151,99 €
This book provides fundamental knowledge in the fields of attosecond science and free electron lasers, based on the insight that the further development of both disciplines can greatly benefit from mutual exposure and interaction between the two communities. With respect to the interaction of high intensity lasers with matter, it covers ultrafast lasers, high-harmonic generation, attosecond pulse generation and characterization. Other chapters review strong-field physics, free electron lasers and experimental instrumentation. Written in an easy accessible style, the book is aimed at graduate and postgraduate students so as to support the scientific training of early stage researchers in this emerging field. Special emphasis is placed on the practical approach of building experiments, allowing young researchers to develop a wide range of scientific skills in order to accelerate the development of spectroscopic techniques and their implementation in scientific experiments. The editors are managers of a research network devoted to the education of young scientists, and this book idea is based on a summer school organized by the ATTOFEL network.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1183
Veröffentlichungsjahr: 2013
Editors
Dr. Thomas SchultzMax Born InstituteDiv. A: Attosecond PhysicsMax-Born-Strasse 212489 BerlinGermany
Dr. Marc VrakkingMax Born InstituteMax-Born-Strasse 212489 BerlinGermany
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.:applied for
British Library Cataloguing-in-Publication Data:A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche NationalbibliothekThe Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN 978-3-527-41124-5ePDF ISBN 978-3-527-67767-2ePub ISBN 978-3-527-67765-8Mobi ISBN 978-3-527-67766-5oBook ISBN 978-3-527-67768-9
Cover Design Adam-Design, WeinheimTypesetting le-tex publishing services GmbH, LeipzigPrinting and Binding Markono Print Media Pte Ltd, Singapore
Printed in SingaporePrinted on acid-free paper
Contents
List of Contributors
1 Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy
Marc Vrakking
1.1 Introduction
1.2 The Emergence of Attosecond Science
1.2.1 Attosecond Pulse Trains and Isolated Attosecond Pulses
1.2.2 Characterization of Attosecond Laser Pulses
1.2.3 Experimental Challenges in Attosecond Science
1.2.4 Attosecond Science as a Driver for Technological Developments
1.3 Applications of Attosecond Laser Pulses
1.4 Ultrafast Science Using XUV/X-ray Free Electron Lasers
1.5 The Interplay between Experiment and Theory
1.6 Conclusion and Outlook
References
Part One Laser Techniques
2 Ultrafast Laser Oscillators and Amplifiers
Uwe Morgner
2.1 Introduction
2.2 Mode-Locking and Few-Cycle Pulse Generation
2.3 High-Energy Oscillators
2.4 Laser Amplifiers
References
3 Ultrashort Pulse Characterization
Adam S. Wyatt
3.1 Motivation: Why Ultrafast Metrology?
3.1.1 Ultrafast Science: High-Speed Photography in the Extreme
3.2 Formal Description of Ultrashort Pulses
3.2.1 Sampling Theorem
3.2.2 Chronocyclic Representation of Ultrafast Pulses
3.2.3 Space-Time Coupling
3.2.4 Accuracy, Precision and Consistency
3.3 Linear Filter Analysis
3.4 Ultrafast Metrology in the Visible to Infrared
3.4.1 Temporal Correlations
3.4.2 Spectrography
3.4.3 Sonography
3.4.4 Tomography
3.4.5 Interferometry
3.5 Ultrafast Metrology in the Extreme Ultraviolet
3.5.1 Complete Characterization of Ultrashort XUV Pulses via Photoionization Spectroscopy
3.5.2 XUV Interferometry
3.6 Summary
References
4 Carrier Envelope Phase Stabilization
Vincent Crozatier
4.1 Introduction
4.2 CEP Fundamentals
4.2.1 Time Domain Representation
4.2.2 Frequency Domain Representation
4.3 Stabilization Loop Fundamentals
4.3.1 The Noisy Source
4.3.2 Noise Detection
4.3.3 Open-Loop Noise Analysis
4.3.4 Feedback
4.3.5 Closed-Loop Noise Analysis
4.4 CEP in Oscillators
4.4.1 Oscillators Peculiarities
4.4.2 CEP Detection
4.4.3 Actuation
4.5 CEP in Amplifiers
4.5.1 Amplifier Peculiarities
4.5.2 CEP Detection
4.5.3 Actuation
4.5.4 Feedback Results
4.5.5 Parametric Amplification
4.6 Conclusion
References
5 Towards Tabletop X-Ray Lasers
Philippe Zeitoun, Eduardo Oliva, Thi Thu Thuy Le, Stéphane Sebban, Marta Fajardo, David Ros, and Pedro Velarde
5.1 Context and Objectives
5.2 Choice of Plasma-Based Soft X-Ray Amplifier
5.2.1 Basic Aspects of High Harmonic Amplification
5.2.2 Basic Aspects of Plasma Amplifiers
5.3 2D Fluid Modeling and 3D Ray Trace
5.3.1 ARWEN Code
5.3.2 Model to Obtain 2D Maps of Atomic Data
5.4 The Bloch–Maxwell Treatment
5.5 Stretched Seed Amplification
5.6 Conclusion
References
Part Two Theoretical Methods
6 Ionization in Strong Low-Frequency Fields
Misha Ivanov
6.1 Preliminaries
6.2 Speculative Thoughts
6.3 Basic Formalism
6.3.1 Hamiltonians and Gauges
6.3.2 Formal Solutions
6.4 The Strong-Field Approximation
6.4.1 The Volkov Propagator and the Classical Connection
6.4.2 Transition Amplitudes in the SFA
6.5 Strong-Field Ionization: Exponential vs. Power Law
6.5.1 The Saddle Point Approximation and the Classical Connection
6.6 Semiclassical Picture of High Harmonic Generation
6.7 Conclusion
References
7 Multielectron High Harmonic Generation: Simple Man on a Complex Plane
Olga Smirnova and Misha Ivanov
7.1 Introduction
7.2 The Simple Man Model of High Harmonic Generation (HHG)
7.3 Formal Approach for One-Electron Systems
7.4 The Lewenstein Model: Saddle Point Equations for HHG
7.5 Analysis of the Complex Trajectories
7.6 Factorization of the HHG Dipole: Simple Man on a Complex Plane
7.6.1 Factorization of the HHG Dipole in the Frequency Domain
7.6.2 Factorization of the HHG Dipole in the Time Domain
7.7 The Photoelectron Model of HHG: The Improved Simple Man
7.8 The Multichannel Model of HHG: Tackling Multielectron Systems
7.9 Outlook
7.10 Appendix A: Supplementary Derivations
7.11 Appendix B: The Saddle Point Method
7.11.1 Integrals on the Real Axis
7.11.2 Stationary Phase Method
7.12 Appendix C: Treating the Cutoff Region: Regularization of Divergent Stationary Phase Solutions
7.13 Appendix D: Finding Saddle Points for the Lewenstein Model
References
8 Time-Dependent Schrödinger Equation
Armin Scrinzi
8.1 Atoms and Molecules in Laser Fields
8.2 Solving the TDSE
8.2.1 Discretization of the TDSE
8.2.2 Finite Elements
8.2.3 Scaling with Laser Parameters
8.3 Time Propagation
8.3.1 Runge–Kutta Methods
8.3.2 Krylov Subspace Methods
8.3.3 Split-Step Methods
8.4 Absorption of Outgoing Flux
8.4.1 Absorption for a One-Dimensional TDSE
8.5 Observables
8.5.1 Ionization and Excitation
8.5.2 Harmonic Response
8.5.3 Photoelectron Spectra
8.6 Two-Electron Systems
8.6.1 Very Large-Scale Grid-Based Approaches
8.6.2 Basis and Pseudospectral Approaches
8.7 Few-Electron Systems
8.7.1 MCTDHF: Multiconfiguration Time-Dependent Hartree–Fock
8.7.2 Dynamical Multielectron Effects in High Harmonic Generation
8.8 Nuclear Motion
References
9 Angular Distributions in Molecular Photoionization
Robert R. Lucchese and Danielle Dowek
9.1 Introduction
9.2 One-Photon Photoionization in the Molecular Frame
9.3 Methods for Computing Cross-Sections
9.4 Post-orientation MFPADs
9.4.1 MFPADs for Linear Molecules in the Axial Recoil Approximation
9.4.2 MFPADs for Nonlinear Molecules in the Axial Recoil Approximation
9.4.3 Breakdown of the Axial Recoil Approximation Due to Rotation
9.4.4 Breakdown of the Axial Recoil Approximation Due to Vibrational Motion
9.4.5 Electron Frame Photoelectron Angular Distributions
9.5 MFPADs from Concurrent Orientation in Multiphoton Ionization
9.6 Pre-orientation or Alignment, Impulsive Alignment
9.7 Conclusions
References
Part Three High Harmonic Generation and Attosecond Pulses
10 High-Order Harmonic Generation and Attosecond Light Pulses: An Introduction
Anne L’Huillier
10.1 Early Work, 1987–1993
10.2 Three-Step Model, 1993–1994
10.3 Trajectories and Phase Matching, 1995–2000
10.4 Attosecond Pulses 2001
10.5 Conclusion
References
11 Strong-Field Interactions at Long Wavelengths
Manuel Kremer, Cosmin I. Blaga, Anthony D. DiChiara, Stephen B. Schoun, Pierre Agostini, and Louis F. DiMauro
11.1 Theoretical Background
11.1.1 Keldysh Picture of Ionization in Strong Fields
11.1.2 Classical Perspectives on Postionization Dynamics
11.1.3 High-Harmonic Generation
11.1.4 Wavelength Scaling of High-Harmonic Cutoff and Attochirp
11.1.5 In-situ and RABBITT Technique
11.2 Mid-IR Sources and Beamlines at OSU
11.2.1 2-µm Source
11.2.2 3.6-µm Source
11.2.3 OSU Attosecond Beamline
11.3 Strong-Field Ionization: The Single-Atom Response
11.4 High-Harmonic Generation
11.4.1 Harmonic Cutoff and Harmonic Yield
11.4.2 Attochirp
11.4.3 In-situ Phase Measurement
11.4.4 RABBITT Method
11.5 Conclusions and Future Perspectives
References
12 Attosecond Dynamics in Atoms
Giuseppe Sansone, Francesca Calegari, Matteo Lucchini, and Mauro Nisoli
12.1 Introduction
12.2 Single-Electron Atom: Hydrogen
12.3 Two-Electron Atom: Helium
12.3.1 Electronic Wave Packets
12.3.2 Autoionization: Fano Profile
12.3.3 Two-Photon Double Ionization
12.4 Multielectron Systems
12.4.1 Neon: Dynamics of Shake-Up States
12.4.2 Neon: Delay in Photoemission
12.4.3 Argon: Fano Resonance
12.4.4 Krypton: Auger Decay
12.4.5 Krypton: Charge Oscillation
12.4.6 Xenon: Cascaded Auger Decay
References
13 Application of Attosecond Pulses to Molecules
Franck Lépine
13.1 Attosecond Dynamics in Molecules
13.2 State-of-the-Art Experiments Using Attosecond Pulses
13.2.1 Ion Spectroscopy
13.2.2 Electron Spectroscopy
13.2.3 Photo Absorption
13.3 Theoretical Work
13.3.1 Electron Dynamics in Small Molecules
13.3.2 Electron Dynamics in Large Molecules
13.4 Perspectives
13.4.1 Molecular Alignment and Orientation
13.4.2 Electron Delocalization between DNA Group Junction
13.4.3 Similar Dynamics in Water and Ice
13.4.4 More
13.5 Conclusion
References
14 Attosecond Nanophysics
Frederik Süßmann, Sarah L. Stebbings, Sergey Zherebtsov, Soo Hoon Chew, Mark I. Stockman, Eckart Rühl, Ulf Kleineberg, Thomas Fennel, and Matthias F. Kling
14.1 Introduction
14.2 Attosecond Light-Field Control of Electron Emission and Acceleration from Nanoparticles
14.2.1 Imaging of the Electron Emission from Isolated Nanoparticles
14.2.2 Microscopic Analysis of the Electron Emission
14.3 Few-Cycle Pump-Probe Analysis of Cluster Plasmons
14.3.1 Basics of Spectral Interferometry
14.3.2 Oscillator Model Results for Excitation with Gaussian Pulses
14.3.3 Spectral Interferometry Analysis of Plasmons in Small Sodium Clusters
14.4 Measurements of Plasmonic Fields with Attosecond Time Resolution
14.4.1 Attosecond Nanoplasmonic Streaking
14.4.2 The Regimes of APS Spectroscopy
14.4.3 APS Spectroscopy of Collective Electron Dynamics in Isolated Nanoparticles
14.4.4 Attosecond Nanoscope
14.4.5 Experimental Implementation of the Attosecond Nanoscope
14.5 Nanoplasmonic Field-Enhanced XUV Generation
14.5.1 Tailoring of Nanoplasmonic Field Enhancement for HHG
14.5.2 Generation of Single Attosecond XUV Pulses in Nano-HHG
14.6 Conclusions and Outlook
References
Part Four Ultra Intense X-Ray Free Electron Laser Experiments
15 Strong-Field Interactions at EUV and X-Ray Wavelengths
Artem Rudenko
15.1 Introduction
15.2 Experimental Background
15.2.1 What Is a “Strong” Field?
15.2.2 Basic Parameters of Intense High-Frequency Radiation Sources
15.2.3 Detection Systems
15.3 Atoms and Molecules under Intense EUV Light
15.3.1 Two-Photon Single Ionization of Helium
15.3.2 Few-Photon Double Ionization of Helium and Neon
15.3.3 Multiple Ionization of Atoms
15.3.4 EUV-Induced Fragmentation of Simple Molecules
15.4 EUV Pump–EUV Probe Experiments
15.4.1 Split-and-Delay Arrangements and Characterization of the EUV Pulses
15.4.2 Nuclear Wave Packet Imaging in Diatomic Molecules
15.4.3 Isomerization Dynamics of Acetylene Cations
15.5 Experiments in the X-Ray Domain
15.5.1 Multiple Ionization of Heavy Atoms: Role of Resonant Excitations
15.5.2 Multiphoton Ionization of Molecules Containing High-Z Atoms
15.6 Summary and Outlook
References
16 Ultraintense X-Ray Interactions at the Linac Coherent Light Source
Linda Young
16.1 Introduction
16.1.1 Comparison of Ultrafast, Ultraintense Optical, and X-Ray Lasers
16.1.2 X-Ray Atom Interactions
16.2 Atomic and Molecular Response to Ultraintense X-Ray Pulses
16.2.1 Nonresonant High-Intensity X-Ray Phenomena
16.2.2 Resonant High-Intensity X-Ray Phenomena
16.3 Ultrafast X-Ray Probes of Dynamics
16.4 Characterization of LCLS Pulses
16.5 Outlook
References
17 Coherent Diffractive Imaging
Willem Boutu, Betrand Carré, and Hamed Merdji
17.1 Introduction
17.2 Far-Field Diffraction
17.2.1 Optical Point of View
17.2.2 Born Approximation
17.2.3 Resolution
17.2.4 Comments on the Approximations
17.3 Source Requirements
17.3.1 Coherence
17.3.2 Signal-to-Noise Ratio
17.3.3 Dose
17.3.4 Different XUV Sources Comparison
17.4 Solving the Phase Problem
17.4.1 Oversampling Method
17.4.2 Basics on Iterative Phasing Algorithms
17.4.3 Implementations of Phase Retrieval Algorithms
17.5 Holography
17.5.1 Fourier Transform Holography
17.5.2 HERALDO
17.6 Conclusions
References
Index
List of Contributors
Related Titles
Chapter 1
Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy
Marc Vrakking
Scientific progress is tied to the observation and modeling of the world. Our ability to observe atomic and molecular matter requires tools beyond our natural senses. Following the development of X-ray techniques, it became possible in the twentieth century in biology and chemistry research to observe static structures, from the macroscopic scale down to the nanoscale and even beyond, with atomic resolution. However, many important material properties are not static, and involve elementary physical processes that occur on ultrafast time scales.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!