Analyzing Biomolecular Interactions by Mass Spectrometry -  - E-Book

Analyzing Biomolecular Interactions by Mass Spectrometry E-Book

0,0
142,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

This monograph reviews all relevant technologies based on mass spectrometry that are used to study or screen biological interactions in general.
Arranged in three parts, the text begins by reviewing techniques nowadays almost considered classical, such as affinity chromatography and ultrafiltration, as well as the latest techniques. The second part focusses on all MS-based methods for the study of interactions of proteins with all classes of biomolecules. Besides pull down-based approaches, this section also emphasizes the use of ion mobility MS, capture-compound approaches, chemical proteomics and interactomics. The third and final part discusses other important technologies frequently employed in interaction studies, such as biosensors and microarrays.
For pharmaceutical, analytical, protein, environmental and biochemists, as well as those working in pharmaceutical and analytical laboratories.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 792

Veröffentlichungsjahr: 2015

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Related Titles

Title Page

Copyright

List of Contributors

Preface

Abbreviations

Chapter 1: Introduction to Mass Spectrometry, a Tutorial

1.1 Introduction

1.2 Figures of Merit

1.3 Analyte Ionization

1.4 Mass Analyzer Building Blocks

1.5 Tandem Mass Spectrometry

1.6 Data Interpretation and Analytical Strategies

1.7 Conclusion and Perspectives

References

Part I: Direct MS Based Affinity Techniques

Chapter 2: Studying Protein–Protein Interactions by Combining Native Mass Spectrometry and Chemical Cross-Linking

2.1 Introduction

2.2 Protein Analysis by Mass Spectrometry

2.3 Native MS

2.4 Chemical Cross-linking MS

2.5 Value of Combining Native MS with Chemical Cross-linking MS

2.6 Regulating the Giant

2.7 Capturing Transient Interactions

2.8 An Integrative Approach for Obtaining Low-Resolution Structures of Native Protein Complexes

2.9 Future Directions

References

Chapter 3: Native Mass Spectrometry Approaches Using Ion Mobility-Mass Spectrometry

3.1 Introduction

3.2 Sample Preparation

3.3 Electrospray Ionization

3.4 Mass Analyzers and Tandem MS Approaches

3.5 Ion Mobility

3.6 Data Processing

3.7 Challenges and Future Perspectives

References

Part II: LC-MS Based with Indirect Assays

Chapter 4: Methodologies for Effect-Directed Analysis: Environmental Applications, Food Analysis, and Drug Discovery

4.1 Introduction

4.2 Principle of Traditional Effect-Directed Analysis

4.3 Sample Preparation

4.4 Fractionation for Bioassay Testing

4.5 Miscellaneous Approaches

4.6 Bioassay Testing

4.7 Identification and Confirmation Process

4.8 Conclusion and Perspectives

References

Chapter 5: MS Binding Assays

5.1 Introduction

5.2 MS Binding Assays – Strategy

5.3 Application of MS Binding Assays

5.4 Summary and Perspectives

Acknowledgments

References

Chapter 6: Metabolic Profiling Approaches for the Identification of Bioactive Metabolites in Plants

6.1 Introduction to Plant Metabolic Profiling

6.2 Sample Collection and Processing

6.3 Hyphenated Techniques

6.4 Mass Spectrometry

6.5 Mass Spectrometric Imaging

6.6 Data Analysis

6.7 Future Perspectives

References

Chapter 7: Antivenomics: A Proteomics Tool for Studying the Immunoreactivity of Antivenoms

7.1 Introduction

7.2 Challenge of Fighting Human Envenoming by Snakebites

7.3 Toolbox for Studying the Immunological Profile of Antivenoms

7.4 First-Generation Antivenomics

7.5 Snake Venomics

7.6 Second-Generation Antivenomics

7.7 Concluding Remarks

Acknowledgments

References

Part III: Direct Pre- and On-Column Coupled Techniques

Chapter 8: Frontal and Zonal Affinity Chromatography Coupled to Mass Spectrometry

8.1 Introduction

8.2 Frontal Affinity Chromatography

8.3 Staircase Method

8.4 Simultaneous Frontal Analysis of a Complex Mixture

8.5 Multiprotein Stationary Phase

8.6 Zonal Chromatography

8.7 Nonlinear Chromatography

Acknowledgments

References

Chapter 9: Online Affinity Assessment and Immunoaffinity Sample Pretreatment in Capillary Electrophoresis–Mass Spectrometry

9.1 Introduction

9.2 Capillary Electrophoresis

9.3 Affinity Capillary Electrophoresis

9.4 Immunoaffinity Capillary Electrophoresis

9.5 Capillary Electrophoresis–Mass Spectrometry

9.6 Application of ACE–MS

9.7 Applications of IA-CE–MS

9.8 Conclusions

References

Chapter 10: Label-Free Biosensor Affinity Analysis Coupled to Mass Spectrometry

10.1 Introduction to MS-Coupled Biosensor Platforms

10.2 Strategies for Coupling Label-Free Analysis with Mass Spectrometry

10.3 New Sensor and MS Platforms, Opportunities for Integration

References

Part IV: Direct Post Column Coupled Affinity Techniques

Chapter 11: High-Resolution Screening: Post-Column Continuous-Flow Bioassays

11.1 Introduction

11.2 The High-Resolution Screening Platform

11.3 Data Analysis

11.4 Conclusions and Perspectives

References

Chapter 12: Conclusions

Index

End User License Agreement

Pages

xiii

xiv

xv

xvi

xvii

xviii

xix

xx

xxi

xxii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

365

366

367

368

369

370

371

372

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

227

228

229

230

231

232

233

234

235

236

237

238

239

243

244

245

246

247

248

249

250

252

251

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

373

374

375

376

377

378

Guide

Cover

Table of Contents

Preface

Part I: Direct MS Based Affinity Techniques

Begin Reading

List of Illustrations

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.7

Figure 1.8

Figure 1.9

Figure 1.10

Figure 1.11

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.15

Figure 5.16

Figure 5.17

Figure 5.18

Figure 6.1

Figure 6.2

Figure 6.3

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5

Figure 8.6

Figure 8.7

Figure 8.8

Figure 8.9

Figure 8.10

Figure 8.11

Figure 8.12

Figure 9.1

Figure 9.2

Figure 9.3

Figure 9.4

Figure 9.5

Figure 9.6

Figure 9.7

Figure 9.8

Figure 9.9

Figure 9.10

Figure 9.11

Figure 10.1

Figure 10.2

Figure 10.3

Figure 10.4

Figure 11.1

Figure 11.2

Figure 11.3

Figure 11.4

Figure 11.5

Figure 11.6

Figure 11.7

Figure 11.8

Figure 11.9

Figure 11.10

Figure 11.11

Figure 11.12

Figure 11.13

List of Tables

Table 1.1

Table 1.2

Table 1.3

Table 6.1

Table 8.1

Table 8.2

Table 8.3

Table 8.4

Table 9.1

Table 9.2

Table 9.3

Table 11.1

Table 11.2

Related Titles

Hillenkamp, F., Peter-Katalinic, J. (eds.)

MALDI MS

A Practical Guide to Instrumentation, Methods and Applications

Second Edition2014

Print ISBN: 978-3-527-33331-8,also available in digital formats

 

Przybylski, M.

Biopolymer Mass Spectrometry

Methods, Ion Chemistry, Bioanalytical Applications

2013

Print ISBN: 978-3-527-32955-7

 

Cannataro, M., Guzzi, P.H.

Data Management of Protein Interaction Networks

2012

Print ISBN: 978-0-470-77040-5,also available in digital formats

 

Budzikiewicz, H., Schäfer, M.

Massenspektrometrie

Eine Einführung

Sechste Auflage2012

Print ISBN: 978-3-527-32911-3,also available in digital formats

 

Schalley, C.A. (ed.)

Analytical Methods in Supramolecular Chemistry

Second Edition2012

Print ISBN: 978-3-527-32982-3,also available in digital formats

Edited byJeroen Kool and Wilfried M.A. Niessen

Analyzing Biomolecular Interactionsby Mass Spectrometry

The Editors

Dr. Jeroen Kool

VU University Amsterdam

Faculty of Science

Amsterdam Institute for Molecules Medicines and Systems

Division of BioAnalytical Chemistry/ BioMolecular Analysis

De Boelelaan 1083

1081 HV Amsterdam

The Netherlands

 

Prof. Dr. Wilfried M.A. Niessen

hyphen MassSpec

de Wetstraat 8

2332 XT Leiden

The NetherlandsandVU University Amsterdam

Faculty of Science

Amsterdam Institute for Molecules Medicines and Systems

Division of BioAnalytical Chemistry/\hb BioMolecular Analysis

De Boelelaan 1083

1081 HV Amsterdam

The Netherlands

 

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33464-3

ePDF ISBN: 978-3-527-67342-1

ePub ISBN: 978-3-527-67341-4

Mobi ISBN: 978-3-527-67340-7

oBook ISBN: 978-3-527-67339-1

List of Contributors

David Bonnel

ImaBiotech

Parc Eurasanté

885 av. Eugène Avinée

59120 Loos

France

 

Angela I. Calderón

Auburn University

Harrison School of Pharmacy

Department of Drug Discovery and Development

4306 Walker Building

Auburn

AL 36849

USA

 

Juan J. Calvete

Institut de Biomedicina de València-CSIC

C/Jaume Roig, 11

46010 València

Spain

 

David Falck

VU University Amsterdam

Faculty of Science

Amsterdam Institute for Molecules Medicines and Systems

De Boelelaan 1083

1081 HV Amsterdam

The Netherlands

 

and

 

Leiden University Medical Center (LUMC)

Center for Proteomics and Metabolomics

Division of Glycomics and Glycoproteomics

Albinusdreef 2

2300RC Leiden

The Netherlands

 

José María Gutiérrez

Universidad de Costa Rica

Instituto Clodomiro Picado

Facultad de Microbiología

San José

Costa Rica

 

Rob Haselberg

VU University Amsterdam

Faculty of Science

Amsterdam Institute for Molecules Medicines and Systems

De Boelelaan 1083

1081 HV Amsterdam

The Netherlands

 

Georg Höfner

Ludwig-Maximilians-Universität

Department für Pharmazie

Butenandtstr. 7

81377 München

Germany

 

Corine Houtman

VU University Amsterdam

Faculty of Earth and Life Sciences

Institute for Environmental Studies

De Boelelaan 1087

1081 HV Amsterdam

The Netherlands

 

Zhenjing Jiang

Jinan University

Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drug Research

Guangzhou 510632

China

 

Willem Jonker

VU University Amsterdam

Faculty of Science

Amsterdam Institute for Molecules Medicines and Systems

Division of BioAnalytical Chemistry/BioMolecular Analysis

De Boelelaan 1083

1081 HV Amsterdam

The Netherlands

 

Albert Konijnenberg

University of Antwerpen

Department of Chemistry

Biomolecular and Analytical Mass Spectrometry

Groenenborgerlaan 171

2020 Antwerpen

Belgium

 

Jeroen Kool

VU University Amsterdam

Faculty of Science

Amsterdam Institute for Molecules Medicines and Systems

De Boelelaan 1083

1081 HV Amsterdam

The Netherlands

 

Marja Lamoree

VU University Amsterdam

Faculty of Earth and Life Sciences

Institute for Environmental Studies

De Boelelaan 1087

1081 HV Amsterdam

The Netherlands

 

Filip Lemière

University of Antwerpen

Department of Chemistry

Biomolecular and Analytical Mass Spectrometry

Groenenborgerlaan 171

2020 Antwerpen

Belgium

 

Frederik Lermyte

University of Antwerpen

Department of Chemistry

Biomolecular and Analytical Mass Spectrometry

Groenenborgerlaan 171

2020 Antwerpen

Belgium

 

Bruno Lomonte

Universidad de Costa Rica

Instituto Clodomiro Picado

Facultad de Microbiología

San José

Costa Rica

 

Gerardo R. Marchesini

Plasmore S.r.l.

Via G. Deledda 4

21020 Ranco (Varese)

Italy

 

Esther Marie Martin

University of Antwerpen

Department of Chemistry

Biomolecular and Analytical Mass Spectrometry

Groenenborgerlaan 171

2020 Antwerpen

Belgium

 

Dora Mehn

Fondazione Don Carlo Gnocchi Onlus, Via Capecelatro 66

20148 Milano

Italy

 

Ruin Moaddel

National Institute on Aging

National Institutes of Health

Bioanalytical Chemistry and Drug Discovery Section

Biomedical Research Center

251 Bayview Boulevard

Suite 100

Baltimore, MD 21224-6825

USA

 

and

 

Jinan University

Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drug Research

Guangzhou 510632

China

 

Wilfried M.A. Niessen

hyphen MassSpec

de Wetstraat 8

2332 XT Leiden

The Netherlands

 

and

 

VU University Amsterdam

Faculty of Science

Amsterdam Institute for Molecules Medicines and Systems

De Boelelaan 1083

1081 HV Amsterdam

The Netherlands

 

Emily Pipan

Auburn University

Harrison School of Pharmacy

Department of Drug Discovery and Development

4306 Walker Building

Auburn, AL 36849

USA

 

Davinia Pla

Institut de Biomedicina de València-CSIC

C/Jaume Roig, 11

46010 València

Spain

 

Libia Sanz

Institut de Biomedicina de València-CSIC

C/Jaume Roig, 11

46010 València

Spain

 

Michal Sharon

Weizmann Institute of Science

Department of Biological Chemistry

234 Herzl Street

Rehovot 76100

Israel

 

Nagendra S. Singh

National Institute on Aging

National Institutes of Health

Bioanalytical Chemistry and Drug Discovery Section

Biomedical Research Center

251 Bayview Boulevard

Suite 100

Baltimore, MD 21224-6825

USA

 

Andrea Sinz

Martin-Luther University Halle-Wittenberg

Institute of Pharmacy

Wolfgang-Langenbeck-Straße 4

06120 Halle (Saale)

Germany

 

Frank Sobott

University of Antwerpen

Department of Chemistry

Biomolecular and Analytical Mass Spectrometry

Groenenborgerlaan 171

2020 Antwerpen

Belgium

 

Govert W. Somsen

VU University Amsterdam

Faculty of Science

Amsterdam Institute for Molecules Medicines and Systems

Division of BioAnalytical Chemistry/BioMolecular Analysis

De Boelelaan 1083

1081 HV Amsterdam

The Netherlands

 

Klaus T. Wanner

Ludwig-Maximilians-Universität

Department für Pharmazie – Zentrum für Pharmaforschung

Butenandtstraße 7

81377 München

Germany

Preface

The introduction, in 1988, of two new ionization methods for mass spectrometry (MS) has greatly changed the application areas of MS, especially in the biochemical and biological fields. Electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) enabled the efficient analysis of highly polar biomolecules as well as complex biomacromolecules in an easy and user-friendly way and with excellent sensitivity. Multiple charging of proteins in ESI-MS enables the use of simple and relatively cheap mass analyzers in the analysis of peptides and proteins and even opened the way to study intact noncovalent complexes of proteins and drugs or other molecules, including protein–protein complexes. In addition, ESI provided an excellent means to perform online coupling of liquid chromatography (LC) to MS. MALDI-MS with its high level of user-friendliness and excellent sensitivity also boosted the applications of MS in studying biomacromolecules, being more recently even extended to the characterization of complete microorganisms. These developments encouraged further instrumental developments toward highly advanced (and more expensive) mass spectrometers, which provide additional possibilities in the study of biomolecules and their interactions. These new technologies opened a wide range of new application areas, of which perhaps proteomics and all derived strategies and applications belong to the most marked accomplishments. ESI-MS and MALDI-MS changed the way biochemists and biologists perform their research into molecular structures and (patho)physiological processes. Along similar lines, it also changed the ways drug discovery and development is being performed within the pharmaceutical industries. And in the slipstream of this, it changed analytical chemical research efforts in many other application areas.

The ability to study intact biomacromolecules and especially noncovalent complexes between biomolecules as well as other developments in the field, initiated by the introduction of ESI-MS and MALDI-MS, opened extensive research into the way MS can be used in the study of biomolecular interactions. Different distinct areas for analysis of bioaffinity interactions, and for analysis of biologically active molecules in general, can be recognized in this regard. These areas include precolumn-based ligand trapping followed by MS analysis, affinity chromatography following MS, and postcolumn online affinity profiling. Other methodologies are more indirect and relate to separately performed bioassays and (LC)-MS analysis, such as effect-directed analysis, metabolic profiling, and antivenomics approaches. Besides these, direct approaches without the use of chromatography are nowadays also used in several research areas. These include direct MS-based bioassays and native MS studies in which the latter looks at intact protein complexes in the gas phase. Affinity techniques for trapping proteins and protein complexes toward bottom-up proteomics analysis could also be mentioned in this regard although these techniques are actually specific sample preparation strategies for proteomics research.

With so many new approaches and technologies being introduced in this area in the past 10–15 years, it seems appropriate to compile a thorough review of the current state of the art in the analysis of biomolecular interactions by MS. That is what this book provides in 12 chapters. Apart from a tutorial chapter on MS in the beginning and a conclusive overview at the end of the book, the various chapters are grouped into four themes:

Native MS, that is, the study of liquid-phase and gas-phase protein–protein interactions by MS and ion-mobility MS

The use of LC–MS to study biomolecular interactions via indirect assays, as, for instance, applied in effect-directed analysis and related approaches, MS-based binding and activity assays, and other ways to study and identify bioactive molecules, for example, via metabolic profiling or antivenomics.

Precolumn and on-column technologies to assess bioaffinity, involving frontal and zone affinity chromatography, ultrafiltration and size exclusion chromatography, affinity capillary electrophoresis, and biosensor affinity analysis coupled to MS.

Online postcolumn continuous-flow bioassays to study bioactivity or bioaffinity of compounds after chromatographic separation.

The contributors to this book did a great job in writing very good reviews and providing beautiful artwork to illustrate the principles and applications of their specific areas within the analysis of biomolecular interactions by MS. For us, it was a pleasure to work with them in this project. We would like to thank them all for their work and for their patience with us in finalizing the final versions of the various chapters.

We hope the readers will benefit from this book, value the overview provided in the various chapters, and perhaps even get stimuli for new research areas or new approaches to perform their research, for instance, by combining ideas and approaches from various chapters of the book into new advanced technologies.

Enjoy reading and get a high affinity with MS!

August 2014

Jeroen Kool and Wilfried NiessenVU University Amsterdam, Faculty of Science,Amsterdam Institute for Molecules,Medicines and Systems, Division of BioAnalytical,Chemistry/BioMolecular AnalysisAmsterdam,Netherlands

Abbreviations

μ

Electrophoretic mobility

2DE

Two-dimensional electrophoresis

5-HT

5-Hydroxytryptamine, serotonin

5-HT

2A

5-Hydroxytryptamine (serotonin) receptor subtype 2A

Ab

Antibody

ACE

Affinity capillary electrophoresis

ACE

Angiotensin converting enzyme

AChBP

Acetyl choline binding protein

Ag

Antigen

Ag–Ab

Antigen–antibody complex

AhR

Aryl hydrocarbon receptor

AMAC

Accelerated membrane assisted clean-up

APCI

Atmospheric pressure chemical ionization

API

Atmospheric pressure ionization

AR-CALUX

Androgen chemically activated luciferase expression

BGE

Background electrolyte

BGF

Bioassay guided fractionation

BGT1

Betaine-GABA transporter

BLAST

Basic local alignment search tool

BS

2

G

Bis(sulfosuccinimidyl)suberate

CCT

Chaperonin containing Tcp1

CDER

Center for drug evaluation and research

CE

Capillary electrophoresis

CECs

Chemicals of emerging concern

CHCA

α-Cyano-4-hydroxy cinnamic acid

CI

Chemical ionization

CID

Collision-induced dissociation

CID-MS/MS

Collision-induced dissociation tandem mass spectrometry

CRISPR

Clustered regularly interspaced short palindromic repeat

CZE

Capillary zone electrophoresis

D

1–5

Dopamine receptor subtypes D1 to D5

DAD

Diode array detector

DCC

Dynamic combinatorial chemistry

DCL

Dynamic combinatorial library

DDA

Data dependent acquisition

DVB/CAR/PDMS

Divinyl-benzene/carboxen/polydimethylsiloxane

EC

Electrochemical conversion

ECD

Electron-capture dissociation

EDA

Effect-directed analysis

EI

Electron ionization

EIC

Extracted ion chromatograms

EICs

Extracted ion currents

ELSD

Evaporative light scattering detection

EOF

Electroosmotic flow

ER

Estrogen receptor

EROD

Ethoxyresorufin-

O

-deethylase

ESI

Electron spray ionization

ESI

Electrospray ionization

ESI-MS

Electrospray-ionization mass spectrometry

ETD

Electron-transfer dissociation

FA

Formic acid

FA

Frontal analysis

Fab

Fragment antigen-binding

FACCE

Frontal analysis continuous capillary electrophoresis

FDA

US Food and Drug Administration

FIA

Flow-injection analysis

FLD

Fluorescence detection

FRAP

Ferric reducing antioxidant power

FRET

Fluorescence resonance energy transfer

FWHM

Full width at half maximum

GABA

γ-Aminobutyric acid

GAT1–3

GABA transporter subtypes 1–3 (according to HUGO)

GC–MS

Gas chromatography mass spectrometry

GC-O

Gas chromatography olfactometry

GCxGC

Comprehensive two dimensional gas chromatography

GPC

Gel permeation chromatography

GPCR

G protein-coupled receptor

GSI

Global snakebite initiative

GST

Glutathione-

S

-transferase

HBH

Histidine–biotin–histidine

HDX

Hydrogen–deuterium exchange

HEK

Human embryonic kidney cells

HPLC

High performance liquid chromatography

HRS

High-resolution screening

HTLC

High-temperature liquid chromatography

HTS

High throughput screening

I.D.

Inner diameter

IA-CE

Immunoaffinity capillary electrophoresis

IC

50

Half maximal inhibitory concentration

ICP

Inductively coupled plasma

ICP-MS

Inductively coupled plasma MS

ID

Inner diameter

IMS

Ion mobility spectrometry

ISD

In-source decay

IT

Ion-trap MS

IT-TOF

Tandem ion-trap – time-of-flight MS

K

a

Association constant

K

d

Dissociation constant

K

d

Equilibrium dissociation constant

kDa

kilodalton (10

3

Da)

K

i

Affinity constant

k

off

Rate constant of complex dissociation

k

on

Rate constant of complex formation

L

Ligand

LC

Liquid chromatography

LC–MS

Liquid chromatography mass spectrometry

LC–MS

E

Liquid chromatography mass spectrometry in an alternating energy mode

LIF

Laser induced fluorescence

LLE

Liquid liquid extraction

LLOQ

Lower limit of quantification

MALDI

Matrix assisted laser desorption ionization

MS

Mass spectrometry/mass spectrometer

MS/MS

Tandem mass spectrometry

MTS

3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium

MTT

3-(4,5-Dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromid

nAChR

Nicotinic acetylcholine receptor

NECEEM

Non-equilibrium capillary electrophoresis of equilibrium mixtures

NHS

N

-Hydroxysuccinimide

NMR

Nuclear magnetic resonance

NMR

Nuclear magnetic resonance spectrometry

np-HPLC

Normal phase high performance liquid chromatography

p38

p38 mitogen-activated protein kinase

PAHs

Poly aromatic hydrocarbons

PDE

Phosphodiesterase

PEEK

Polyether ether ketone

PEG

Polyethylene glycol

PLE

Pressurized liquid extraction

POCIS

Polar organic chemical integrative sampler

PTFE

Polytetrafluoroethylene

QSAR

Quantitative structure–activity relationships

QTAX

Quantitative analysis of tandem affinity purified

in vivo

cross-linked protein complexes

Q-TOF

Quadrupole time-of-flight

q-TOF

Tandem quadropule – time-of-flight MS

R

Receptor

rhSHBG

Recombinant human sex hormone binding globulin

RL

Receptor–ligand complex

RP

Reverse-phase

RP-HPLC

Reverse-phase high-performance liquid chromatography

RP-LC

Reversed phase LC

rTTR

Recombinant transthyretin

SAFE

Solvent assisted flavor extraction

SAXS

Small-angle X-ray scattering

SBSE

Stir bar sorptive extraction

SD

Standard deviation

SDS-PAGE

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEC

Size exclusion chromatography

sEH

Soluble epoxide hydrolase

SERT

Serotonin transporter

SID

Surface-induced dissociation

SILAC

Stable isotope labeling of amino acids in cell culture

SLC6

Solute carrier family 6

SPE

Solid phase extraction

SPMD

Semi permeable membrane device

SPME

Solid phase microrxtraction

SRM

Selected reaction monitoring mode

T

4

Thyroxin

T

4

*

Radiolabeled thyroxin

TAP

Tandem affinity purification

TCA

Tricyclic antidepressants

TFA

Trifluoroacetic acid

TIC

Total ion chromatograms

TIE

Toxicity identity evaluation

TLC

Thin layer chromatography

TOF

Time-of-flight

TP

Transformation product

TTR

Transthyretin

UPLC

Ultra performance liquid chromatography

UV

Ultraviolet

UV/vis

Ultra violet/visible spectroscopy

WHO

World Health Organization

YAS

Yeast androgen screen

YES

Yeast estrogen screen

1Introduction to Mass Spectrometry, a Tutorial

Wilfried M.A. Niessen and David Falck

1.1 Introduction

In the past 30 years, mass spectrometry (MS) has undergone a spectacular development, in terms of both its technological innovation and its extent of application. On-line liquid chromatography–mass spectrometry (LC–MS) has become a routine analytical tool, important in many application areas. The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) has enabled the MS analysis of highly polar and large molecules, including biomacromolecules. MS is based on the generation of gas-phase analyte ions, the separation of these ions according to their mass-to-charge ratio (/), and the detection of these ions. A wide variety of ionization techniques are available to generate analyte ions (Section 1.3). Mass analysis can be performed by six types of mass analyzers (Section 1.4), although quite frequently tandem mass spectrometers, featuring the combination of two mass analyzers, are used (Section 1.5). The data acquired by MS allow quantitative analysis of target analytes, determination of the molecular mass/weight, and/or structure elucidation or sequence determination of (unknown) analytes (Section 1.6).

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!