Attosecond and XUV Physics -  - E-Book

Attosecond and XUV Physics E-Book

0,0
151,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

This book provides fundamental knowledge in the fields of attosecond science and free electron lasers, based on the insight that the further development of both disciplines can greatly benefit from mutual exposure and interaction between the two communities. With respect to the interaction of high intensity lasers with matter, it covers ultrafast lasers, high-harmonic generation, attosecond pulse generation and characterization. Other chapters review strong-field physics, free electron lasers and experimental instrumentation. Written in an easy accessible style, the book is aimed at graduate and postgraduate students so as to support the scientific training of early stage researchers in this emerging field. Special emphasis is placed on the practical approach of building experiments, allowing young researchers to develop a wide range of scientific skills in order to accelerate the development of spectroscopic techniques and their implementation in scientific experiments. The editors are managers of a research network devoted to the education of young scientists, and this book idea is based on a summer school organized by the ATTOFEL network.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1183

Veröffentlichungsjahr: 2013

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Editors

Dr. Thomas SchultzMax Born InstituteDiv. A: Attosecond PhysicsMax-Born-Strasse 212489 BerlinGermany

Dr. Marc VrakkingMax Born InstituteMax-Born-Strasse 212489 BerlinGermany

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.:applied for

British Library Cataloguing-in-Publication Data:A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche NationalbibliothekThe Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN 978-3-527-41124-5ePDF ISBN 978-3-527-67767-2ePub ISBN 978-3-527-67765-8Mobi ISBN 978-3-527-67766-5oBook ISBN 978-3-527-67768-9

Cover Design Adam-Design, WeinheimTypesetting le-tex publishing services GmbH, LeipzigPrinting and Binding Markono Print Media Pte Ltd, Singapore

Printed in SingaporePrinted on acid-free paper

Contents

List of Contributors

1 Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy

Marc Vrakking

1.1 Introduction

1.2 The Emergence of Attosecond Science

1.2.1 Attosecond Pulse Trains and Isolated Attosecond Pulses

1.2.2 Characterization of Attosecond Laser Pulses

1.2.3 Experimental Challenges in Attosecond Science

1.2.4 Attosecond Science as a Driver for Technological Developments

1.3 Applications of Attosecond Laser Pulses

1.4 Ultrafast Science Using XUV/X-ray Free Electron Lasers

1.5 The Interplay between Experiment and Theory

1.6 Conclusion and Outlook

References

Part One Laser Techniques

2 Ultrafast Laser Oscillators and Amplifiers

Uwe Morgner

2.1 Introduction

2.2 Mode-Locking and Few-Cycle Pulse Generation

2.3 High-Energy Oscillators

2.4 Laser Amplifiers

References

3 Ultrashort Pulse Characterization

Adam S. Wyatt

3.1 Motivation: Why Ultrafast Metrology?

3.1.1 Ultrafast Science: High-Speed Photography in the Extreme

3.2 Formal Description of Ultrashort Pulses

3.2.1 Sampling Theorem

3.2.2 Chronocyclic Representation of Ultrafast Pulses

3.2.3 Space-Time Coupling

3.2.4 Accuracy, Precision and Consistency

3.3 Linear Filter Analysis

3.4 Ultrafast Metrology in the Visible to Infrared

3.4.1 Temporal Correlations

3.4.2 Spectrography

3.4.3 Sonography

3.4.4 Tomography

3.4.5 Interferometry

3.5 Ultrafast Metrology in the Extreme Ultraviolet

3.5.1 Complete Characterization of Ultrashort XUV Pulses via Photoionization Spectroscopy

3.5.2 XUV Interferometry

3.6 Summary

References

4 Carrier Envelope Phase Stabilization

Vincent Crozatier

4.1 Introduction

4.2 CEP Fundamentals

4.2.1 Time Domain Representation

4.2.2 Frequency Domain Representation

4.3 Stabilization Loop Fundamentals

4.3.1 The Noisy Source

4.3.2 Noise Detection

4.3.3 Open-Loop Noise Analysis

4.3.4 Feedback

4.3.5 Closed-Loop Noise Analysis

4.4 CEP in Oscillators

4.4.1 Oscillators Peculiarities

4.4.2 CEP Detection

4.4.3 Actuation

4.5 CEP in Amplifiers

4.5.1 Amplifier Peculiarities

4.5.2 CEP Detection

4.5.3 Actuation

4.5.4 Feedback Results

4.5.5 Parametric Amplification

4.6 Conclusion

References

5 Towards Tabletop X-Ray Lasers

Philippe Zeitoun, Eduardo Oliva, Thi Thu Thuy Le, Stéphane Sebban, Marta Fajardo, David Ros, and Pedro Velarde

5.1 Context and Objectives

5.2 Choice of Plasma-Based Soft X-Ray Amplifier

5.2.1 Basic Aspects of High Harmonic Amplification

5.2.2 Basic Aspects of Plasma Amplifiers

5.3 2D Fluid Modeling and 3D Ray Trace

5.3.1 ARWEN Code

5.3.2 Model to Obtain 2D Maps of Atomic Data

5.4 The Bloch–Maxwell Treatment

5.5 Stretched Seed Amplification

5.6 Conclusion

References

Part Two Theoretical Methods

6 Ionization in Strong Low-Frequency Fields

Misha Ivanov

6.1 Preliminaries

6.2 Speculative Thoughts

6.3 Basic Formalism

6.3.1 Hamiltonians and Gauges

6.3.2 Formal Solutions

6.4 The Strong-Field Approximation

6.4.1 The Volkov Propagator and the Classical Connection

6.4.2 Transition Amplitudes in the SFA

6.5 Strong-Field Ionization: Exponential vs. Power Law

6.5.1 The Saddle Point Approximation and the Classical Connection

6.6 Semiclassical Picture of High Harmonic Generation

6.7 Conclusion

References

7 Multielectron High Harmonic Generation: Simple Man on a Complex Plane

Olga Smirnova and Misha Ivanov

7.1 Introduction

7.2 The Simple Man Model of High Harmonic Generation (HHG)

7.3 Formal Approach for One-Electron Systems

7.4 The Lewenstein Model: Saddle Point Equations for HHG

7.5 Analysis of the Complex Trajectories

7.6 Factorization of the HHG Dipole: Simple Man on a Complex Plane

7.6.1 Factorization of the HHG Dipole in the Frequency Domain

7.6.2 Factorization of the HHG Dipole in the Time Domain

7.7 The Photoelectron Model of HHG: The Improved Simple Man

7.8 The Multichannel Model of HHG: Tackling Multielectron Systems

7.9 Outlook

7.10 Appendix A: Supplementary Derivations

7.11 Appendix B: The Saddle Point Method

7.11.1 Integrals on the Real Axis

7.11.2 Stationary Phase Method

7.12 Appendix C: Treating the Cutoff Region: Regularization of Divergent Stationary Phase Solutions

7.13 Appendix D: Finding Saddle Points for the Lewenstein Model

References

8 Time-Dependent Schrödinger Equation

Armin Scrinzi

8.1 Atoms and Molecules in Laser Fields

8.2 Solving the TDSE

8.2.1 Discretization of the TDSE

8.2.2 Finite Elements

8.2.3 Scaling with Laser Parameters

8.3 Time Propagation

8.3.1 Runge–Kutta Methods

8.3.2 Krylov Subspace Methods

8.3.3 Split-Step Methods

8.4 Absorption of Outgoing Flux

8.4.1 Absorption for a One-Dimensional TDSE

8.5 Observables

8.5.1 Ionization and Excitation

8.5.2 Harmonic Response

8.5.3 Photoelectron Spectra

8.6 Two-Electron Systems

8.6.1 Very Large-Scale Grid-Based Approaches

8.6.2 Basis and Pseudospectral Approaches

8.7 Few-Electron Systems

8.7.1 MCTDHF: Multiconfiguration Time-Dependent Hartree–Fock

8.7.2 Dynamical Multielectron Effects in High Harmonic Generation

8.8 Nuclear Motion

References

9 Angular Distributions in Molecular Photoionization

Robert R. Lucchese and Danielle Dowek

9.1 Introduction

9.2 One-Photon Photoionization in the Molecular Frame

9.3 Methods for Computing Cross-Sections

9.4 Post-orientation MFPADs

9.4.1 MFPADs for Linear Molecules in the Axial Recoil Approximation

9.4.2 MFPADs for Nonlinear Molecules in the Axial Recoil Approximation

9.4.3 Breakdown of the Axial Recoil Approximation Due to Rotation

9.4.4 Breakdown of the Axial Recoil Approximation Due to Vibrational Motion

9.4.5 Electron Frame Photoelectron Angular Distributions

9.5 MFPADs from Concurrent Orientation in Multiphoton Ionization

9.6 Pre-orientation or Alignment, Impulsive Alignment

9.7 Conclusions

References

Part Three High Harmonic Generation and Attosecond Pulses

10 High-Order Harmonic Generation and Attosecond Light Pulses: An Introduction

Anne L’Huillier

10.1 Early Work, 1987–1993

10.2 Three-Step Model, 1993–1994

10.3 Trajectories and Phase Matching, 1995–2000

10.4 Attosecond Pulses 2001

10.5 Conclusion

References

11 Strong-Field Interactions at Long Wavelengths

Manuel Kremer, Cosmin I. Blaga, Anthony D. DiChiara, Stephen B. Schoun, Pierre Agostini, and Louis F. DiMauro

11.1 Theoretical Background

11.1.1 Keldysh Picture of Ionization in Strong Fields

11.1.2 Classical Perspectives on Postionization Dynamics

11.1.3 High-Harmonic Generation

11.1.4 Wavelength Scaling of High-Harmonic Cutoff and Attochirp

11.1.5 In-situ and RABBITT Technique

11.2 Mid-IR Sources and Beamlines at OSU

11.2.1 2-µm Source

11.2.2 3.6-µm Source

11.2.3 OSU Attosecond Beamline

11.3 Strong-Field Ionization: The Single-Atom Response

11.4 High-Harmonic Generation

11.4.1 Harmonic Cutoff and Harmonic Yield

11.4.2 Attochirp

11.4.3 In-situ Phase Measurement

11.4.4 RABBITT Method

11.5 Conclusions and Future Perspectives

References

12 Attosecond Dynamics in Atoms

Giuseppe Sansone, Francesca Calegari, Matteo Lucchini, and Mauro Nisoli

12.1 Introduction

12.2 Single-Electron Atom: Hydrogen

12.3 Two-Electron Atom: Helium

12.3.1 Electronic Wave Packets

12.3.2 Autoionization: Fano Profile

12.3.3 Two-Photon Double Ionization

12.4 Multielectron Systems

12.4.1 Neon: Dynamics of Shake-Up States

12.4.2 Neon: Delay in Photoemission

12.4.3 Argon: Fano Resonance

12.4.4 Krypton: Auger Decay

12.4.5 Krypton: Charge Oscillation

12.4.6 Xenon: Cascaded Auger Decay

References

13 Application of Attosecond Pulses to Molecules

Franck Lépine

13.1 Attosecond Dynamics in Molecules

13.2 State-of-the-Art Experiments Using Attosecond Pulses

13.2.1 Ion Spectroscopy

13.2.2 Electron Spectroscopy

13.2.3 Photo Absorption

13.3 Theoretical Work

13.3.1 Electron Dynamics in Small Molecules

13.3.2 Electron Dynamics in Large Molecules

13.4 Perspectives

13.4.1 Molecular Alignment and Orientation

13.4.2 Electron Delocalization between DNA Group Junction

13.4.3 Similar Dynamics in Water and Ice

13.4.4 More

13.5 Conclusion

References

14 Attosecond Nanophysics

Frederik Süßmann, Sarah L. Stebbings, Sergey Zherebtsov, Soo Hoon Chew, Mark I. Stockman, Eckart Rühl, Ulf Kleineberg, Thomas Fennel, and Matthias F. Kling

14.1 Introduction

14.2 Attosecond Light-Field Control of Electron Emission and Acceleration from Nanoparticles

14.2.1 Imaging of the Electron Emission from Isolated Nanoparticles

14.2.2 Microscopic Analysis of the Electron Emission

14.3 Few-Cycle Pump-Probe Analysis of Cluster Plasmons

14.3.1 Basics of Spectral Interferometry

14.3.2 Oscillator Model Results for Excitation with Gaussian Pulses

14.3.3 Spectral Interferometry Analysis of Plasmons in Small Sodium Clusters

14.4 Measurements of Plasmonic Fields with Attosecond Time Resolution

14.4.1 Attosecond Nanoplasmonic Streaking

14.4.2 The Regimes of APS Spectroscopy

14.4.3 APS Spectroscopy of Collective Electron Dynamics in Isolated Nanoparticles

14.4.4 Attosecond Nanoscope

14.4.5 Experimental Implementation of the Attosecond Nanoscope

14.5 Nanoplasmonic Field-Enhanced XUV Generation

14.5.1 Tailoring of Nanoplasmonic Field Enhancement for HHG

14.5.2 Generation of Single Attosecond XUV Pulses in Nano-HHG

14.6 Conclusions and Outlook

References

Part Four Ultra Intense X-Ray Free Electron Laser Experiments

15 Strong-Field Interactions at EUV and X-Ray Wavelengths

Artem Rudenko

15.1 Introduction

15.2 Experimental Background

15.2.1 What Is a “Strong” Field?

15.2.2 Basic Parameters of Intense High-Frequency Radiation Sources

15.2.3 Detection Systems

15.3 Atoms and Molecules under Intense EUV Light

15.3.1 Two-Photon Single Ionization of Helium

15.3.2 Few-Photon Double Ionization of Helium and Neon

15.3.3 Multiple Ionization of Atoms

15.3.4 EUV-Induced Fragmentation of Simple Molecules

15.4 EUV Pump–EUV Probe Experiments

15.4.1 Split-and-Delay Arrangements and Characterization of the EUV Pulses

15.4.2 Nuclear Wave Packet Imaging in Diatomic Molecules

15.4.3 Isomerization Dynamics of Acetylene Cations

15.5 Experiments in the X-Ray Domain

15.5.1 Multiple Ionization of Heavy Atoms: Role of Resonant Excitations

15.5.2 Multiphoton Ionization of Molecules Containing High-Z Atoms

15.6 Summary and Outlook

References

16 Ultraintense X-Ray Interactions at the Linac Coherent Light Source

Linda Young

16.1 Introduction

16.1.1 Comparison of Ultrafast, Ultraintense Optical, and X-Ray Lasers

16.1.2 X-Ray Atom Interactions

16.2 Atomic and Molecular Response to Ultraintense X-Ray Pulses

16.2.1 Nonresonant High-Intensity X-Ray Phenomena

16.2.2 Resonant High-Intensity X-Ray Phenomena

16.3 Ultrafast X-Ray Probes of Dynamics

16.4 Characterization of LCLS Pulses

16.5 Outlook

References

17 Coherent Diffractive Imaging

Willem Boutu, Betrand Carré, and Hamed Merdji

17.1 Introduction

17.2 Far-Field Diffraction

17.2.1 Optical Point of View

17.2.2 Born Approximation

17.2.3 Resolution

17.2.4 Comments on the Approximations

17.3 Source Requirements

17.3.1 Coherence

17.3.2 Signal-to-Noise Ratio

17.3.3 Dose

17.3.4 Different XUV Sources Comparison

17.4 Solving the Phase Problem

17.4.1 Oversampling Method

17.4.2 Basics on Iterative Phasing Algorithms

17.4.3 Implementations of Phase Retrieval Algorithms

17.5 Holography

17.5.1 Fourier Transform Holography

17.5.2 HERALDO

17.6 Conclusions

References

Index

List of Contributors

Pierre Agostini
The Ohio State University
Department of Physics
Columbus, OH 43210
USA

 

Roger Barlow
University of Huddersfield
Huddersfield
United Kingdom

 

Cosmin I. Blaga
The Ohio State University
Department of Physics
Columbus, OH 43210
USA

 

Willem Boutu
Centre d’Etudes de Saclay
Attophysics Group
Ultrafast Coherent Imaging Lab
CEA-SPAM, Bât. 522
91191 Gif-sur-Yvette
France

 

Francesca Calegari
Department of Physics
Politecnico di Milano
Institute of Photonics and
Nanotechnologies, IFN-CNR
Piazza L. da Vinci 32
20133 Milano
Italy

 

Bertrand Carré
Centre d’Etudes de Saclay
Attophysics Group
CEA-SPAM, Bât.522
91191 Gif-sur-Yvette
France

 

Soo Hoon Chew
Physik Department
Ludwig-Maximilians-Universität
München
Am Coulombwall 1
85748 Garching
Germany

 

Vincent Crozatier
FASTLITE
Centre scientifique d’Orsay
Bât. 503
Plateau du Moulon, BP 45
91401 Orsay
France

 

Anthony D. DiChiara
The Ohio State University
Department of Physics
Columbus, OH 43210
USA

 

Louis F. DiMauro
The Ohio State University
Department of Physics
Columbus, OH 43210
USA

 

Danielle Dowek
Laboratoire des Collisions Atomiques et
Moléculaires (UMR Université
Paris-Sud et CNRS, 8625), Bât. 351
Université Paris-Sud
91405 Orsay Cedex
France

 

Marta Fajardo
GoLP
Instituto de Plasmas e Fusão Nuclear
Laboratório Associado
Instituto Superior Técnico
Lisbon
Portugal

 

Thomas Fennel
Institut für Physik
Universität Rostock
Universitätsplatz 3
18051 Rostock
Germany

 

Misha Ivanov
Max Born Institute Berlin
Max-Born-Str. 2A
12489 Berlin
Germany

 

Ulf Kleineberg
Physik Department
Ludwig-Maximilians-Universität
München
Am Coulombwall 1
85748 Garching
Germany

 

Matthias F. Kling
Physik Department
Ludwig-Maximilians-Universität
München
Am Coulombwall 1
85748 Garching
Germany

 

Manuel Kremer
The Ohio State University
Department of Physics
Columbus, OH 43210
USA

 

Thi Thu Thuy Le
Laboratoire d’Optique Appliquée
ENSTA, CNRS
Ecole Polytechnique
Chemin de la hunière
91671 Palaiseau
France

 

Franck Lépine
Université Lyon 1
ILM-Institut Lumière Matière
Domaine scientifique de la Doua
bâtiment Kastler
10 rue Ada Byron
69622 Villeurbanne CEDEX
France

 

Anne L’Huillier
Lund University
Department of Physics
PO Box 118
22100
Lund Sweden

 

Robert R. Lucchese
Texas A&M University
Department of Chemistry
College Station, TX 77843-3255
USA

 

Matteo Lucchini
Department of Physics
Politecnico di Milano, Institute of
Photonics and Nanotechnologies,
IFN-CNR
Piazza L. da Vinci 32
20133 Milano
Italy

 

Hamed Merdji
Centre d’Etudes de Saclay
Attophysics Group
Ultrafast Coherent Imaging Lab
CEA-SPAM, Bât. 522
91191 Gif-sur-Yvette
France

 

Uwe Morgner
Leibniz Universität Hannover
Institut für Quantenoptik
Welfengarten 1
30167 Hannover
Germany

 

Mauro Nisoli
Department of Physics
Politecnico di Milano, Institute of
Photonics and Nanotechnologies,
IFN-CNR
Piazza L. da Vinci 32
20133 Milano
Italy

 

Eduardo Oliva
Laboratoire d’Optique Appliquée
ENSTA, CNRS
Ecole Polytechnique
Chemin de la hunière
91671 Palaiseau
France

 

David Ros
Université Paris-Sud
Centre Laser de l’Université Paris Sud
(EA.4127)
Bât. 106
91405 Orsay
France

 

Artem Rudenko
Kansas State University
Department of Physics
J.R. Macdonald Laboratory
116 Cardwell Hall
Manhattan, KS 66506
USA

 

Eckart Rühl
Freie Universität Berlin
Institut für Chemie und Biochemie
– Physikalische und Theoretische
Chemie
Takustr. 3
14195 Berlin
Germany

 

Giuseppe Sansone
Department of Physics
Politecnico di Milano, Institute of
Photonics and Nanotechnologies,
IFN-CNR
Piazza L. da Vinci 32
20133 Milano
Italy

 

Stephen B. Schoun
The Ohio State University
Department of Physics
Columbus, OH 43210
USA

 

Stéphane Sebban
Laboratoire d’Optique Appliquée
ENSTA, CNRS
Ecole Polytechnique
Chemin de la hunière
91671 Palaiseau
France

 

Armin Scrinzi
LMU Munich
Arnold Sommerfeld Center
Theresienstrasse 37
80333 Munich
Germany

 

Olga Smirnova
Max Born Institute Berlin
Max-Born-Str.-2A
12489 Berlin
Germany

 

Sarah L. Stebbings
Physik Department
Ludwig-Maximilians-Universität
München
Am Coulombwall 1
85748 Garching
Germany

 

Mark I. Stockman
Department of Physics and Astronomy
Georgia State University
Atlanta, GA 30303
USA

 

Frederik Süßmann
Physik Department
Ludwig-Maximilians-Universität
München
Am Coulombwall 1
85748 Garching
Germany

 

Pedro Velarde
Universidad Politécnica de Madrid
Instituto de Fusion Nuclear
Madrid
Spain

 

Adam S. Wyatt
University of Oxford
Clarendon Laboratory
Keble Road
Oxford OX1 3RH
United Kingdom

 

Linda Young
Argonne National Laboratory
Argonne, IL 60439
USA

 

Philippe Zeitoun
Laboratoire d’Optique Appliquée
ENSTA, CNRS
Ecole Polytechnique
Chemin de la hunière
91671 Palaiseau
France

 

Sergey Zherebtsov
Max-Planck Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching
Germany

Related Titles

Milonni, P.W., Eberly, J.H.

 

Laser Physics

 

2 Edition
2009
Print ISBN: 978-0-470-38771-9
Adobe PDF ISBN: 978-0-470-40970-1
ISBN: 978-0-470-40971-8

 

Weiner, A.

 

Ultrafast Optics

 

2009
Print ISBN: 978-0-471-41539-8
Adobe PDF ISBN: 978-0-470-47345-0
Adobe PDF ISBN: 978-0-470-47346-7
ePub ISBN: 978-1-118-21147-2
eMobi ISBN: 978-1-118-21305-6

 

Demtröder, W.

 

Molecular Physics
Theoretical Principles and Experimental Methods

 

2005 Print ISBN: 978-3-527-40566-4
ISBN: 978-3-527-61809-5
Adobe PDF ISBN: 978-3-527-61810-1

 

Hill, W.T., Lee, C.

 

Light-Matter Interaction
Atoms and Molecules in External Fields and Nonlinear Optics

 

2007
Print ISBN: 978-3-527-40661-6
ISBN: 978-3-527-61901-6
Adobe PDF ISBN: 978-3-527-61902-3

 

Happer, W., Jau, Y., Walker, T.

 

Optically Pumped Atoms

 

2010
Print ISBN: 978-3-527-40707-1
ISBN: 978-3-527-62950-3
Adobe PDF ISBN: 978-3-527-62951-0

 

Horn, A.

 

Ultra-fast Material Metrology

 

2009
Print ISBN: 978-3-527-40887-0
ISBN: 978-3-527-62792-9
Adobe PDF ISBN: 978-3-527-62793-6

 

Rafailov, E.U., Cataluna, M.A., Avrutin, E.A.

 

Ultrafast Lasers Based on Quantum Dot Structures
Physics and Devices

 

2011
Print ISBN: 978-3-527-40928-0
ISBN: 978-3-527-63448-4
ePub ISBN: 978-3-527-63449-1
Adobe PDF ISBN: 978-3-527-63450-7
eMobi ISBN: 978-3-527-63451-4

 

Reiss, H.

 

Foundations of Strong-Field Physics

 

2013
Print ISBN: 978-3-527-41112-2
ISBN: 978-3-527-64920-4
eMobi ISBN: 978-3-527-64921-1
ePub ISBN: 978-3-527-64922-8
ePub ISBN: 978-3-527-64923-5

Chapter 1

Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy

Marc Vrakking

1.1 Introduction

Scientific progress is tied to the observation and modeling of the world. Our ability to observe atomic and molecular matter requires tools beyond our natural senses. Following the development of X-ray techniques, it became possible in the twentieth century in biology and chemistry research to observe static structures, from the macroscopic scale down to the nanoscale and even beyond, with atomic resolution. However, many important material properties are not static, and involve elementary physical processes that occur on ultrafast time scales.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!