Advanced Calculations for Defects in Materials -  - E-Book

Advanced Calculations for Defects in Materials E-Book

0,0
133,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

This book investigates the possible ways of improvement by applying more sophisticated electronic structure methods as well as corrections and alternatives to the supercell model. In particular, the merits of hybrid and screened functionals, as well as of the +U methods are assessed in comparison to various perturbative and Quantum Monte Carlo many body theories. The inclusion of excitonic effects is also discussed by way of solving the Bethe-Salpeter equation or by using time-dependent DFT, based on GW or hybrid functional calculations. Particular attention is paid to overcome the side effects connected to finite size modeling.
The editors are well known authorities in this field, and very knowledgeable of past developments as well as current advances. In turn, they have selected respected scientists as chapter authors to provide an expert view of the latest advances.
The result is a clear overview of the connections and boundaries between these methods, as well as the broad criteria determining the choice between them for a given problem. Readers will find various correction schemes for the supercell model, a description of alternatives by applying embedding techniques, as well as algorithmic improvements allowing the treatment of an ever larger number of atoms at a high level of sophistication.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 769

Veröffentlichungsjahr: 2011

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Contents

Cover

Related Titles

Title Page

Copyright

List of Contributors

Chapter 1: Advances in Electronic Structure Methods for Defects and Impurities in Solids

1.1 Introduction

1.2 Formalism and Computational Approach

1.3 The DFT-LDA/GGA Band-Gap Problem and Possible Approaches to Overcome It

1.4 Summary

Acknowledgements

Reference

Chapter 2: Accuracy of Quantum Monte Carlo Methods for Point Defects in Solids

2.1 Introduction

2.2 Quantum Monte Carlo Method

2.3 Review of Previous DMC Defect Calculations

2.4 Results

2.5 Conclusion

Acknowledgements

Reference

Chapter 3: Electronic Properties of Interfaces and Defects from Many-body Perturbation Theory: Recent Developments and Applications

3.1 Introduction

3.2 Many-Body Perturbation Theory

3.3 Practical Implementation of GW and Recent Developments Beyond

3.4 QP Corrections to the BOs at Interfaces

3.5 QP Corrections for Defects

3.6 Conclusions and Prospects

Acknowledgements

Reference

Chapter 4: Accelerating GW Calculations with Optimal Polarizability Basis

4.1 Introduction

4.2 The GW Approximation

4.3 The Method: Optimal Polarizability Basis

4.4 Implementation and Validation

4.5 Example: Point Defects in a-Si3N4

4.6 Conclusions

Acknowledgements

Reference

Chapter 5: Calculation of Semiconductor Band Structures and Defects by the Screened Exchange Density Functional

5.1 Introduction

5.2 Screened Exchange Functional

5.3 Bulk Band Structures and Defects

5.4 Summary

Acknowledgements

Reference

Chapter 6: Accurate Treatment of Solids with the HSE Screened Hybrid

6.1 Introduction and Basics of Density Functional Theory

6.2 Band Gaps

6.3 Screened Exchange

6.4 Applications

6.5 Conclusions

Acknowledgements

Reference

Chapter 7: Defect Levels Through Hybrid Density Functionals: Insights and Applications

7.1 Introduction

7.2 Computational Toolbox

7.3 General Results from Hybrid Functional Calculations

7.4 Hybrid Functionals with Empirically Adjusted Parameters

7.5 Representative Case Studies

7.6 Conclusion

Acknowledgements

Reference

Chapter 8: Accurate Gap Levels and Their Role in the Reliability of Other Calculated Defect Properties

8.1 Introduction

8.2 Empirical Correction Schemes for the KS Levels

8.3 The Role of the Gap Level Positions in the Relative Energies of Various Defect Configurations

8.4 Correction of the Total Energy Based on the Corrected Gap Level Positions

8.5 Accurate Gap Levels and Total Energy Differences by Screened Hybrid Functionals

8.6 Summary

Acknowledgements

Reference

Chapter 9: LDA + U and Hybrid Functional Calculations for Defects in ZnO, SnO2, and TiO2

9.1 Introduction

9.2 Methods

9.3 Summary

Acknowledgements

Reference

Chapter 10: Critical Evaluation of the LDA + U Approach for Band Gap Corrections in Point Defect Calculations: The Oxygen Vacancy in ZnO Case Study

10.1 Introduction

10.2 LDA + U Basics

10.3 LDA + U Band Structures Compared to GW

10.4 Improved LDA + U Model

10.5 Finite Size Corrections

10.6 The Alignment Issue

10.7 Results for New LDA + U

10.8 Comparison with Other Results

10.9 Discussion of Experimental Results

10.10 Conclusions

Acknowledgements

Reference

Chapter 11: Predicting Polaronic Defect States by Means of Generalized Koopmans Density Functional Calculations

11.1 Introduction

11.2 The Generalized Koopmans Condition

11.3 Adjusting the Koopmans Condition using Parameterized On-Site Functionals

11.4 Koopmans Behavior in Hybrid-functionals: The Nitrogen Acceptor in ZnO

11.5 The Balance Between Localization and Delocalization

11.6 Conclusions

Acknowledgements

Reference

Chapter 12: SiO2 in Density Functional Theory and Beyond

12.1 Introduction

12.2 The Band Gap Problem

12.3 Which Gap?

12.4 Deep Defect States

12.5 Conclusions

Reference

Chapter 13: Overcoming Bipolar Doping Difficulty in Wide Gap Semiconductors

13.1 Introduction

13.2 Method of Calculation

13.3 Symmetry and Occupation of Defect Levels

13.4 Origins of Doping Difficulty and the Doping Limit Rule

13.5 Approaches to Overcome the Doping Limit

13.6 Summary

Acknowledgement

Reference

Chapter 14: Electrostatic Interactions between Charged Defects in Supercells

14.1 Introduction

14.2 Electrostatics in Real Materials

14.3 Practical Examples

14.4 Conclusions

Acknowledgements

Appendix (A) Energy Decomposition of Electrostatic Artifacts in DFT

(B) Alignment Issues in Supercell Calculations

Reference

Chapter 15: Formation Energies of Point Defects at Finite Temperatures

15.1 Introduction

15.2 Methodology

15.3 Results: Electronic, Quasiharmonic, and Anharmonic Excitations in Vacancy Properties

15.4 Conclusions

Reference

Chapter 16: Accurate Kohn–Sham DFT With the Speed of Tight Binding: Current Techniques and Future Directions in Materials Modelling

16.1 Introduction

16.2 The AIMPRO Kohn–Sham Kernel: Methods and Implementation

16.3 Functionality

16.4 Filter Diagonalisation with Localisation Constraints

16.5 Future Research Directions and Perspectives

16.6 Conclusions

Acknowledgement

Reference

Chapter 17: Ab Initio Green's Function Calculation of Hyperfine Interactions for Shallow Defects in Semiconductors

17.1 Introduction

17.2 From DFT to Hyperfine Interactions

17.3 Modeling Defect Structures

17.4 Shallow Defects: Effective Mass Approximation (EMA) and Beyond

17.5 Phosphorus Donors in Highly Strained Silicon

17.6 n-Type Doping of SiC with Phosphorus

17.7 Conclusions

Acknowledgements

Reference

Chapter 18: Time-Dependent Density Functional Study on the Excitation Spectrum of Point Defects in Semiconductors

18.1 Introduction

18.2 Method

18.3 Results and Discussion

18.4 Summary

Acknowledgements

Reference

Chapter 19: Which Electronic Structure Method for The Study of Defects: A Commentary

19.1 Introduction: A Historic Perspective

19.2 Themes of the Workshop

19.3 Conclusions

Acknowledgements

Reference

Index

Related Titles

Brillson, L. J.

Surfaces and Interfaces of Electronic Materials

2010

ISBN: 978-3-527-40915-0

Magnasco, V.

Methods of Molecular Quantum Mechanics

An Introduction to Electronic Molecular Structure

2009

ISBN: 978-0-470-68442-9

Friedrichs, P., Kimoto, T., Ley, L., Pensl, G. (eds.)

Silicon Carbide

Volume 1: Growth, Defects, and Novel Applications

2010

ISBN: 978-3-527-40953-2

Friedrichs, P., Kimoto, T., Ley, L., Pensl, G. (eds.)

Silicon Carbide

Volume 2: Power Devices and Sensors

2010

ISBN: 978-3-527-40997-6

Sholl, D., Steckel, J. A

Density Functional Theory

A Practical Introduction

2009

ISBN: 978-0-470-37317-0

Tilley, R. J. D.

Defects in Solids

2008

ISBN: 978-0-470-07794-8

Morkoc, H.

Handbook of Nitride Semiconductors and Devices

2008

ISBN: 978-3-527-40797-2

The Editors

Dr. Audrius Alkauskas

EPFL 58, IPMC LSME

MX 136

Batiment MXC 12

1015 Lausanne

Schweiz

Prof. Dr. Peter Deák

Uni Bremen - Computational

Materials Science

Otto-Hahn-Allee 1

28359 Bremen

Prof. Dr. Jörg Neugebauer

Fritz-Haber-Institut

Max-Planck-Inst. f. Eisenfor.

Max-Planck-Str. 1

40237 Düsseldorf

Prof. Dr. Alfredo Pasquarello

EPFL-SB-ITP-CSEA

Station 3/ PH H2 467

1015 Lausanne

Schweiz

Prof. Dr. C. G. Van de Walle

Materials Department

University of California

Santa Barbara, CA 93106-5050

USA

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2011 Wiley-VCH Verlag & Co. KGaA,

Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

List of Contributors

Audrius Alkauskas

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Institute of Theoretical Physics

1015 Lausanne

Switzerland

and

Institut Romand de Recherche

Numérique en Physique des Matériaux (IRRMA)

1015 Lausanne

Switzerland

Bálint Aradi

Universität Bremen

Bremen Center for Computational Materials Science

Am Fallturm 1

28359 Bremen

Germany

Stefano Baroni

CNR-IOM DEMOCRITOS Theory@Elettra Group

s.s. 14 km 163.5 in Area Science Park

34149 Basovizza (Trieste)

Italy

and

SISSA – Scuola Internazionale

Superiore di Studi Avanzati

via Bonomea 265

34126 Trieste

Italy

Adisak Boonchun

Case Western Reserve University

Department of Physics

10900 Euclid Avenue

Cleveland, OH 444106-7079

USA

Patrick R. Briddon

Newcastle University

School of Electrical, Electronic and

Computer Engineering

Newcastle NE1 7RU

UK

Peter Broqvist

Ecole Polytechnique Fédérale de

Lausanne (EPFL)

Institute of Theoretical Physics

1015 Lausanne

Switzerland

and

Institut Romand de Recherche

Numérique en Physique des Matériaux (IRRMA)

1015 Lausanne

Switzerland

Fabien Bruneval

European Theoretical Spectroscopy Facility (ETSF)

and

CEA, DEN, Service de Recherches de Métallurgie Physique

91191 Gif-sur-Yvette

France

G. Bussi

Universita di Modena e Reggio Emilia

CNR-NANO, S3 and Dipartimento di Fisica

via Campi 213/A

41100 Modena

Italy

and

CNR-IOM Democritos and SISSA

via Bonomea 265

34136 Trieste

Italy

Marilia J. Caldas

Universidade de São Paulo

Instituto de Física

05508-900 São Paulo, SP

Brazil

S. J. Clark

Durham University

Physics Department

Durham

UK

Peter Deák

Universität Bremen

Bremen Center for Computational Materials Science

Am Fallturm 1

28359 Bremen

Germany

Thomas Frauenheim

Universität Bremen

Bremen Center for Computational Materials Science

Aon Fallturon

28359 Bremen

Germany

Christoph Freysoldt

Max-Planck-Institut für Eisenforschung GmbH

Max-Planck-Str. 1

40237 Düsseldorf

Germany

Adam Gali

Hungarian Academy of Sciences

Research Institute for Solid State Physics and Optics POB 49

1525 Budapest

Hungary

and

Budapest University of Technology and Economics

Department of Atomic Physics

Budafoki út 8

1111 Budapest

Hungary

Uwe Gerstmann

Universität Paderborn

Lehrstuhl für Theoretische Physik

Warburger Str. 100

33098 Paderborn

Germany

and

Université Pierre et Marie Curie

Institut de Minéralogie et de Physique des Milieux Condensés

Campus Boucicaut

140 rue de Lourmel

75015 Paris

France

Luigi Giacomazzi

CNR-IOM DEMOCRITOS Theory@Elettra Group

s.s. 14 km 163.5 in Area Science Park

34149 Basovizza (Trieste)

Italy

and

SISSA – Scuola Internazionale Superiore di Studi Avanzati

via Bonomea 265

34126 Trieste

Italy

Matteo Giantomassi

European Theoretical Spectroscopy Facility (ETSF)

and

Université catholique de Louvain

Institute of Condensed Matter and Nanosciences

1 Place Croix du Sud, 1 bte 3

1348 Louvain-la-Neuve

Belgium

Blazej Grabowski

Max-Planck-Institut für Eisenforschung GmbH

Max-Planck-Str. 1

40237 Düsseldorf

Germany

Myrta Grüning

European Theoretical Spectroscopy Facility (ETSF)

and

University of Coimbra

Centre for Computational Physics and Physics Department

Rua Larga

3004-516 Coimbra

Portugal

Thomas M. Henderson

Rice University

Departments of Chemistry and Department of Physics and Astronomy

Houston, TX 77005

USA

Richard G. Hennig

Cornell University

Department of Materials Science and Engineering

126 Bard Hall

Ithaca, NY 14853-1501

USA

Tilmann Hickel

Max-Planck-Institut für Eisenforschung GmbH

Max-Planck-Str. 1

40237 Düsseldorf

Germany

Anderson Janotti

University of California

Materials Department

Santa Barbara, CA 93106-5050

USA

Walter R. L. Lambrecht

Case Western Reserve University

Department of Physics

10900 Euclid Avenue

Cleveland, OH 444106-7079

USA

Stephan Lany

National Renewable Energy Laboratory

1617 Cole Blvd

Golden, CO 80401

USA

L. Martin-Samos

Universita di Modena e Reggio Emilia

CNR-NANO, S3 and Dipartimento di Fisica

via Campi 213/A

41100 Modena

Italy

and

CNR-IOM Democritos and SISSA

via Bonomea 265

34136 Trieste

Italy

Nicola Marzari

Massachusetts Institute of Technology

Department of Materials Science and Engineering

77 Massachusetts Avenue

Cambridge, MA 02139

USA

E. Molinari

Universita di Modena e Reggio Emilia

CNR-NANO, S3 and Dipartimento di Fisica

via Campi 213/A

41100 Modena

Italy

Jörg Neugebauer

Max-Planck-Institut für Eisenforschung GmbH

Max-Planck-Str. 1

40237 Düsseldorf

Germany

Joachim Paier

Rice University

Departments of Chemistry and Department of Physics and Astronomy

Houston, TX 77005

USA

Present affiliation:

Humboldt-Universität

Zu Berlin

Institut für Chemie

Unter den Linden 6

10099 Berlin

Germany

William D. Parker

The Ohio State University

Department of Physics

191 W. Woodruff Ave.

Columbus, OH 43210

USA

Alfredo Pasquarello

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Institute of Theoretical Physics

1015 Lausanne

Switzerland

and

Institut Romand de Recherche Numérique en Physique des Matériaux (IRRMA)

1015 Lausanne

Switzerland

Xiaofeng Qian

Massachusetts Institute of Technology

Department of Materials Science and Engineering

77 Massachusetts Avenue

Cambridge, MA 02139

USA

Mark J. Rayson

Max-Planck-Institut für Eisenforschung GmbH

Max-Planck-Str. 1

40237 Düsseldorf

Germany

and

Lule å University of Technology

Department of Mathematics

97187 Lule å

Sweden

Gian-Marco Rignanese

European Theoretical Spectroscopy Facility (ETSF)

and

Université catholique de Louvain

Institute of Condensed Matter and Nanosciences

1 Place Croix du Sud, 1 bte 3

1348 Louvain-la-Neuve

Belgium

Patrick Rinke

European Theoretical Spectroscopy Facility (ETSF)

and

University of California

Department of Materials

Santa Barbara, CA 93106-5050

USA

John Robertson

Cambridge University

Engineering Department

Cambridge CB2 1PZ

UK

A. Ruini

Universita di Modena e Reggio Emilia

CNR-NANO, S3 and Dipartimento di Fisica

via Campi 213/A

41100 Modena

Italy

Gustavo E. Scuseria

Rice University

Departments of Chemistry and Physics and Astronomy

Houston, TX 77005

USA

Riad Shaltaf

European Theoretical Spectroscopy Facility (ETSF)

and

University of Jordan

Department of Physics

Amman 11942

Jordan

Martin Stankovski

European Theoretical Spectroscopy Facility (ETSF)

and

Université catholique de Louvain

Institute of Condensed Matter and Nanosciences

1 Place Croix du Sud, 1 bte 3

1348 Louvain-la-Neuve

Belgium

Geoffoey Stenuit

CNR-IOM DEMOCRITOS Theory@Elettra Group

s.s. 14 km 163.5 in Area Science Park

34149 Basovizza (Trieste)

Italy

Paolo Umari

CNR-IOM DEMOCRITOS Theory@Elettra Group

s.s. 14 km 163.5 in Area Science Park

34149 Basovizza (Trieste)

Italy

Chris G. Van de Walle

University of California

Materials Department

Santa Barbara, CA 93106-5050

USA

Su-Huai Wei

National Renewable Energy Laboratory

1617 Cole Blvd

Golden, CO 80401

USA

John W. Wilkins

The Ohio State University

Department of Physics

191 W. Woodruff Ave.

Columbus, OH 43210

USA

Yanfa Yan

National Renewable Energy Laboratory

1617 Cole Blvd

Golden, CO 80401

USA

Chapter 2

Accuracy of Quantum Monte Carlo Methods for Point Defects in Solids

William D. Parker, John W. Wilkins, and Richard G. Hennig

2.1 Introduction