198,99 €
This second edition of the pioneering work on this hot topic captures the major trends and latest achievements in the art of asymmetric catalysis on an industrial scale. A number of completely new real-life case studies written by the world leaders in their respective areas provide a compact and qualified insight into this developing field. The resulting ready reference and handbook collates first-hand and valuable information within a context where it can be easily found.
The high-quality contributions illustrate the relevant environments and situations, such as time pressure, how the catalytic step fits into the overall synthesis, or competition with other synthetic approaches, as well as the typical problems encountered in the various phases, including finding/developing the catalyst and optimization of the process or choice of equipment. Both successful and unsuccessful approaches to solve these problems are described.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 837
Veröffentlichungsjahr: 2011
Contents
List of Contributors
Introduction
Part I: New processes for Existing Active Compounds (APIs)
1: Some Recent Examples in Developing Biocatalytic Pharmaceutical Processes
1.1 Introduction
1.2 Levetiracetam (Keppra®)
1.3 Atorvastatin (Lipitor®)
1.4 Pregabalin (Lyrica®)
1.5 Conclusion
2: Enantioselective Hydrogenation: Applications in Process R&D of Pharmaceuticals
2.1 Introduction
2.2 Carbonyl Hydrogenations
2.3 Imine Hydrogenation
2.4 Conclusion
3: Chiral Lactones by Asymmetric Hydrogenation - a Step Forward in (+)-Biotin Production
3.1 Introduction: (+)-Biotin as an Example for the Industrial Production of Vitamins
3.2 Commercial Syntheses and Other Routes to (+)-Biotin by Total Synthesis
3.3 Catalytic Asymmetric Reduction of Cyclic Anhydride to D-Lactone
3.4 Conclusion
4: Biocatalytic Asymmetric Oxidation for the Production of Bicyclic Proline Peptidomimetics
4.1 Introduction
4.2 Development of Routes to 1 and 2
4.3 Asymmetric Biocatalytic Amine Oxidation
4.4 Enzyme Evolution - Current State of the Art
4.5 Amine Oxidase Evolution
4.6 Chemical Development
4.7 Optimization of Cyanation
4.8 Conclusion
5: The Asymmetric Reduction of Heterocyclic Ketones - a Key Step in the Synthesis of Potassium-Competitive Acid Blockers (P-CABs)
5.1 Potassium-Competitive Acid Blockers - a New Option for the Treatment of Acid-Related Diseases
5.2 Discovery and Development of 7H-8,9-Dihydropyrano[2,3-c]imidazo[1,2-a]pyridines as Potassium-Competitive Acid Blockers
5.3 Noyori-Type Catalysts for the Asymmetric Reduction of Prochiral Ketones
5.4 Research Overview
5.5 Asymmetric Reduction of Ketones Bearing the Imidazo[1,2-a]pyridine Skeleton
5.6 Asymmetric Reduction of Ketones Bearing the 3,6,7,8-Tetrahydrochromeno[7,8-d]imidazole Skeleton
5.7 Large-Scale Asymmetric Synthesis of the 3,6,7,8-Tetrahydrochromeno[7,8-d]imidazole BYK 405879
5.8 Conclusions
Part II: Processes for Important Buildings Blocks
6: Application of a Multiple-Enzyme System for Chiral Alcohol Production
6.1 Introduction
6.2 Construction of an Enzymatic Reduction System
6.3 Enzymatic Stereoinversion System
7: Chemoenzymatic Route to the Side-Chain of Rosuvastatin
7.1 Introduction
7.2 Route Selection
7.3 Process Development
7.4 Conclusion
8: Asymmetric Hydrogenation of a 2-Isopropylcinnamic Acid Derivative en Route to the Blood Pressure-Lowering Agent Aliskiren
8.1 Introduction
8.2 Development of Monodentate Phosphoramidites as Ligands for Asymmetric Hydrogenation
8.3 Instant Ligand Libraries of Monodentate BINOL-Based Phosphoramidites
8.4 Aliskiren™
8.5 High-Throughput Screening in Search of a Cheap Phosphoramidite Ligand
8.6 Mixtures of Ligands
8.7 Further Screening of Conditions
8.8 Validation and Pilot Plant Run
8.9 Instant Ligand Library Screening to Further Optimize Rate and ee
8.10 Validations
8.11 Recent Developments in the Asymmetric Hydrogenation of 3
8.12 Conclusion
9: Asymmetric Phase-Transfer Catalysis for the Production of Non-Proteinogenic α-Amino Acids
9.1 Background
9.2 Designer’s Chiral Phase-Transfer Catalysts
9.3 Synthesis of the C2-Symmetric Chiral Mono-1,1′-Binaphthyl-Derived Catalyst
9.4 Application of Enantiomers of 21 to the Industrial Production of NPAAs
9.5 Conclusion
10: Development of Efficient Technical Processes for the Production of Enantiopure Amino Alcohols in the Pharmaceutical Industry
10.1 Introduction
10.2 Phenylephrine
10.3 Adrenaline (Epinephrine)
10.4 Lobeline
10.5 Availability of the Catalyst
10.6 General Remarks on the Development of Industrial Processes for Asymmetric Hydrogenation
11: The Asymmetric Hydrogenation of Enones - Access to a New L-Menthol Synthesis
11.1 Introduction
11.2 Screening of Metal Complexes, Conditions, and Ligands
11.3 Scale-Up and Mechanistic Work
11.4 Catalyst Recycling and Continuous Processing
11.5 Conclusion
12: Eliminating Barriers in Large-Scale Asymmetric Synthesis
12.1 Introduction
12.2 Improvement of the Synthetic Route to Biaryl Ligands
12.3 Development of an Efficient Process En Route to Unprotected β-Amino Acids
12.4 Conclusion
13: Catalytic Asymmetric Ring Opening: A Transfer from Academia to Industry
13.1 Introduction
13.2 Catalyst Preparation and Initial Optimization
13.3 Further Optimization
13.4 Process Adaptation
13.5 Protecting Group Adaptation
13.6 Use of Benzoate as O-nucleophile
13.7 Chemical Elaboration
13.8 Conclusion
14: Asymmetric Baeyer-Villiger Reactions Using Whole-Cell Biocatalysts
14.1 Introduction
14.2 Chemistry
14.3 Biocatalysts
14.4 Process Screening and Design
14.5 Downstream Processing
14.6 Future Process Developments
14.7 Perspective
15: Large-Scale Applications of Hydrolases in Biocatalytic Asymmetric Synthesis
15.1 Introduction
15.2 Chemistry
15.3 Biocatalyst
15.4 Process Screening and Design
15.5 Downstream Processing and Purification
15.6 Future Process Developments
15.7 Perspectives
16: Scale-Up Studies in Asymmetric Transfer Hydrogenation
16.1 Background
16.2 Reaction Components
16.3 Case Studies
16.4 Conclusions
17: 2,2′,5,5′-Tetramethyl-4,4′-bis(diphenylphoshino)-3,3′-bithiophene: A Very Efficient Chiral Ligand for Ru-Catalyzed Asymmetric Hydrogenations on the Multi-Kilograms Scale
17.1 Introduction
17.2 Case Histories
17.3 Conclusion
18: The Power of Whole-Cell Reaction: Efficient Production of Hydroxyproline, Sugar Nucleotides, Oligosaccharides, and Dipeptides
18.1 Introduction
18.2 Production of Hydroxyproline by Asymmetric Hydroxylation of L-Proline
18.3 Oligosaccharide Production by Bacterial Coupling
18.4 Dipeptide Production Systems
18.5 Conclusion and Perspective
19: Enantioselective Ketone Hydrogenation: from Research to Pilot Scale with Industrially Viable Ru-(Phosphine-Oxazoline) Complexes
19.1 Introduction
19.2 Ligand Screening and Optimization of the Reaction Conditions
19.3 Quality Risks
19.4 Health and Safety
19.5 Catalyst Removal
19.6 Final Process
Part III: Processes for New Chemical Entities (NCEs)
20: Enabling Asymmetric Hydrogenation for the Design of Efficient Synthesis of Drug Substances
20.1 Introduction
20.2 Laropiprant
20.3 Taranabant
20.4 Sitagliptin
20.5 Conclusions and Outlook
21: Scale-up of a Telescoped Enzymatic Hydrolysis Process for an Intermediate in the Synthesis of a Factor Xa Inhibitor
21.1 Introduction
21.2 The Discovery Chemistry Synthesis
21.3 Optimization and Multi-Kilogram Supply of Monoacid (R,R)-2
21.4 Process Development of the N-Boc Approach
21.5 Scalable Enzymatic Monohydrolysis of the Diester (R,R)-1
21.6 Production - Experimental Part
21.7 Evaluation of an Enzymatic Alternative - the N-Difluoroethyl Approach
21.8 Discussion
22: An Efficient, Asymmetric Synthesis of Odanacatib, a Selective Inhibitor of Cathepsin K for the Treatment of Osteoporosis, Using an Enzyme-Mediated Dynamic Kinetic Resolution
22.1 Introduction
22.2 Fluoroleucine Synthesis Strategy
22.3 First-Generation Enzymatic Dynamic Kinetic Resolution: Batch Process
22.4 Development of Enzymatic Dynamic Kinetic Resolution: Towards a Manufacturing Process
22.5 Pilot Plant Runs
22.6 Conclusion
23: Biocatalytic Routes to the GPIIb/IIIa Antagonist Lotrafiban, SB 214857
23.1 Introduction
23.2 The Medicinal Chemistry Route of Synthesis
23.3 The First Biocatalytic Route - a Late-Stage Resolution
23.4 Early-Stage Resolution
23.5 Catalase for the Removal of Iodide
23.6 Other Synthetic Strategies to Chiral Lotrafiban Intermediates
23.7 The End Game
24: Discovery and Development of a Catalytic Asymmetric Conjugate Addition of Ketoesters to Nitroalkenes and Its Use in the Large-Scale Preparation of ABT-546
24.1 Introduction
24.2 Retrosynthetic Analysis of ABT-546
24.3 Early Asymmetric Syntheses
24.4 Synthesis of the Reaction Partners
24.5 Discovery of the Asymmetric Conjugate Addition Reaction
24.6 Completion of the Synthesis of ABT-546
24.7 Extension to Other Reaction Partners
24.8 Conclusion
25: The Kagan Oxidation - Industrial-Scale Asymmetric Sulfoxidations in the Synthesis of Two Related NK1/NK2 Antagonists
25.1 Introduction
25.2 Background and Introduction to ZD7944
25.3 Introduction to the ZD7944 CBz Sulfoxide Stage
25.4 Process Development of ZD7944 CBz Sulfoxide
25.5 Additional Investigations in the Development of ZD7944 CBz Sulfoxide
25.6 The Impact of Other Stages on the ZD7944 CBz Sulfoxide Process
25.7 Summary of ZD7944
25.8 Background and Introduction to ZD2249
25.9 Process Development of ZD2249 CBz Sulfoxide
25.10 Summary of ZD2249
25.11 Comparisons and Conclusions
26: Large-Scale Application of Asymmetric Phase-Transfer Catalysis for Amino Acid Synthesis
26.1 Introduction
26.2 Initial Strategy
26.3 Synthesis of 4,4′-Difluorobenzylhydryl Bromide
26.4 Initial Studies and Optimization
26.5 Scale-Up of the PTC Alkylation
26.6 Conclusion
26.7 Experimental
27: Application of Phase-Transfer Catalysis in the Organocatalytic Asymmetric Synthesis of an Estrogen Receptor Beta-Selective Agonist
27.1 Introduction
27.2 Medicinal Chemistry Synthesis and Revised Synthetic Plan
27.3 Preparation of the Phase-Transfer Substrate 11
27.4 Asymmetric Phase-Transfer Michael Addition
27.5 Ether Cleavage, Cyclization, and Chlorination
27.6 Conclusion
28: Asymmetric Synthesis of HCV and HPV Drug Candidates on Scale: The Choice Between Enantioselective and Diastereoselective Syntheses
28.1 Introduction
28.2 GSK260983A (1) for the HPV
28.3 GW873082X (2) for the HCV
28.4 Conclusion
Index
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.
© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form - by photoprinting, microfilm, or any other means - nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Composition Laserwords Private Ltd., Chennai, India
Printing and Binding Strauss GmbH, Mörlenbach
Cover Design Formgeber, Eppelheim
Printed in the Federal Republic of Germany
Printed on acid-free paper
ISBN: 978-3-527-32489-7
List of Contributors
Jean-Michel Adam
F. Hoffmann-La Roche Ltd. Pharma Research Basel Technical Sciences Chemical Synthesis Synthesis and Process Research Basel Switzerland
David M. Barnes
Abbott Laboratories PPD Process Research 1401 Sheridan Road North Chicago IL 60064 USA
A. John Blacker
Piramal Healthcare R&D Leeds Road Huddersfield HD1 9GA UK and University of Leeds Institute of Process Research Development School of Chemistry Leeds, LS2 9JT UK
Hans-Ulrich Blaser
Solvias AG P.O. Box CH-4002 Basel Switzerland
Werner Bonrath
DSM Nutritional Products Research and Development P.O. Box 2676 4002 Basel Switzerland
Jeroen A. F. Boogers
DSM Innovative Synthesis BV A unit of DSM Pharma Chemicals PO Box 18 6160 MD Geleen The Netherlands
Sharon A. Bowden
AstraZeneca PR&D Avlon Works Severn Road Hallen Bristol, BS10 7ZE UK
Z. Chen
Elevance Renewable Sciences 175 E. Crossroad Parkway Bolingbrook IL 60440 USA
Jeremy D. Cobb
GlaxoSmithKline Chemical Development 5 Moore Drive PO Box 13398 Research Triangle Park NC 27709-3398 USA
Bob E. Cooley
GlaxoSmithKline Chemical Development 5 Moore Drive PO Box 13398 Research Triangle Park NC 27709-3398 USA
Johannes G. de Vries
DSM Innovative Synthesis BV A unit of DSM Pharma Chemicals PO Box 18 6160 MD Geleen The Netherlands
André H. M. de Vries
DSM Innovative Synthesis BV A unit of DSM Pharma Chemicals PO Box 18 6160 MD Geleen The Netherlands
Bert Dielemans
DSM Innovative Synthesis BV A unit of DSM Pharma Chemicals PO Box 18 6160 MD Geleen The Netherlands
Pascal Dott
F. Hoffmann-La Roche Ltd. Pharma Research Basel Technical Sciences Chemical Synthesis Kilolab Basel Switzerland
Hans-Jürgen Federsel
Director of Science Pharmaceutical Development AstraZeneca 151 85 Södertälje Sweden
Ulfried Felfer
DSM Fine Chemicals Austria Nfg GmbH & Co Kg St.-Peter-Strasse 25 4021 Linz Austria
Rolf Fischer
F. Hoffmann-La Roche Ltd. Pharma Technical Development Basel Switzerland
Roy C. Flanagan
GlaxoSmithKline Chemical Development 5 Moore Drive PO Box 13398 Research Triangle Park NC 27709-3398 USA
Wolfgang Haap
F. Hoffmann-La Roche Ltd. Pharma Research Basel Discovery Chemistry Basel Switzerland
Junzo Hasegawa
Kaneka Corporation Frontier Biochemical and Medical Research Laboratories 1–8 Miyamae Takasago Hyogo 676-8688 Japan
Shin-ichi Hashimoto
Kyowa Hakko Bio Co. Ltd. Manufacturing Technology Division 1-6-1 Ohtemachi Chiyoda-ku Tokyo 100-8185 Japan
Christopher G. Henry
GlaxoSmithKline Chemical Development 5 Moore Drive PO Box 13398 Research Triangle Park NC 27709-3398 USA
Robert A. Holt
Piramal Healthcare Wilton Centre Redcar Cleveland TS104RF UK
David R. J. Hose
AstraZeneca PR&D Avlon Works Severn Road Hallen Bristol, BS10 7ZE UK
Hans Iding
F. Hoffmann-La Roche Ltd. Pharma Research Basel Technical Sciences Chemical Synthesis Biocatalysis Basel Switzerland
Masaya Ikunaka
Nagase & Co., Ltd. Fine Chemicals Department 5-1, Nihonbashi-Kobunacho Chuo-ku Tokyo 103-8355 Japan and Yasuda Women’s University Faculty of Pharmacy Department of Pharmaceutical Chemistry 6-13-1, Yasuhigashi Asaminami-ku Hiroshima 731-0153 Japan
Mary M. Jackson
GlaxoSmithKline Chemical Development 5 Moore Drive PO Box 13398 Research Triangle Park NC 27709-3398 USA
Christoph Jäkel
BASF SE GCB/C-M313 67056 Ludwigshafen Germany
Lynda A. Jones
GlaxoSmithKline Chemical Development 5 Moore Drive PO Box 13398 Research Triangle Park NC 27709-3398 USA
Reinhard Karge
DSM Nutritional Products Research and Development P.O. Box 2676 4002 Basel Switzerland
Franz Dietrich Klingler
Boehringer Ingelheim Pharma GmbH & Co. KG Department of Process Development 55216 Ingelheim am Rhein Germany
Satoshi Koizumi
Kyowa Hakko Bio Co. Ltd. Manufacturing Technology Division 1-6-1 Ohtemachi Chiyoda-ku Tokyo 100-8185 Japan
Martina Kotthaus
DSM Fine Chemicals Austria Nfg GmbH & Co Kg St.-Peter-Strasse 25 4021 Linz Austria
Shane Krska
Merck & Co., Inc. Department of Process Research Merck Research Laboratories Rahway NJ 07065 USA
James J. Lalonde
Codexis, Inc. 200 Penobscot Drive Redwood City CA 94063 USA
Stephan Lauper
F. Hoffmann-La Roche Ltd. Pharma Technical Development Basel Switzerland
Laurent Lefort
DSM Innovative Synthesis BV A unit of DSM Pharma Chemicals PO Box 18 6160 MD Geleen The Netherlands
Jack Liang
Codexis, Inc. 200 Penobscot Drive Redwood City CA 94063 USA
J. Liu
Elevance Renewable Sciences 175 E. Crossroad Parkway Bolingbrook IL 60440 USA
Keiji Maruoka
Kyoto University Graduate School of Science Department of Chemistry Sakyo Kyoto 606-8502 Japan
Richard T. Matsuoka
GlaxoSmithKline Chemical Development 5 Moore Drive PO Box 13398 Research Triangle Park NC 27709-3398 USA
Alan Millar
GlaxoSmithKline Chemical Development 5 Moore Drive PO Box 13398 Research Triangle Park NC 27709-3398 USA
Jonathan D. Moseley
AstraZeneca PR&D Avlon Works Severn Road Hallen Bristol, BS10 7ZE UK
Hirokazu Nanba
Kaneka Corporation Frontier Biochemical and Medical Research Laboratories 1–8 Miyamae Takasago Hyogo 676-8688 Japan
Frédéric Naud
Solvias AG P.O. Box CH-4002 Basel Switzerland
Thomas Netscher
DSM Nutritional Products Research and Development P.O. Box 2676 4002 Basel Switzerland
Thomas Oberhauser
F. Hoffmann-La Roche Ltd. Pharma Technical Development Basel Switzerland
Martin H. Osterhout
GlaxoSmithKline Chemical Development 5 Moore Drive PO Box 13398 Research Triangle Park NC 27709-3398 USA
Akio Ozaki
Kyowa Hakko Bio Co. Ltd. Manufacturing Technology Division 1-6-1 Ohtemachi Chiyoda-ku Tokyo 100-8185 Japan
Rocco Paciello
BASF SE GCB/H-M313 67056 Ludwigshafen Germany
Andreas Marc Palmer
Nycomed GmbH Department of Medicinal Chemistry Byk-Gulden-Strasse 2 78467 Konstanz Germany
Bharti Patel
AstraZeneca PR&D Avlon Works Severn Road Hallen Bristol, BS10 7ZE UK
Daniel E. Patterson
GlaxoSmithKline Chemical Development 5 Moore Drive PO Box 13398 Research Triangle Park NC 27709-3398 USA
Oreste Piccolo
Studio di Consulenza Scientifica Via Bornó 5 23896 Sirtori Italy
Kurt Püntener
F. Hoffmann-La Roche Ltd. Pharmaceuticals Division Synthesis Research & Catalysis 4070 Basel Switzerland
Reinhard Reents
F. Hoffmann-La Roche Ltd. Pharma Technical Development Basel Switzerland
Christopher D. Reeve
Piramal Healthcare Wilton Centre Redcar Cleveland TS104RF UK
Felix Roessler
DSM Nutritional Products Research and Development P.O. Box 2676 4002 Basel Switzerland
Thomas D. Roper
GlaxoSmithKline Chemical Development 5 Moore Drive PO Box 13398 Research Triangle Park NC 27709-3398 USA
Carsten Rueggeberg
Rohner AG Gempen strasse 6 CH-4133 Pratteln Switzerland
Takao Saito
Takasago International Corporation Fine Chemicals Division Nissay Aroma Square 17F 5-37-1 Kamata Ohta-ku Tokyo 144-8721 Japan
Rosa Maria Rodriguez Sarmiento
F. Hoffmann-La Roche Ltd. Pharma Research Basel Discovery Chemistry Basel Switzerland
Dirk Sartor
DSM Fine Chemicals Austria Nfg GmbH & Co Kg St.-Peter-Strasse 25 4021 Linz Austria
Noboru Sayo
Takasago International Corporation Corporate Research and Development Division Fine Chemical Laboratory 1-4-11 Nishi-yawata Hiratsuka City Kanagawa 254-0073 Japan
Michelangelo Scalone
F. Hoffmann-La Roche Ltd. Pharmaceuticals Division Synthesis Research & Catalysis 4070 Basel Switzerland
Andreas T. Schmidt
Rohner AG Gempen strasse 6 CH-4133 Pratteln Switzerland
Jeremy P. Scott
Merck Sharp & Dohme Research Laboratories Department of Process Research Hertford Road Hoddesdon Hertfordshire, EN11 9BU UK
Matthew J. Sharp
GlaxoSmithKline Chemical Development 5 Moore Drive PO Box 13398 Research Triangle Park NC 27709-3398 USA
Hideo Shimizu
Takasago International Corporation Corporate Research and Development Division Fine Chemical Laboratory 1-4-11 Nishi-yawata Hiratsuka City Kanagawa 254-0073 Japan
C. Scott Shultz
Merck & Co., Inc. Department of Process Research Merck Research Laboratories Rahway NJ 07065 USA
Dirk Spielvogel
Solvias AG PO Box 4002 Basel Switzerland
Felix Spindler
Solvias AG P.O. Box CH-4002 Basel Switzerland
Gerhard Steinbauer
DSM Fine Chemicals Austria Nfg GmbH & Co Kg St.-Peter-Strasse 25 4021 Linz Austria
Yongkui Sun
Merck & Co., Inc. Department of Process Research Merck Research Laboratories Rahway NJ 07065 USA
Junhua Tao
Elevance Renewable Sciences 175 E. Crossroad Parkway Bolingbrook IL 60440 USA
David M. Tellers
Merck & Co., Inc. Department of Process Research Merck Research Laboratories Rahway NJ 07065 USA
Peter Thompson
Piramal Healthcare R&D Leeds Road Huddersfield HD1 9GA UK
Jennifer F. Toczko
GlaxoSmithKline Chemical Development 5 Moore Drive PO Box 13398 Research Triangle Park NC 27709-3398 USA
Matthew D. Truppo
Merck & Co., Inc. Department of Process Research Merck Research Laboratories Rahway, NJ 07065 USA
Andy Wells
AstraZeneca Global Process R&D 42/2/2.0 Bakewell Road Loughborough Leicestershire, LE11 5RH UK
Beat Wirz
F. Hoffmann-La Roche Ltd. Pharma Research Basel Technical Sciences Chemical Synthesis Biocatalysis Basel Switzerland
Roland Wohlgemuth
Sigma-Aldrich Research Specialties Industriestrasse 25 9470 Buchs Switzerland
John M. Woodley
Technical University of Denmark Center for BioProcess Engineering Department of Chemical and Biochemical Engineering 2800 Lyngby Denmark
Shiping Xie
GlaxoSmithKline Chemical Development 5 Moore Drive PO Box 13398 Research Triangle Park NC 27709-3398 USA
Yoshihiko Yasohara
Kaneka Corporation Frontier Biochemical and Medical Research Laboratories 1–8 Miyamae Takasago Hyogo 676-8688 Japan
Antonio Zanotti-Gerosa
Johnson Matthey Catalysis and Chiral Technologies 28 Cambridge Science Park Cambridge, CB4 0FP United Kingdom
Xiaoming Zhou
GlaxoSmithKline Chemical Development 5 Moore Drive PO Box 13398 Research Triangle Park NC 27709-3398 USA
Part I
New processes for Existing Active Compounds (APIs)
1
Some Recent Examples in Developing Biocatalytic Pharmaceutical Processes
Junhua Tao, J. Liu, and Z. Chen
1.1 Introduction
A confluence of factors is driving biocatalysis into a premier platform for the production of pharmaceuticals. First, the technology itself is more practical than ever for commercialization as a result of easy access of biocatalyst tool boxes from the GenBank, efficient expression systems for their production, and robust protein engineering techniques to improve their specificity, selectivity, and stability. Second, to improve the therapeutic index and absorption, desorption, metabolism, excretion, and toxicity (ADMET) profile, new chemical entities (NCEs) as pharmaceutical ingredients are structurally increasingly more complex, which conversely demand more selective transformations for bond connection and disconnection, manipulation of functional groups, and stereoselectivity. Third, catalytic process technology is posed to be the most crucial component in commercializing drug substances and even drug products as drug innovators or branded pharmaceutical companies are entering the generic business by launching generic versions of branded drugs. The premium paid to ‘the first mover’ by a generic company will be significantly decreased. Not only is biocatalysis intrinsically process efficient under the principles of green chemistry, it also provides a stronghold to generate novel routes with freedom to operate (FTO) and/or proprietary intellectual property (IP). This chapter focuses on the development of three chemoenzymatic routes to illustrate the dynamics of the field and the importance of strategic integration of chemical and biological transformation to shorten synthetic sequences, reduce energy input, and enhance process safety.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!