26,52 €
This volume is a valuable source of recent knowledge about advanced time series forecasting techniques such as artificial neural networks, fuzzy time series, or hybrid approaches. New forecasting frameworks are discussed and their application is demonstrated. The second volume of the series includes applications of some powerful forecasting approaches with a focus on fuzzy time series methods. Chapters integrate these methods with concepts such as neural networks, high order multivariate systems, deterministic trends, distance measurement and much more. The chapters are contributed by eminent scholars and serve to motivate and accelerate future progress while introducing new branches of time series forecasting. This book is a valuable resource for MSc and PhD students, academic personnel and researchers seeking updated and critically important information on the concepts of advanced time series forecasting and its applications.
Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:
Seitenzahl: 296
Veröffentlichungsjahr: 2017
This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the ebook/echapter/ejournal (“Work”). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.
Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: [email protected].
3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.
Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.
In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.
Bentham Science Publishers Ltd. Executive Suite Y - 2 PO Box 7917, Saif Zone Sharjah, U.A.E. Email: [email protected]
Human interest in the future can be traced back to prehistoric times. People have always wanted to see what can happen in the future. The future is unknown and mysterious. People have always tried to solve the mystery of the future by using different ways for profit, fame, power or just curiosity sake. Today forecasting is a multibillion dollar industry. All economic publications publish many economic forecasting studies; political writers proclaim on political trends and forthcoming government policies; stockbrokers and financial experts predict stock market trends, when to buy, and what stocks to choose; and many other examples can be given which have application to other fields.
Before making plans or making decisions, an estimate must be made of what conditions will exist over some future period. It is a well-known fact that there is uncertainty about the future. In order to predict to future by dealing with this uncertainty, forecasting is performed. At the present time, forecasting is a challenge which has to be overcome in many fields of application. Forecasting can be considered as a process of using various tools and techniques. Many methods for forecasting the future have been proposed in the literature over the past few decades because of the importance of this popular topic. One way to forecast the future is to use time series analysis. There have been many time series forecasting approaches in the literature. It is possible to divide these approaches into two subclasses which are conventional and advanced forecasting methods. Since conventional approaches such as Box-Jenkins methods has some restrictions such as some assumptions, they cannot always produce reliable forecasts for real world time series. Furthermore, conventional approaches cannot model some real world time series because of the specific characteristic of data. Advanced methods such as neural networks, fuzzy time series, or hybrid approaches have been recently used in many applications in order to deal with these restrictions arising from conventional methods and to get more reliable forecasts. Most of the time, these approaches have been competed to each other. On the other hand, it should be noted that these approaches are complementary rather than competitive. For example, hybrid approaches are very effective forecasting tools. And, these approaches sometimes combine conventional and advanced forecasting methods.
The book intends to be a valuable source of recent knowledge about advanced time series forecasting techniques. New capable advanced forecasting frameworks are discussed and their applicability is shown. The book includes applications of some powerful recent forecasting approaches to real world time series. Besides recent advanced forecasting methods, new efficient forecasting methods are firstly introduced in the book. The readers can find useful information about advanced time series forecasting, as well as its application to real-life problems in various domains. I hope the materials covered in this book, provided by the respectful scholars in the field, motivate and accelerate future progress and introduce new branches off the time series forecasting.
In Chapter 1, Aladag and Turksen have introduced a new performance measure by defining a novel distance measure to evaluate forecasting performance of fuzzy time series. Bas and Egrioglu, in Chapter 2, have suggested a novel fuzzy time series forecasting approach that has a network structure. In Chapter 3, Zarandi et al. has discussed some Type-1 and Type-2 fuzzy time series forecasting models. Chapter 4, by Egrioglu et al., introduce a new neural network model including deterministic trend and seasonality components. In Chapter 5, Yolcu has presented a fuzzy time series method based on genetic algorithms. Aladag and Guney, in Chapter 6, have applied a fuzzy time series forecasting model based on Markov chain transition matrix to stock exchanges. In Cahapter 7, Yolcu has proposed a new high order multivariate fuzzy time series forecasting model. Chapter 8, by Dalar et al., has discussed a framework for using fuzzy functions in fuzzy time series forecasting. Sarica et al., in Chapter 9, have introduced Recurrent ANFIS model for time series forecasting. In Chapter 10, Bas has proposed a hybrid forecasting approach which combines genetic algorithms, differential evolution algorithms, and fuzzy time series.
The editor would also like to express his sincere thanks to all authors for their valuable contributions. The editor would also like to acknowledge valuable assistance from Shehzad Naqvi from Bentham Science Publishers.
In the literature, many models based on fuzzy systems have been utilized to solve various real world problems from different application areas. One of this areas is time series forecasting. Successful forecasting results have been obtained from fuzzy time series forecasting models in many studies. To determine the best fuzzy time series model among possible forecasting models is a vital decision. In order to evaluate fuzzy time series forecasting models, conventional performance measures such as root mean square error or mean absolute percentage error have been widely utilized in the literature. However, the nature of fuzzy logic is not taking into consideration when such conventional criteria are employed since these criteria are computed over crisp values. When fuzzy time series forecasting models are evaluated, using criteria which work based on fuzzy logic characteristics is wiser. Therefore, Aladag and Turksen [2] suggested a new performance measure which is calculated based on membership values to evaluate fuzzy systems. It is called as membership value based performance measure. In this study, a novel distance measure is firstly defined and a new membership value based performance measure based on this new distance measure is proposed. The proposed criterion is also applied to real world time series in order to show the applicability of the suggested measure.