Safe take-off with runway analyses - Boris Urbanek - E-Book

Safe take-off with runway analyses E-Book

Boris Urbanek

0,0
29,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Diploma Thesis from the year 2012 in the subject Engineering - Aerospace Technology, grade: A, , course: Aviation, language: English, abstract: The economic situation of recent years forces to operate at highest payloads possible and therefore maximum allowable take-off masses of an aircraft. An optimization of the take-off performance plays important role as never before. The take-off performance data for several flight and ambient conditions are usually presented in so called runway analyses. This paper answers possible questions about their application and computing, which may interest a personnel of flight engineering departments or pilots. Moreover, this thesis offers a summary of factors affecting the maximum take-off mass and appropriate take-off speeds, which together represent necessary performance data for a safe take-off. Particular sections describe a principle of the optimization process and offer a designed conceptual model in a form of flowcharts according to which it is possible to perform a calculation for various aerodrome or weather conditions. The created conceptual model may also serve as a core for the software application, which reduces the time required to do the calculation manually.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB

Veröffentlichungsjahr: 2012

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Impressum:

Copyright (c) 2015 GRIN Verlag / Open Publishing GmbH, alle Inhalte urheberrechtlich geschützt. Kopieren und verbreiten nur mit Genehmigung des Verlags.

Bei GRIN macht sich Ihr Wissen bezahlt! Wir veröffentlichen kostenlos Ihre Haus-, Bachelor- und Masterarbeiten.

Jetzt bei www.grin.com

Acknowledgment

I would like to thank all people who contributed in realization of my Master thesis. Special thanks belong to my supervisor Mr. Martin Maaš who was always willing to help me and discuss all problems despite of his own workload.

ABSTRACT

Urbánek, Boris: Runway analysis application for take-off [Master thesis]. Žilina University in Žilina. The Faculty of Operation and Economics of Transport and Communications; Air Transport Department. Supervisor: Ing. Martin Maaš, PhD. Level of professional qualification: Master. Žilina, ŽU, F PEDAS, 2012. Range: 72 pages.

The economic situation of recent years forces to operate at highest payloads possible and therefore maximum allowable take-off masses of an aircraft. An optimization of the take-off performance plays then important role much more than ever before. This thesis offers a summary of factors affecting the maximum take-off mass and appropriate take-off speeds, which together represent necessary performance data for a safe take-off. Moreover, particular sections describe a principle of the optimization process and offer a designed conceptual model in a form of flowcharts to obtain these take-off performance data. The data for several flight and ambient conditions are usually presented in so called runway analyses. This paper answers possible questions about their application and computing, which may interest a personnel of flight engineering departments or pilots. In addition to this, by following of the designed flowcharts they should be able to perform such calculation themselves for various aerodrome conditions and aircraft performance. The created conceptual model may also serve as a core for the software application, which reduces the time required to do the calculation manually.

Key words: Runway analyses. Aircraft performance. Maximum take-off mass. Take-off speeds. Takeoff optimization.

ABSTRAKT

Ekonomická situácia posledných rokov vyžaduje prevádzku na najvyšších možných zaaženiach, a teda na maximálnych vzletových hmotnostiach. Optimalizácia výpotu výkonových údajov pre vzlet tak zohráva dôležitú úlohu ako nikdy pred tým. Táto práca ponúka prehad faktorov, ktoré svojou povahou ovplyvujú maximálnu vzletovú hmotnos a príslušné vzletové rýchlosti lietadla, ktoré tvoria potrebné údaje pre bezpený vzlet. Príslušné asti tejto práce navyše opisujú princíp optimalizácie výpotu a navrhujú konceptuálny model vo forme vývojových diagramov, pomocou ktorých je možný výpoet vzletových údajov. Dáta pre rôzne letové a okolité podmienky sú zvyajne uvedené v tzv. dráhových analýzach. Táto práca sa snaží zodpoveda otázky personálu oddelenia letového inžinierstva, prípadne pilotov, na ich tvorbu a použitie. Na základe vytvorených vývojových diagramov, letiskových a výkonových charakteristík lietadla by mali by navyše schopní urobi takýto výpoet. Konceptuálny model tohto výpotu môže taktiež slúži ako jadro softwarovej aplikácie, ktorá bude schopná zníži potrebný as na manuálny výpoet údajov.

Kúové slová: Dráhové analýzy. Výkonnos lietadla. Maximálna hmotnos pre vzlet. Vzletové rýchlosti. Optimalizácia vzletu.

CONTENT

Acknowledgment

ABSTRACT

ABSTRAKT

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

INTRODUCTION

1 DEFINITION AND PURPOSE OF RUNWAY ANALYSIS

2 FACTORS AFFECTING MTOM AND V-SPEEDS

2.1 MSTOM

2.2 The aerodrome runway distances

2.2.1 Line-up distance

2.2.2 Take-off Distance

2.2.3 Take-off Run

2.2.4 Accelerate-stop Distance

2.3 Climb limitations

2.4 Obstacle clearance

2.4.1 Vertical plane

2.4.2 Horizontal plane

2.5 Meteorological elements

2.5.1 Wind

2.5.2 Pressure altitude

2.5.3 Temperature

2.6 Runway slope

2.7 Runway condition and contamination

2.7.1 Definitions

2.7.2 Effect on aircraft performance

2.8 Tire speed limit

2.9 Brake energy capacity

2.10 Aircraft configuration and systems setting

2.11 Aircraft status

2.12 Bearing strength

3 TAKE-OFF DATA OPTIMIZATION PRINCIPLE

3.1 Aircraft configuration and systems setting

3.2 v1/vr ratio

3.2.1 v1/vr range

3.2.2 v1/vr ratio influence

3.3 v2/vSR ratio

3.3.1 v2/vSR range

3.3.2 v2/vSR ratio influence

3.4 Take-off data determination

3.4.1 MTOM

3.4.2 v-speeds

4 EXISTING RUNWAY ANALYSES PRODUCTS

4.1 Aircraft manufacturer software

4.2 APG

4.3 Flygprestanda

4.4 ASAP

4.5 Honeywell

4.6 EFRAS

4.7 Conclusion of runway analyses review

5 RUNWAY ANALYSIS CONCEPTUAL MODEL FOR TAKE-OFF

5.1 Input data

5.2 Mass to v1/vr ratio graph

5.3 Optimization process

5.4 v-speeds evaluation

CONCLUSION

BIBLIOGRAPHY

 

LIST OF FIGURES

 

Figure 1: Declared distances [Source: ICAO, Aerodrome design manual, Part 1 Runways]

Figure 2: Line-up distance correction [Source: Airbus, Getting to grips of aircraft performance]

Figure 3: TOD one engine inoperative [Source: Jeppessen, JAA ATPL Training, 032 Performance]

Figure 4: TOD all engines operating [Source: Jeppessen, JAA ATPL Training, 032 Performance]

Figure 5: TOD one engine inoperative wet conditions [Source: Jeppessen, JAA ATPL Training, 032 Performance]

Figure 6: TOR one engine inoperative [Source: Jeppessen, JAA ATPL Training, 032 Performance]

Figure 7: TOR all engines operating [Source: Jeppessen, JAA ATPL Training, 032 Performance]

Figure 8: TOR one engine inoperative wet conditions [Source: Jeppessen, JAA ATPL Training, 032 Performance]

Figure 9: ASD one engine inoperative [Source: Jeppessen, JAA ATPL Training, 032 Performance]

Figure 10: ASD all engines operating [Source: Jeppessen, JAA ATPL Training, 032 Performance]

Figure 11: Take-off path segments [Source: Airbus, Getting to grips of aircraft performance]

Figure 12: Take-off flight path with obstacles [Source: Airbus, Getting to grips of aircraft performance]

Figure 13: Departure sector (Track change 15°) [Source: Airbus, Getting to grips of aircraft performance]

Figure 14: Departure sector (Track change > 15°) [Source: Airbus, Getting to grips of aircraft performance]

Figure 15: Runway slope [Source: Jeppessen, JAA ATPL Training, 032 Performance]

Figure 16: Aquaplaning phenomenon [Source: Airbus, Getting to grips of aircraft performance]

Figure 17: Take-off flight path on a wet and contaminated runway [Source: Airbus, Getting to grips of aircraft performance]

Figure 18: Optimum flap setting [Source: Jeppessen, JAA ATPL Training, 032 Performance]

Figure 19: v1/vr effect on runway limited MTOM [Source: Airbus, Getting to grips of aircraft performance]

Figure 20: v1/vr effect on climb, obstacle, brake energy and tire speed limited MTOM [Source: Airbus, Getting to grips of aircraft performance]

Figure 21: v2/vSR effect on runway, brake energy and tire speed limited MTOM [Source: Airbus, Getting to grips of aircraft performance]