Amrit PuzariDepartment of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, Nagaland, IndiaAnshu DandiaCentre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur-302004, IndiaAschalew TadesseDepartment of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P O Box 1888, Adama, EthiopiaAthira KrishnanDepartment of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala-690 525, IndiaBidyutjyoti DuttaDepartment of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, IndiaC.R. RavikumarResearch Center, Department of Science, East West Institute of Technology, VTU, Bengaluru 560091, IndiaDhanalakshmi MuniswamyDepartment of Physics, Government Science College (Nrupathunga University), Bengaluru 560 001, IndiaDiganta SarmaDepartment of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, IndiaDinesh K. MahawarCentre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur-302004, IndiaDipen K. SurejaL. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009, Gujrat, IndiaGezahegn Tadesse AyanieDepartment of Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama P.O. Box.1888, EthiopiaH.C. Ananda MurthyDepartment of Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama P.O. Box.1888, EthiopiaJ. AnakhaDepartment of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala-690 525, IndiaKalyanjyoti DeoriDepartment of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, IndiaKrishan KumarCentre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur-302004, IndiaKunjan B. BodiwalaL. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009, Gujrat, IndiaLeena KhannaUniversity School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi-110078, IndiaMansiUniversity School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi-110078, IndiaMerangmenlaDepartment of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, Nagaland, IndiaMuthu KaruppasamyDepartment of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, J&K, IndiaNormi D. GajjarL.M. College of Pharmacy, Navrangpura, Ahmedabad 380 009, Gujarat, IndiaPankaj KhannaDepartment of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi-110019, IndiaPrantika BhattacharjeeDepartment of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, 784028, IndiaPratibha SainiCentre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur-302004, IndiaPriyanka GogoiDepartment of Chemistry, Dibrugarh University, Dibrugarh, Assam, IndiaR. AjayDepartment of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala-690 525, IndiaRajvi H. AminL. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009, Gujrat, IndiaRoktopol HazarikaDepartment of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, IndiaRutvi J. PatelL. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009, Gujrat, IndiaSavita MeenaCentre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur-302004, IndiaShyamal BaruahDepartment of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, Nagaland, IndiaSoniya AgarwalDepartment of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, IndiaSurenda SainiCentre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur-302004, IndiaSuresh GhotekarDepartment of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science College, Silvassa- 396 230, Dadra and Nagar Haveli (UT), IndiaSwati MeenaCentre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur-302004, IndiaTanvi JandialDepartment of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, J&K, IndiaTegene DesalegnDepartment of Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, P.O. Box.1888, EthiopiaTejas M. DhameliyaL. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009, Gujrat, IndiaU.S. Krishnanunni NamboothiriDepartment of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala-690 525, IndiaUtpal BoraDepartment of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, 784028, IndiaVellaisamy SridharanDepartment of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, J&K, IndiaVijay ParewaCentre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur-302004, India
CONSENT FOR PUBLICATION
Not applicable.
CONFLICTS OF INTEREST
The author declares no conflict of interest, financial or otherwise.
ACKNOWLEDGEMENTS
Declared none.
REFERENCES
[1]Dandia, A.; Parihar, S.; Sharma, R.; Rathore, K.S.; Parewa, V. Nanocatalysis in green organic synthesis. Green Sustainable Process for Chemical and Environmental Engineering and Science.,2020, , 71-103.[2]Heiz, U.; Landman, U. Nanocatalysis,2007,[3]Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem.,2010, 12(5), 743-754.[http://dx.doi.org/10.1039/b921171c][4]Cuenya, B.R.; Behafarid, F. Nanocatalysis: size-and shape-dependent chemisorption and catalytic reactivity. Surf. Sci. Rep.,2015, 70(2), 135-187.[http://dx.doi.org/10.1016/j.surfrep.2015.01.001][5]Dandia, A.; Parewa, V.; Sharma, A. An approach towards green switch through nanocatalysis for the synthesis of biodynamic heterocycles. Green Chemistry: Synthesis of Bioactive Heterocycles.,2014, , 129-161.[6]Glaser, J. A. Green chemistry with nanocatalysts. 2012.[http://dx.doi.org/10.1007/s10098-012-0507-0][7]Narayanan, R. Synthesis of green nanocatalysts and industrially important green reactions. Green Chem. Lett. Rev.,2012, 5(4), 707-725.[http://dx.doi.org/10.1080/17518253.2012.700955][8]Bond, G.C. Heterogeneous catalysis. 1987.[9]Ertl, G.; Knözinger, H.; Weitkamp, J. Handbook of heterogeneous catalysis. 1997,[10]Astruc, D. Nanoparticles and Catalysis. John Wiley & Sons,2008.[11]Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed.,2005, 44(48), 7852-7872.[http://dx.doi.org/10.1002/anie.200500766] [PMID: 16304662][12]Corma, A. Attempts to fill the gap between enzymatic, homogeneous, and heterogeneous catalysis. Catal. Rev., Sci. Eng.,2004, 46(3-4), 369-417.[http://dx.doi.org/10.1081/CR-200036732][13]Cui, X.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal.,2018, 1(6), 385-397.[http://dx.doi.org/10.1038/s41929-018-0090-9][14]Spivey, J. Metal nanoparticles for catalysis: advances and applications Royal Society of Chemistry,2014.[15]Hutchings, G. Nanocatalysis: Synthesis and applications.,2013,[16]Somwanshi, S.B.; Somvanshi, S.B.; Kharat, P.B. Nanocatalyst: a brief review on synthesis to applications. Journal of Physics: Conference Series.,2020, , 012046.[http://dx.doi.org/10.1088/1742-6596/1644/1/012046][17]Calvino-Casilda, V.; López-Peinado, A.J.; Martín-Aranda, R.M.; Mayoral, E.P. Nanocatalysis: applications and technologies.2019.[http://dx.doi.org/10.1201/9781315202990][18]Rotello, V. Nanoparticles: building blocks for nanotechnology. Springer Science & Business Media,2004.[http://dx.doi.org/10.1007/978-1-4419-9042-6][19]Mohanraj, V.J.; Chen, Y. Nanoparticles-a review. Trop. J. Pharm. Res.,2006, 5, 561-573.[20]Hasan, S. A Review on Nanoparticles: Their Synthesis and Types. Res. J. Recent Sci.,2015, 2277-2502.[21]Ealia, S.A.M.; Saravanakumar, M.P. A Review on the Classification, Characterisation, Synthesis of Nanoparticles and Their Application. In IOP Conference Series: Materials Science and Engineering,2017, 263, 032019.[22]Beydoun, D.; Amal, R.; Low, G.; McEvoy, S. Role of nanoparticles in photocatalysis. J. Nanopart. Res.,1999, 1(4), 439-458.[http://dx.doi.org/10.1023/A:1010044830871][23]Gupta, S.M.; Tripathi, M. An overview of commonly used semiconductor nanoparticles in photocatalysis. high ener. Chem,2012, 46, 1-9.[24]Dandia, A.; Gupta, S.L.; Saini, P.; Sharma, R.; Meena, S.; Parewa, V. Structure couture and appraisal of catalytic activity of carbon nitride (g-C3N4) based materials towards sustainability. Curr. Res. Green Sustain. Chem.,2020, 3, 100039.[http://dx.doi.org/10.1016/j.crgsc.2020.100039][25]Dandia, A.; Saini, P.; Sharma, R.; Parewa, V. Green Organic Synthesis by Photochemical Protocol. Green Sustainable Process for Chemical and Environmental Engineering and Science,2020, , 155-198.[http://dx.doi.org/10.1016/B978-0-12-819539-0.00007-5][26]Dandia, A.; Saini, P.; Sharma, R.; Parewa, V. Visible Light Driven Perovskite-Based Photocatalysts: A New candidate for Green Organic Synthesis by Photochemical Protocol. Curr. Res. Green Sustain. Chem,2020.[http://dx.doi.org/10.1016/j.crgsc.2020.100031][27]Rao, C.R.; Kulkarni, G.U.; Thomas, P.J.; Edwards, P.P. Metal nanoparticles and their assemblies. Chem. Soc. Rev.,2000, 29(1), 27-35.[http://dx.doi.org/10.1039/a904518j][28]Sardar, R.; Funston, A.M.; Mulvaney, P.; Murray, R.W. Gold nanoparticles: past, present, and future. Langmuir,2009, 25(24), 13840-13851.[http://dx.doi.org/10.1021/la9019475] [PMID: 19572538][29]Mulfinger, L.; Solomon, S.D.; Bahadory, M.; Jeyarajasingam, A.V.; Rutkowsky, S.A.; Boritz, C. Synthesis and study of silver nanoparticles. J. Chem. Educ.,2007, 84(2), 322.[http://dx.doi.org/10.1021/ed084p322][30]Medina-Cruz, D.; Saleh, B.; Vernet-Crua, A.; Nieto-Argüello, A.; Lomelí-Marroquín, D.; Vélez-Escamilla, L.Y.; Webster, T. Bimetallic nanoparticles for biomedical applications: A review. Rac. Surf,2020, 397-434.[http://dx.doi.org/10.1007/978-3-030-34471-9_16][31]Cai, S.; Wang, D.; Niu, Z.; Li, Y. Progress in organic reactions catalyzed by bimetallic nanomaterials. Chin. J. Catal.,2013, 34(11), 1964-1974.[http://dx.doi.org/10.1016/S1872-2067(12)60701-3][32]Liu, X.; Wang, D.; Li, Y. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today,2012, 7(5), 448-466.[http://dx.doi.org/10.1016/j.nantod.2012.08.003][33]Xu, J.; Wilson, A.R.; Rathmell, A.R.; Howe, J.; Chi, M.; Wiley, B.J. Synthesis and catalytic properties of Au-Pd nanoflowers. ACS Nano,2011, 5(8), 6119-6127.[http://dx.doi.org/10.1021/nn201161m] [PMID: 21761821][34]Imura, Y.; Tsujimoto, K.; Morita, C.; Kawai, T. Preparation and catalytic activity of Pd and bimetallic Pd-Ni nanowires. Langmuir,2014, 30(17), 5026-5030.[http://dx.doi.org/10.1021/la500811n] [PMID: 24731103][35]Blosi, M.; Ortelli, S.; Costa, A.L.; Dondi, M.; Lolli, A.; Andreoli, S.; Benito, P.; Albonetti, S. Bimetallic nanoparticles as efficient catalysts: facile and green microwave synthesis. Materials (Basel),2016, 9(7), 550.[http://dx.doi.org/10.3390/ma9070550] [PMID: 28773672][36]Dandia, A.; Parewa, V.; Jain, A.K.; Rathore, K.S. Step-economic, efficient, ZnS nanoparticle-catalyzed synthesis of spirooxindole derivatives in aqueous medium via knoevenagel condensation followed by michael addition. Green Chem.,2011, 13(8), 2135-2145.[http://dx.doi.org/10.1039/c1gc15244k][37]Dandia, A.; Singh, R.; Gupta, S.L.; Rathore, K.S. ZnS nanoparticle catalysed four component syntheses of novel spiropolyhydroquinoline derivatives in aqueous medium under ultrasonic irradiation. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.,2015, 85(1), 19-27.[http://dx.doi.org/10.1007/s40010-014-0172-2][38]Kaur, N.; Kaur, G.; Bhalla, A.; Dhau, J.S.; Chaudhary, G.R. Metallosurfactant based Pd–Ni alloy nanoparticles as a proficient catalyst in the mizoroki heck coupling reaction. Green Chem.,2018, 20(7), 1506-1514.[http://dx.doi.org/10.1039/C7GC03877A][39]Dewan, A.; Sarmah, M.; Thakur, A.J.; Bharali, P.; Bora, U. Greener biogenic approach for the synthesis of palladium nanoparticles using papaya peel: an eco-friendly catalyst for c-c coupling reaction. ACS Omega,2018, 3(5), 5327-5335.[http://dx.doi.org/10.1021/acsomega.8b00039] [PMID: 31458742][40]Huang, T.S.; Wang, Y.H.; Jiang, J.Y.; Jin, Z.L. PEG-stabilized palladium nanoparticles: an efficient and recyclable catalyst for the selective hydrogenation of 1, 5-cyclooctadiene in thermoregulated PEG biphase system. Chin. Chem. Lett.,2008, 19(1), 102-104.[http://dx.doi.org/10.1016/j.cclet.2007.10.042][41]Srimani, D.; Bej, A.; Sarkar, A. Palladium nanoparticle catalyzed Hiyama coupling reaction of benzyl halides. J. Org. Chem.,2010, 75(12), 4296-4299.[http://dx.doi.org/10.1021/jo1003373] [PMID: 20491503][42]Firouzabadi, H.; Iranpoor, N.; Ghaderi, A. Gelatin as a bioorganic reductant, ligand and support for palladium nanoparticles. Application as a catalyst for ligand- and amine-free Sonogashira-Hagihara reaction. Org. Biomol. Chem.,2011, 9(3), 865-871.[http://dx.doi.org/10.1039/C0OB00253D] [PMID: 21120230][43]Pérez-Balderas, F.; Ortega-Muñoz, M.; Morales-Sanfrutos, J.; Hernández-Mateo, F.; Calvo-Flores, F.G.; Calvo-Asín, J.A.; Isac-García, J.; Santoyo-González, F. Multivalent neoglycoconjugates by regiospecific cycloaddition of alkynes and azides using organic-soluble copper catalysts. Org. Lett.,2003, 5(11), 1951-1954.[http://dx.doi.org/10.1021/ol034534r] [PMID: 12762694][44]Khalil, A.; Jouiad, M.; Khraisheh, M.; Hashaikeh, R. FacileSynthesis of copper oxide nanoparticles via electrospinning. J. Nanomater.,2014, 438407.[45]Saha, A.; Saha, D.; Ranu, B.C. Copper nano-catalyst: sustainable phenyl-selenylation of aryl iodides and vinyl bromides in water under ligand free conditions. Org. Biomol. Chem.,2009, 7(8), 1652-1657.[http://dx.doi.org/10.1039/b819137a] [PMID: 19343253][46]Sarkar, S.; Pal, R.; Roy, M.; Chatterjee, N.; Sarkar, S.; Sen, A.K. Nanodomain cubic copper (I) oxide as reusable catalyst for the synthesis of amides by amidation of aryl halides with isocyanides. Tetrahedron Lett.,2015, 56(4), 623-626.[http://dx.doi.org/10.1016/j.tetlet.2014.12.060][47]Pai, G.; Chattopadhyay, A.P. New efficient ligand-free, copper nanoparticle catalyzed coupling reactions of aryl halides with diethyl malonate to produce α-arylation of malonates. Synthesis,2013, 45(11), 1475-1482.[http://dx.doi.org/10.1055/s-0033-1338437][48]Ahammed, S.; Saha, A.; Ranu, B.C. Hydrogenation of azides over copper nanoparticle surface using ammonium formate in water. J. Org. Chem.,2011, 76(17), 7235-7239.[http://dx.doi.org/10.1021/jo200915h] [PMID: 21793592][49]Gubin, S.P. Magnetic nanoparticles. John Wiley & Sons,2009.[50]Indira, T.K.; Lakshmi, P.K. Magnetic nanoparticles–a review. Int. J. Pharm. Pharm. Sci. Nano.,2010, 3, 1035-1042.[51]Gubin, S.P.; Koksharov, Y.A.; Khomutov, G.B.; Yurkov, G.Y. Magnetic nanoparticles: preparation, structure and properties. Russ. Chem. Rev.,2005, 74(6), 489-520.[http://dx.doi.org/10.1070/RC2005v074n06ABEH000897][52]Liu, S.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv. Colloid Interface Sci.,2020, 281, 102165.[http://dx.doi.org/10.1016/j.cis.2020.102165] [PMID: 32361408][53]Katz, E. Magnetic nanoparticles. 2020.[http://dx.doi.org/10.3390/magnetochemistry6010006][54]Baig, R.B.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun. (Camb.),2013, 49(8), 752-770.[http://dx.doi.org/10.1039/C2CC35663E] [PMID: 23212208][55]Majidi, S.; Sehrig, F.Z.; Farkhani, S.M.; Goloujeh, M.S.; Akbarzadeh, A. Current methods for synthesis of magnetic nanoparticles. Artif. Cells Nanomed. Biotechnol.,2016, 44(2), 722-734.[http://dx.doi.org/10.3109/21691401.2014.982802] [PMID: 25435409][56]Kidwai, M.; Jain, A.; Bhardwaj, S. Magnetic nanoparticles catalyzed synthesis of diverse N-heterocycles. Mol. Divers.,2012, 16(1), 121-128.[http://dx.doi.org/10.1007/s11030-011-9336-z] [PMID: 22057791][57]Dandia, A.; Jain, A.K.; Sharma, S. CuFe2O4 Nanoparticles as a Highly Efficient and Magnetically Recoverable Catalyst for the Synthesis of Medicinally Privileged Spiropyrimidine Scaffolds. RSC Advances,2013, 3(9), 2924-2934.[http://dx.doi.org/10.1039/c2ra22477a][58]Dandia, A.; Parewa, V.; Gupta, S.L.; Sharma, A.; Rathore, K.S.; Jain, A. Microwave-assisted Fe3O4 Nanoparticles Catalyzed Synthesis of Chromeno [1, 6] naphthyridines in Aqueous Media. Catal. Commun.,2015, 61, 88-91.[http://dx.doi.org/10.1016/j.catcom.2014.12.015][59]Liu, L.; Liu, Y.; Ai, Y.; Li, J.; Zhou, J.; Fan, Z.; Bao, H.; Jiang, R.; Hu, Z.; Wang, J.; Jing, K.; Wang, Y.; Liang, Q.; Sun, H. Pd-CuFe catalyst for transfer hydrogenation of nitriles: controllable selectivity to primary amines and secondary amines. iScience,2018, 8, 61-73.[http://dx.doi.org/10.1016/j.isci.2018.09.010] [PMID: 30286395][60]Sobhani, S.; Falatooni, Z.M.; Asadi, S.; Honarmand, M. Palladium-schiff base complex immobilized covalently on magnetic nanoparticles as an efficient and recyclable catalyst for heck and suzuki cross-coupling reactions. Catal. Lett.,2016, 146(1), 255-268.[http://dx.doi.org/10.1007/s10562-015-1636-y][61]Sreedhar, B.; Kumar, A.S.; Yada, D. CuFe2O4 nanoparticles: a magnetically recoverable and reusable catalyst for the synthesis of 5-substituted 1H-tetrazoles. Tetrahedron Lett.,2011, 52(28), 3565-3569.[http://dx.doi.org/10.1016/j.tetlet.2011.04.094][62]Kantam, M.L.; Yadav, J.; Laha, S.; Srinivas, P.; Sreedhar, B.; Figueras, F. Asymmetric hydrosilylation of ketones catalyzed by magnetically recoverable and reusable copper ferrite nanoparticles. J. Org. Chem.,2009, 74(12), 4608-4611.[http://dx.doi.org/10.1021/jo9002823] [PMID: 19518151][63]Kantam, M.L.; Yadav, J.; Laha, S.; Jha, S. Synthesis of propargylaminesby three-component coupling of aldehydes, amines and alkynes catalyzed by magnetically separable copper ferrite nanoparticles. Synlett,2009, 2(11), 1791-1794.[http://dx.doi.org/10.1055/s-0029-1217362][64]Sarode, S.A.; Bhojane, J.M.; Nagarkar, J.M. An efficient magnetic copper ferrite nanoparticle: for one pot synthesis of 2-substituted benzoxazole via redox reactions. Tetrahedron Lett.,2015, 56(1), 206-210.[http://dx.doi.org/10.1016/j.tetlet.2014.11.065][65]Sadri, F.; Ramazani, A.; Massoudi, A.; Khoobi, M.; Azizkhani, V.; Tarasi, R.; Min, B.K. Magnetic CoFe2O4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant. Bull. Korean Chem. Soc.,2014, 35(7), 2029-2032.[http://dx.doi.org/10.5012/bkcs.2014.35.7.2029][66]Senapati, K.K.; Borgohain, C.; Phukan, P. Synthesis of highly stable CoFe2O4 nanoparticles and their use as magnetically separable catalyst for knoevenagel reaction in aqueous medium. J. Mol. Catal. Chem.,2011, 339(1-2), 24-31.[http://dx.doi.org/10.1016/j.molcata.2011.02.007][67]Hedayati, V.R.; Ghasemzadeh, M.A. Efficient, One-Pot Synthesis of polyfunctionalised octahydroquinazolin-2, 5-Diones catalysed by Fe3O4 nanoparticles. J. Chem. Res.,2015, 39(1), 56-61.[http://dx.doi.org/10.3184/174751915X14199511243271][68]Komarneni, S. Nanocomposites. J. Mater. Chem.,1992, 2(12), 1219-1230.[http://dx.doi.org/10.1039/jm9920201219][69]Schaefer, D.W.; Justice, R.S. How nano are nanocomposites? Macromolecules,2007, 40(24), 8501-8517.[http://dx.doi.org/10.1021/ma070356w][70]Behrens, S.; Appel, I. Magnetic nanocomposites. Curr. Opin. Biotechnol.,2016, 39, 89-96.[http://dx.doi.org/10.1016/j.copbio.2016.02.005] [PMID: 26938504][71]Prasad, C.; Tang, H.; Bahadur, I. Graphitic carbon nitride based ternary nanocomposites: From synthesis to their applications in photocatalysis: A recent review. J. Mol. Liq.,2019, 281, 634-654.[http://dx.doi.org/10.1016/j.molliq.2019.02.068][72]Pocklanova, R.; Rathi, A.K.; Gawande, M.B.; Datta, K.K.R.; Ranc, V.; Cepe, K.; Zboril, R. Gold nanoparticle-decorated graphene oxide: synthesis and application in oxidation reactions under benign conditions. J. Mol. Catal. Chem.,2016, 424, 121-127.[http://dx.doi.org/10.1016/j.molcata.2016.07.047][73]Deng, D.; Yang, Y.; Gong, Y.; Li, Y.; Xu, X.; Wang, Y. Palladium nanoparticles supported on mpg-C3N4 as active catalyst forsemihydrogenation of phenylacetylene under mild conditions. Green Chem.,2013, 15(9), 2525-2531.[http://dx.doi.org/10.1039/c3gc40779a][74]Dandia, A.; Sharma, A.; Parewa, V.; Kumawat, B.; Rathore, K.S.; Sharma, A. Amidic C–N bond cleavage of isatin: chemoselective synthesis of pyrrolo [2, 3, 4-kl] acridin-1-ones using Ag NPs decorated rGO composite as an efficient and recoverable catalyst under microwave irradiation. RSC Advances,2015, 5(111), 91888-91902.[http://dx.doi.org/10.1039/C5RA11747J][75]Dandia, A.; Gupta, S.L.; Indora, A.; Saini, P.; Parewa, V.; Rathore, K.S. Ag NPs decked GO composite as a competent and reusable catalyst for ‘ON WATER’chemoselective synthesis of pyrano [2, 3-c: 6, 5-c′] dipyrazol]-2-ones. Tetrahedron Lett.,2017, 58(12), 1170-1175.[http://dx.doi.org/10.1016/j.tetlet.2017.02.014][76]Dandia, A.; Bansal, S.; Sharma, R.; Rathore, K.S.; Parewa, V. Microwave-Assisted Nanocatalysis: A CuoNps/Rgo Composite As An Efficient And Recyclable Catalyst For The Petasis-borono–mannich reaction. RSC Advances,2018, 8(53), 30280-30288.[http://dx.doi.org/10.1039/C8RA05203D][77]Azizi, N.; Ahooie, T.S.; Hashemi, M.M.; Yavari, I. Magnetic graphitic carbon nitride-catalyzed highly efficient construction of functionalized 4H-pyrans. Synlett,2018, 29(5), 645-649.[http://dx.doi.org/10.1055/s-0036-1589145][78]Dandia, A.; Sharma, A.; Indora, A.; Rathore, K.S.; Jain, A.; Parewa, V. CeO2 NPs/rGO composite catalyzed chemoselective synthesis of 2, 8-dioxabicyclo [3.3. 1] nonanes in aqueous medium via aldol condensation/michael addition/bicyclization reaction sequence. Mol Catal.,2018, 459, 97-105.[http://dx.doi.org/10.1016/j.mcat.2018.08.024][79]Wan, X.; Zhou, C.; Chen, J.; Deng, W.; Zhang, Q.; Yang, Y.; Wang, Y. Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2, 5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au–Pd alloy nanoparticles. ACS Catal.,2014, 4(7), 2175-2185.[http://dx.doi.org/10.1021/cs5003096][80]Kilic, H.; Turgut, M.; Yilmaz, M.S.; Dalkilic, O.; Metin, O. Monodisperse Ni@ Pd Core@ shell nanoparticles assembled on reduced graphene oxide as a highly efficient and reusable heterogeneous catalyst for the C–H bond arylation of imidazo [1, 2-a] pyridine with Aryl Halides. ACS Sustain. Chem.& Eng.,2018, 6(9), 11433-11440.[http://dx.doi.org/10.1021/acssuschemeng.8b01431][81]Siqueira, J.R., Jr; Oliveira, O.N., Jr Carbon-based nanomaterials.Nanostructures.,2017, , 233-249.[http://dx.doi.org/10.1016/B978-0-323-49782-4.00009-7][82]Compton, O.C.; Nguyen, S.T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small,2010, 6(6), 711-723.[http://dx.doi.org/10.1002/smll.200901934] [PMID: 20225186][83]Bahuguna, A.; Kumar, A.; Krishnan, V. Carbon support based heterogeneous nanocatalysts: synthesis and applications in organic reactions. Asian J. Org. Chem.,2019, 8(8), 1263-1305.[http://dx.doi.org/10.1002/ajoc.201900259][84]Schaetz, A.; Zeltner, M.; Stark, W.J. Carbon modifications and surfaces for catalytic organic transformations. ACS Catal.,2012, 2(6), 1267-1284.[http://dx.doi.org/10.1021/cs300014k][85]Dandia, A.; Parihar, S.; Saini, P.; Rathore, K.S.; Parewa, V. Metal-free sustainable synthesis of amides via oxidative amidation using graphene oxide as carbocatalyst in aqueous edium. Catal. Lett.,2019, 149(11), 3169-3175.[http://dx.doi.org/10.1007/s10562-019-02878-5][86]Dandia, A.; Mahawar, D.K.; Sharma, R.; Badgoti, R.S.; Rathore, K.S.; Parewa, V. Graphene oxide-catalyzed CSp3–H activation of methylarenes in aqueous medium: A unified metal-free access to amides and benzimidazoles. Appl. Organomet. Chem.,2019, 33(11), e5232.[http://dx.doi.org/10.1002/aoc.5232][87]Sharma, P.; Sasson, Y. Highly active gC3N4 as a solid base catalyst for knoevenagel condensation reaction under phase transfer conditions. RSC Advances,2017, 7(41), 25589-25596.[http://dx.doi.org/10.1039/C7RA03051G][88]Akhmedov, V.M.; Ahmadov, I.D.; Nurullayev, H.G.; Ahmadov, V.M. New metal-free catalysts for the selective hydrogenation of multible bonds İn aromati̇c hydrocarbons based on graphitic carbon nitrides. J. Azerb. Chem.,2016, 2, 867-874.[89]Wang, Y.; Yao, J.; Li, H.; Su, D.; Antonietti, M. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc.,2011, 133(8), 2362-2365.[http://dx.doi.org/10.1021/ja109856y] [PMID: 21294506][90]Shirini, F.; Kamali, F. Fe3O4/g-C3N4 nanocomposites as a reusable catalyst for the synthesis of 5-arylidenepyrimidine-2,4,6-(1H,3H,5H)-trione and pyrano-pyrimidinone derivatives in aqueous media. J. Nanosci. Nanotechnol.,2020, 20(9), 5433-5444.[http://dx.doi.org/10.1166/jnn.2020.17863] [PMID: 32331115][91]Majumdar, B.; Sarma, D.; Bhattacharya, T.; Sarma, T.K. Graphene oxide as metal-free catalyst in oxidative dehydrogenative C–N coupling leading to α-Ketoamides: importance of dual catalytic activity. ACS Sustain. Chem.& Eng.,2017, 5(10), 9286-9294.[http://dx.doi.org/10.1021/acssuschemeng.7b02267][92]Kawashita, Y.; Nakamichi, N.; Kawabata, H.; Hayashi, M. Direct and practical synthesis of 2-arylbenzoxazoles promoted by activated carbon. Org. Lett.,2003, 5(20), 3713-3715.[http://dx.doi.org/10.1021/ol035393w] [PMID: 14507212][93]Marzo, L.; Pagire, S.K.; Reiser, O.; König, B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew. Chem. Int. Ed. Engl.,2018, 57(32), 10034-10072.[http://dx.doi.org/10.1002/anie.201709766] [PMID: 29457971][94]König, B. Photocatalysis in organic synthesis–past, present, and future. Eur. J. Org. Chem.,2017, 2(15), 1979-1981.[http://dx.doi.org/10.1002/ejoc.201700420][95]Stephenson, C.R.; Yoon, T.P.; MacMillan, D.W. Visible light photocatalysis in organic chemistry. John Wiley & Sons,2018.[http://dx.doi.org/10.1002/9783527674145][96]Gisbertz, S.; Pieber, B. Heterogeneous Photocatalysis in Organic Synthesis. ChemPhotoChem,2020, 4(7), 456-475.[http://dx.doi.org/10.1002/cptc.202000014][97]Dandia, A.; Saini, P.; Sharma, R.; Parewa, V. Green organic synthesis by photochemical protocol.Green Sustainable Process for Chemical and Environmental Engineering and Science.,2020, , 155-198.[http://dx.doi.org/10.1016/B978-0-12-819539-0.00007-5][98]