, die das folgende Format unterstützt:

PDF

Veröffentlichungsjahr: 2005

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.