178,99 €
This is the third of five books in the Amino Acids, Peptides and Proteins in Organic Synthesis series.
Closing a gap in the literature, this is the only series to cover this important topic in organic and biochemistry. Drawing upon the combined expertise of the international "who's who" in amino acid research, these volumes represent a real benchmark for amino acid chemistry, providing a comprehensive discussion of the occurrence, uses and applications of amino acids and, by extension, their polymeric forms, peptides and proteins.
The practical value of each volume is heightened by the inclusion of experimental procedures.
The 5 volumes cover the following topics:
Volume 1: Origins and Synthesis of Amino Acids
Volume 2: Modified Amino Acids, Organocatalysis and Enzymes
Volume 3: Building Blocks, Catalysis and Coupling Chemistry
Volume 4: Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis
Volume 5: Analysis and Function of Amino Acids and Peptides
This third volume in the series presents an in depth account of recent developments in the (bio-)synthesis of amino acids and peptides. Divided into two parts, the first section deals with amino acids as building blocks, including the generation of alpha-amino acids, beta-lactams, and heterocycles. The second section is devoted to the synthesis of peptides, with the focus on solid phase synthesis. However, solution phase peptide synthesis is covered as well, as are topics such as coupling reagents, chemical ligation, peptide purification and automation.
Originally planned as a six volume series, Amino Acids, Peptides and Proteins in Organic Chemistry now completes with five volumes but remains comprehensive in both scope and coverage.
Further information about the 5 Volume Set and purchasing details can be viewed here.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 998
Veröffentlichungsjahr: 2011
Contents
Cover
Half Title page
Further Reading
Title page
Copyright page
List of Contributors
Part One: Amino Acids as Building Blocks
Chapter 1: Amino Acid Biosynthesis
1.1 Introduction
1.2 Glutamate and Glutamine: Gateways to Amino Acid Biosynthesis
1.3 Other Amino Acids from Ubiquitous Metabolites: Pyridoxal Phosphate-Dependent Routes to Aspartate, Alanine, and Glycine
1.4 Routes to Functionalized Three-Carbon Amino Acids: Serine, Cysteine, and Selenocysteine
1.5 Other Amino Acids from Aspartate and Glutamate: Asparagine and Side Chain Functional Group Manipulation
1.6 Aspartate and Glutamate Families of Amino Acids
1.7 Biosynthesis of Aliphatic Amino Acids with Modified Carbon Skeletons: Branched-Chain Amino Acids, Lysine, and Pyrrolysine
1.8 Biosynthesis of the Aromatic Amino Acids
1.9 Conclusions
References
Chapter 2: Heterocycles from Amino Acids
2.1 Introduction
2.2 Heterocycles Generated by Intramolecular Cyclizations
2.3 Heterocycles Generated by Intermolecular Cyclizations
2.4 Heterocycles Generated by Cycloadditions
2.5 Conclusions
2.6 Experimental Procedures
Acknowledgments
References
Chapter 3: Radical-Mediated Synthesis of α-Amino Acids and Peptides
3.1 Introduction
3.2 Free Radical Reactions
3.3 Radical Addition to Imine Derivatives
3.4 Radical Conjugate Addition
3.5 Conclusions
3.6 Experimental Protocols
References
Chapter 4: Synthesis of β-Lactams (Cephalosporins) by Bioconversion
4.1 Introduction
4.2 Biosynthetic Pathways of Cephalosporins and Penicillins
4.3 Production of 7-ACA by A. chrysogenum
4.4 Production of 7-ADCA by A. chrysogenum
4.5 Production of Penicillin G by A. chrysogenum
4.6 Production of Cephalosporins by P. chrysogenum
4.7 Conversion of Penicillin G and other Penicillins to DAOG by Streptomyces clavuligerus
4.8 Conclusions
References
Chapter 5: Structure and Reactivity of β-Lactams
5.1 Introduction
5.2 Structure
5.3 Reactivity
5.4 Hydrolysis
5.5 Aminolysis
5.6 Epimerization
References
Part Two: Amino Acid Coupling Chemistry
Chapter 6: Solution-Phase Peptide Synthesis
6.1 Principle of Peptide Synthesis
6.2 Protection Procedures
6.3 Chain Elongation Procedures
6.4 Final Deprotection Methods
References
Chapter 7: Solid-Phase Peptide Synthesis: Historical Aspects
7.1 Introduction
7.2 Selection of Compatible Synthetic Components
7.3 Racemization and Stepwise Peptide Assembly
7.4 Optimization of Synthetic Components
7.5 Foreshadowing of the Nobel Prize
7.6 Automation of SPPS
7.7 Impact of New Protecting Groups and Resin Linkages
7.8 Solid-Phase Organic Chemistry
7.9 Early Applications of SPPS to Small Proteins
7.10 Side-Reactions and Sequence-Dependent Problems
7.11 Rapid Expansion of Usage Leading to the Nobel Prize
7.12 From the Nobel Prize Forward to Combinatorial Chemistry
7.13 Protein Synthesis and Peptide Ligation
7.14 Conclusions
Acknowledgments
References
Chapter 8: Linkers for Solid-Phase Peptide Synthesis
8.1 Introduction
8.2 Immobilization via Carboxyl Group
8.3 Immobilization via Amino Group
8.4 Backbone Immobilization
8.5 Immobilization via Amino Acid Side-Chain
8.6 Conclusions
References
Chapter 9: Orthogonal Protecting Groups and Side-Reactions in Fmoc/tBu Solid-Phase Peptide Synthesis
9.1 Orthogonal Protecting Groups in Fmoc/tBu Solid-Phase Peptide Synthesis
9.2 Side-Reactions in Fmoc/tBu Solid-Phase Peptide Synthesis
References
Chapter 10: Fmoc Methodology: Cleavage from the Resin and Final Deprotection
10.1 Introduction
10.2 “Low” TFA-Labile Resins
10.3 “High” TFA-Labile Resins
10.4 Final Remarks
Acknowledgments
References
Chapter 11: Strategy in Solid-Phase Peptide Synthesis
11.1 Synthetic Strategies Utilizing Solid-Phase Peptide Synthesis Methods
11.2 Solid Support: Resins and Linkers
11.3 Developing the Synthetic Strategy: Selection of the Protecting Group Scheme
11.4 Resin Loading
11.5 SBS Peptide Chain Elongation: Coupling and Activation
11.6 Piperazine Formation
11.7 Solid-Phase Synthesis of Protected Peptide Segments
11.8 Fragment Condensation Approach: Convergent and Hybrid Syntheses
11.9 Cleavage from the Resin and Global Peptide Deprotection
11.10 Disulfide Bond-Containing Peptides
11.11 Native Chemical Ligation (NCL)
11.12 SPPS of Peptides Modified at their C-Terminus
11.13 Side-Chain-Modified Peptides
11.14 Cyclic Peptides
11.15 Large-Scale Solid-Phase Synthesis
11.16 Conclusions
References
Chapter 12: Peptide-Coupling Reagents
12.1 Introduction
12.2 Carbodiimides
12.3 Phosphonium Salts
12.4 Aminium/Uronium Salts
12.5 Fluoroformamidinium Coupling Reagents
12.6 Organophosphorus Reagents
12.7 Triazine Coupling Reagents
12.8 Mukaiyama’s Reagent
12.9 Conclusions
Acknowledgments
References
Chapter 13: Chemoselective Peptide Ligation: A Privileged Tool for Protein Synthesis
13.1 Introduction
13.2 Chemoselective Peptide Ligations Following a Capture/Rearrangement Strategy
13.3 Chemical Transformations for Cys-Free Ligations in Peptides and Proteins
13.4 Other Chemoselective Capture Strategies
13.5 Peptide Ligations by Chemoselective Amide-Bond-Forming Reactions
13.6 Strategies for the Ligation of Multiple Fragments
References
Chapter 14: Automation of Peptide Synthesis
14.1 Introduction
14.2 SPPS: From Mechanization to Automation
14.3 Deprotection Step: Monitoring and Control
14.4 Coupling Step: Monitoring and Control
14.5 Integrated Deprotection and Coupling Control
References
Chapter 15: Peptide Purification by Reversed-Phase Chromatography
15.1 RP-HPLC of Peptides
15.2 Peptide Properties
15.3 Chromatographic Principles
15.4 Prediction of Peptide Retention Times
15.5 Advantages of Reduced Scale
15.6 Two-Dimensional Chromatographic Methods
15.7 Peptide Analysis in Complex Biological Matrices
15.8 Standard Methods for Peptide Separations for Analysis by Hyphenated Techniques
15.9 Emerging Methods for Peptide Separations for Analysis by Hyphenated Techniques
15.10 Practical use of RP-HPLC for Purifying Peptides (Analytical and Preparative Scale)
References
Chapter 16: Difficult Peptides
16.1 Importance of Peptide Synthesis
16.2 Methods for Peptide Synthesis
16.3 Chemical Peptide Synthesis
16.4 “Difficult Peptide Sequences”
16.5 Means to Overcome Peptide Aggregation in SPPS
16.6 Monitoring the Synthesis of a “Difficult Peptide”
16.7 Conclusions
References
Index
Amino Acids, Peptides and Proteins in Organic Chemistry
Further Reading
Drauz, K., Gröger, H., May, O. (eds.)
Enzyme Catalysis in Organic Synthesis
Third completely revised and enlarged edition
3 Volumes2011ISBN: 978-3-527-32547-4
Fessner, W.-D., Anthonsen, T.
Modern Biocatalysis
Stereoselective and Environmentally Friendly Reactions
2009ISBN: 978-3-527-32071-4
Pignataro, B. (ed.)
Ideas in Chemistry and Molecular Sciences
Advances in Synthetic Chemistry
2010ISBN: 978-3-527-32539-9
Reek, J. N. H., Otto, S.
Dynamic Combinatorial Chemistry
2010ISBN: 978-3-527-32122-3
Lutz, S., Bornscheuer, U. T. (eds.)
Protein Engineering Handbook
2 Volume Set
2009ISBN: 978-3-527-31850-6
Sewald, N., Jakubke, H.-D.
Peptides: Chemistry and Biology
2009ISBN: 978-3-527-31867-4
Jakubke, H.-D., Sewald, N.
Peptides from A to Z
A Concise Encyclopedia
2008ISBN: 978-3-527-31722-6
Royer, J. (ed.)
Asymmetric Synthesis of Nitrogen Heterocycles
2009ISBN: 978-3-527-32036-3
Hecht, S., Huc, I. (eds.)
Foldamers
Structure, Properties, and Applications
2007ISBN: 978-3-527-31563-5
The Editor
Andrew B. HughesLa Trobe UniversityDepartment of ChemistryVictoria 3086Australia
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication DataA catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche NationalbibliothekThe Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.
© 2011 WILEY-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-32102-5 E-pdf ISBN: 978-3-527-63181-0 E-Pub ISBN: 978-3-527-63305-0 Mobi ISBN: 978-3-527-64081-2
List of Contributors
Knut AdermannPharis Biotec GmbHFeodor-Lynen-Strasse 3130625 HannoverGermany
José Luis AdrioNeuron BPhAvda. de la Innovación 1, Edificio BICParque Tecnológico de ciencias de la Salud18100 ArmillaGranadaSpain
Fernando AlbericioInstitute for Research in BiomedicineBarcelona Science ParkBaldiri Reixac 1008028 BarcelonaSpainandNetworking Centre on Bioengineering,Biomaterials and Nanomedicine(CIBER-BBN)Barcelona Science ParkBaldiri Reixac 1008028 BarcelonaSpain
University of BarcelonaDepartment of Organic ChemistryMartí i Franqués 1-1108028 BarcelonaSpain
Andrea BagnoUniversity of PadovaDepartment of Chemical Process EngineeringVia Marzolo 935131 PadovaItaly
Kleomenis BarlosUniversity of PatrasDepartment of ChemistryRion-PatrasGreece
José Luis BarredoI+D BiologiaAntibióticos S.A.Avda. Antibióticos, 59-6124009 LeónSpain
Julie BletzInstitute for Systems Biology1441 North 34th StreetSeattle, WA 98103-8904USA
Jeffrey W. BodeEidgenössische TechnischeHochschule ZürichLaboratorium für Organische ChemieWolfgang Pauli Strasse 108093 ZürichSwitzerland
M. Isabel CalazaUniversidad de Zaragoza – CSICInstituto de Ciencia de Materiales de AragónDepartamento de Química Orgánica50009 ZaragozaSpain
Stefano CarganicoUniversity of FirenzePolo Scientifico e TecnologicoLaboratory of Peptide and Protein Chemistry and BiologyVia della Lastruccia 1350019 Sesto FlorentinoItaly
PRES University of Cergy-PontoiseLaboratoire SOSCO-UMR 81235 mail Gay-Lussac, Neuville sur Oise95031 Cergy-PontoiseFrance
Carlos CativielaUniversidad de Zaragoza – CSICInstituto de Ciencia de Materiales de AragónDepartamento de Química Orgánica50009 ZaragozaSpain
Arnold L. DemainDrew UniversityRISEHS-330Madison, NJ 07940USA
Jan DeskaStockholm UniversityArrhenius LaboratoryDepartment of Organic Chemistry106 91 StockholmSweden
Monica DettinUniversity of PadovaDepartment of Chemical Process EngineeringVia Marzolo 935131 PadovaItaly
Carlo Di BelloUniversity of PadovaDepartment of Chemical Process EngineeringVia Marzolo 935131 PadovaItaly
Ayman El-FahamKing Saud UniversityCollege of ScienceDepartment of ChemistryPO Box 24551451 RiyadhKingdom of Saudi Arabia
Alexandria UniversityFaculty of ScienceDepartment of ChemistryHorria Street, PO Box 246, Ibrahimia21321 AlexandriaEgypt
Institute for Research in BiomedicineBarcelona Science ParkBaldiri Reixac 1008028 BarcelonaSpain
Christian P.R. HackenbergerFreie Universität BerlinInstitut für Chemie und BiochemieTakustrasse 314195 BerlinGermany
Jan HlaváPalacky UniversityDepartment of Organic ChemistryTrida 17, Listopadu 12771 46 OlomoucCzech Republic
Steven A. KatesIschemix63 Great RoadMaynard, MA 01754USA
Viktor KrchñákUniversity of Notre DameDepartment of Chemistry and Biochemistry251 Nieuwland Science CenterNotre Dame, IN 46556USA
Ulrike KusebauchInstitute for Systems Biology1441 North 34th StreetSeattle, WA 98103-8904USA
Cleber W. LiriaUniversity of São PauloInstitute of ChemistryDepartment of Biochemistry Peptide Chemistry LaboratoryAv. Prof. Lineu Prestes, 74805508-900 São PauloBrazil
Garland R. MarshallWashington UniversityCenter for Computational BiologyDepartments of Biochemistry andMolecular Biophysics and Biomedical Engineering700 S. Euclid AvenueSt. Louis, MO 63110USA
Joshua McBeeInstitute for Systems Biology1441 North 34th StreetSeattle, WA 98103-8904USA
Maria Terêsa Machini MirandaUniversity of São PauloInstitute of ChemistryDepartment of BiochemistryPeptide Chemistry LaboratoryAv. Prof. Lineu Prestes, 74805508-900 São PauloBrazil
Robert L. MoritzInstitute for Systems Biology1441 North 34th StreetSeattle, WA 98103-8904USA
Yoshio OkadaKobe Gakuin UniversityFaculty of Pharmaceutical SciencesArise 518, Ikawadani-cho, Nishi-ku651-2180 KobeJapan
Michael l. PageUniversity of HuddersfieldDepartment of Chemical and Biological SciencesQueensgateHuddersfield HD1 3DHUK
Anna Maria PapiniUniversity of FirenzePolo Scientifico e TecnologicoLaboratory of Peptide and Protein Chemistry and BiologyVia della Lastruccia 1350019 Sesto FlorentinoItaly
PRES University of Cergy-PontoiseLaboratoire SOSCO-UMR 81235 mail Gay-Lussac, Neuville sur Oise95031 Cergy-PontoiseFrance
Emily J. ParkerUniversity of CanterburyDepartment of ChemistryPO Box 4800ChristchurchNew Zealand
Andrew J. PrattUniversity of CanterburyDepartment of ChemistryPO Box 4800ChristchurchNew Zealand
Cesar RemuzgoUniversity of São PauloInstitute of ChemistryDepartment of Biochemistry Peptide Chemistry LaboratoryAv. Prof. Lineu Prestes, 74805508-900 São PauloBrazil
Marta Rodriguez-SáizAntibióticos S.A.Avda. Antibióticos, 59-6124009 LeónSpain
Dirk SchwarzerLeibniz-Institut für MolekularePharmakologie (FMP)Chemical Biology SectionRobert-Rössle-Strasse 1013125 BerlinGermany
Richard J. SimpsonLudwig Institute For Cancer ResearchJoint Proteomics LaboratoryRoyal Melbourne HospitalParkville, Victoria 3050Australia
Miroslav SouralPalacky UniversityDepartment of Organic ChemistryTrida 17, Listopadu 12771 46 OlomoucCzech Republic
Yuko TsudaKobe Gakuin UniversityFaculty of Pharmaceutical SciencesMinatojima 1-1-3, Chuo-ku650-8586 KobeJapan
Judit Tulla-PucheInstitute for Research in BiomedicineBarcelona Science ParkBaldiri Reixac 1008028 BarcelonaSpainandNetworking Centre on Bioengineering,Biomaterials and Nanomedicine(CIBER-BBN)Barcelona Science ParkBaldiri Reixac 1008028 BarcelonaSpain
Part One
Amino Acids as Building Blocks