Bio- and Bioinspired Nanomaterials -  - E-Book

Bio- and Bioinspired Nanomaterials E-Book

0,0
138,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

A comprehensive overview of nanomaterials that are inspired by or targeted at biology, including some of the latest breakthrough research. Throughout, valuable contributions from top-level scientists illustrate how bionanomaterials could lead to novel devices or structures with unique properties. The first and second part cover the most relevant synthetic and bioinspired nanomaterials, including surfaces with extreme wettability properties, functional materials with improved adhesion or structural and functional systems based on the complex and hierarchical organization of natural composites. These lessons from nature are explored in the last section where bioinspired materials are proposed for biomedical applications, showing their potential for future applications in drug delivery, theragnosis, and regenerative medicine. A navigational guide aimed at advanced and specialist readers, while equally relevant for readers in research, academia or private companies focused on high added-value contributions. Young researchers will also find this an indispensable guide in choosing or continuing to work in this stimulating area, which involves a wide range of disciplines, including chemistry, physics, materials science and engineering, biology, and medicine.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 920

Veröffentlichungsjahr: 2014

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



CONTENTS

Cover

Related Titles

Title Page

Copyright

List of Contributors

Foreword

Preface

Part I: Bionanomaterials

Chapter 1: Synthesis of Colloidal Gold and Silver Nanoparticles and their Properties

1.1 Introduction

1.2 Physical and Chemical Properties of Gold and Silver Nanoparticles

1.3 Synthesis of Gold and Silver Core Nanoparticles

1.4 Transfer to Aqueous Media of Gold and Silver Nanoparticles from Organic Solvents

1.5 Some Applications of Gold and Silver Nanoparticles

Acknowledgments

References

Chapter 2: Ceramic Smart Drug Delivery Nanomaterials

2.1 Introduction

2.2 Biodistribution, Toxicity, and Excretion of Nanoparticles

2.3 Mesoporous Silica Nanoparticles

2.4 Calcium Phosphate Nanoparticles

2.5 Carbon Allotropes

2.6 Iron Oxide Nanoparticles

References

Chapter 3: Polymersomes and their Biological Implications

3.1 Introduction

3.2 Self-Assembly of Amphiphiles

3.3 Polymersome – The Synthetic Analog of a Liposome

3.4 Polymersomes as Drug Delivery Devices

3.5 Embedding Channel Proteins in Artificial Polymer Membranes and Creating New Applications

3.6 Conclusions and Outlook

List of Abbreviations

References

Chapter 4: MOFs in Pharmaceutical Technology

4.1 Introduction

4.2 Metal-Organic Frameworks

4.3 MOFs for Therapeutics

4.4 Conclusions

List of Abbreviations

References

Chapter 5: Amorphous Coordination Polymer Particles for Biomedicine

5.1 Introduction

5.2 Interaction of Nanoplatforms with the Biological Environment

5.3 CPPs as Realistic Alternative to Classical Nanosystems

5.4 Conclusion and Future Challenges

References

Chapter 6: Magnetic Nanoparticles for Magnetic Hyperthermia and Controlled Drug Delivery

6.1 Introduction

6.2 Principles of Magnetically Induced Heat Generation

6.3 Synthesis of MNPs and their Heat Performance

6.4 Local Heating and Induced Biological and Drug Release Effects

6.5 In Vivo Drug Release from Magnetic Hybrid Systems Under Alternating Magnetic Field Exposure

References

Chapter 7: Photothermal Effect of Gold Nanostructures for Application in Bioimaging and Therapy

7.1 Introduction

7.2 Photophysical Characterization of Gold Nanostructures

7.3 Tuning the Absorption Spectrum of Gold Nanostructures

7.4 Plasmonic Photothermal Effect of GNS in Imaging

7.5 Concluding Remarks

Acknowledgment

List of Abbreviations

References

Chapter 8: Nanomaterial-Based Bioimaging Probes

8.1 Introduction

8.2 Nanoprobes

8.3 Imaging Probes

8.4 Targeting Strategies

8.5 Nanotheranostics

8.6 Design Considerations

8.7 Summary and Future Trends

References

Chapter 9: Molecular Bases of Nanotoxicology

9.1 Introduction

9.2 Impact on Environment: Nanoecotoxicology

9.3 Impact on Health: Nanotoxicology

References

Part II: Bioinspired Materials – Bioinspired Materials for Technological Application

Chapter 10: Bioinspired Interfaces for Self-cleaning Technologies

10.1 The Concept of Bioinspiration in Materials Engineering

10.2 Basics of Wetting

10.3 Self-cleaning Technologies

10.4 Summary

References

Chapter 11: Catechol-Based Biomimetic Functional Materials and their Applications

11.1 Introduction

11.2 Adhesives

11.3 Functionalizable Platforms (Primers) on Macroscopic Surfaces

11.4 Micro-/Nanoscopic Surface Functionalization

11.5 Functional Scaffolds

11.6 Chelating Materials/Siderophore-Like Materials

11.7 Materials for Chemo-/Biosensing

11.8 Electronic Devices

References

Chapter 12: Current Approaches to Designing Nanomaterials Inspired by Mussel Adhesive Proteins

12.1 Introduction

12.2 Mussel Adhesive Proteins and DOPA

12.3 Nanoparticle Stabilization

12.4 Nanocomposite Materials

12.5 Gecko and Mussel Dual Mimetic Adhesive

12.6 Polydopamine as a Multifunctional Anchor

12.7 Summary and Future Outlook

Acknowledgment

References

Part III: Bioinspired Materials – Bioinspired Materials for Biomedical Applications

Chapter 13: Functional Gradients in Biological Composites

13.1 Introduction

13.2 Chemical Gradient

13.3 Hydration Gradient

13.4 Mineral Gradient

13.5 Texture Gradient

13.6 Porosity Gradient

13.7 Conclusions

References

Chapter 14: Novel Bioinspired Phospholipid Polymer Biomaterials for Nanobioengineering

14.1 Introduction

14.2 Molecular Design of an Artificial Cell Membrane Surface

14.3 Polymer Nanoparticles System with an Artificial Cell Membrane Structure

14.4 Nanomaterials Entrapped in the Polymeric Nanoparticles with an Artificial Cell Membrane

14.5 Future Perspectives

List of Abbreviations

References

Chapter 15: Bioinspired Functionalized Nanoparticles as Tools for Detection, Quantification and Targeting of Biomolecules

15.1 Introduction

15.2 Bioinspired Functionalized Nanoparticles

15.3 Biomedical Applications

15.4 Therapeutics Applications of Nanoparticles

15.5 Mass Spectrometry and Nanomaterials for Biomolecule Identification

15.6 Clinical Proteomics and Biomarker Detection

15.7 Concluding Remarks

Acknowledgments

Chapter 16: Engineering Protein Based Nanoparticles for Applications in Tissue Engineering

16.1 Introduction

16.2 Inclusion Bodies; Protein-Based Nanoparticles as Novel Bionanomaterials

16.3 Physicochemical and Nanoscale Properties of Inclusion Bodies

16.4 Cell Proliferation Assisted by Protein-Based Nanoparticles

16.5 Microscale Engineering of Protein-Based Nanoparticles for Cell Guidance

16.6 Conclusions and Perspectives

References

Index

End User License Agreement

List of Tables

Table 3.1

Table 3.2

Table 4.1

Table 6.1

Table 8.1

Table 8.2

Table 8.3

Table 9.1

Table 9.2

Table 10.1

Table 13.1

List of Illustrations

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.7

Scheme 1.1

Figure 1.8

Figure 2.1

Figure 2.2

Figure 2.3

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Scheme 3.1

Scheme 3.2

Figure 3.15

Figure 3.16

Figure 3.17

Figure 4.1

Figure 4.2

Figure 4.3

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5

Figure 8.6

Figure 8.7

Figure 8.8

Figure 8.9

Figure 9.1

Figure 9.2

Figure 9.3

Figure 9.4

Figure 9.5

Figure 10.1

Figure 10.2

Figure 10.3

Figure 10.4

Figure 10.5

Figure 10.6

Figure 10.7

Figure 11.1

Figure 11.2

Figure 11.3

Figure 11.4

Figure 11.5

Figure 11.6

Figure 11.7

Figure 11.8

Figure 12.1

Figure 12.2

Figure 12.3

Figure 12.4

Figure 12.5

Figure 12.6

Figure 12.7

Figure 12.8

Figure 12.9

Figure 13.1

Figure 13.2

Figure 13.3

Figure 13.4

Figure 13.5

Figure 13.6

Figure 13.7

Figure 13.8

Figure 13.9

Figure 13.10

Figure 13.11

Figure 14.1

Figure 14.2

Figure 14.3

Figure 14.4

Figure 14.5

Figure 14.6

Figure 14.7

Figure 14.8

Figure 14.9

Figure 14.10

Figure 14.11

Figure 14.12

Figure 14.13

Figure 14.14

Figure 14.15

Figure 14.16

Figure 14.17

Figure 14.18

Figure 15.1

Figure 15.2

Figure 15.3

Figure 15.4

Figure 15.5

Figure 15.6

Figure 15.7

Figure 15.8

Figure 15.9

Figure 15.10

Figure 15.11

Figure 15.12

Figure 15.13

Figure 15.14

Figure 16.1

Figure 16.2

Figure 16.3

Figure 16.4

Figure 16.5

Figure 16.6

Figure 16.7

Figure 16.8

Figure 16.9

Figure 16.10

Figure 16.11

Figure 16.12

Guide

Cover

Table of Contents

Begin Reading

Begin Reading

Part 1

Chapter 1

Pages

ii

iii

iii

iv

xiii

xiv

xv

xvi

xvii

xviii

xix

xx

xxi

xxii

xxiii

xxiv

xxv

xxvi

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

Related Titles

Taubert, A., Mano, J.F., Rodréguez-Cabello, J.C. (eds.)

Biomaterials Surface Science

2013

Print ISBN: 978-3-527-33031-7

Pompe, W., R–del, G., Weiss, H., Mertig, M.

Bio-Nanomaterials

Designing materials inspired by nature

2013

Print ISBN: 978-3-527-41015-6

Santin, M., Phillips, G.J. (eds.)

Biomimetic, Bioresponsive, and Bioactive Materials

An Introduction to Integrating Materials with Tissues

2012

Print ISBN: 978-0-470-05671-4

Mano, J.F. (ed.)

Biomimetic Approaches for Biomaterials Development

2012

Print ISBN: 978-3-527-32916-8

Li, J., He, Q., Yan, X.

Molecular Assembly of Biomimetic Systems

2011

Print ISBN: 978-3-527-32542-9

Poupon, E., Nay, B. (eds.)

Biomimetic Organic Synthesis

2011

Print ISBN: 978-3-527-32580-1

Basu, B., Katti, D., Kumar, A. (eds.)

Advanced Biomaterials

Fundamentals, Processing, and Applications

2010

Print ISBN: 978-0-470-89131-5

Kumar, C.S. (ed.)

Biomimetic and Bioinspired Nanomaterials

2010

Print ISBN: 978-3-527-32167-4

Bio- and Bioinspired Nanomaterials

Edited by Daniel Ruiz-Molina

Fernando Novio

Claudio Roscini

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33581-7

ePDF ISBN: 978-3-527-67585-2

ePub ISBN: 978-3-527-67584-5

Mobi ISBN: 978-3-527-67583-8

oBook ISBN: 978-3-527-67582-1

List of Contributors

Alfredo Ambrosone

Consiglio Nazionale delle Ricerche

Istituto di Cibernetica “E. Caianiello”

Via Campi Flegrei, 34

80078, Pozzusoli

Italy

Alejandro Baeza

Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN)

C/Monforte de Lemos 3-5

Pabellón 11

28029 Madrid

Spain

and

Universidad Complutense de Madrid

Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12

Dpto. Química Inorgánica y Bioinorgánica

Plaza Ramón y Cajal s/n

28040 Madrid

Spain

M. J. Blanco-Prieto

Universidad de Navarra

Facultad de Farmacia

Departamento de Farmacia y Tecnología Farmacéutica

Irunlarrea 1

31008 Pamplona

Spain

Regina Bleul

Fraunhofer ICT-IMM

Nanoparticle Technologies Department

Carl-Zeiss-Str. 18-20

55129 Mainz

Germany

Christian Buchwalder

University of British Columbia

Faculty of Pharmaceutical Sciences

2405 Wesbrook Mall

Vancouver, BC V6T 1Z3

Canada

Félix Busqué

Universitat Autònoma de Barcelona

Departament de Química

Campus UAB

08193 Barcelona

Spain

Jose Luis Capelo

University NOVA of Lisbon

Faculty of Science and Technology

Chemistry Department

BIOSCOPE Research Group, REQUIMTE

Caparica Campus

Quinta da Torre

2829-516 Caparica

Portugal

and

ProteoMass Scientific Society

Madan Parque

Rua dos Inventores

2825-182 Caparica

Portugal

Cesar Díez-Gil

Institut de Ciencia de Materials de Barcelona (CSIC)

Department of Molecular Nanoscience and Organic Materials

Bellaterra

Av de Serragalliners

08193 Barcelona

Spain

and

Biomateriales y Nanomedicina (CIBER-BBN)

CIBER de Bioingeniería

Bellaterra

08193 Barcelona

Spain

Victoria Dutschk

University of Twente

Faculty for Engineering Technology (CTW)

Engineering of Fibrous Smart Materials (EFSM)

Drienerlolaan 5

7522 NB Enschede

The Netherlands

Randall M. Erb

Northeastern University

Department of Mechanical and Industrial Engineering

Boston MA 02115

USA

Javier Fernández-Lodeiro

University NOVA of Lisbon

Faculty of Science and Technology

Chemistry Department

BIOSCOPE Research Group, REQUIMTE

Caparica Campus

Quinta da Torre

2829-516 Caparica

Portugal

and

ProteoMass Scientific Society

Madan Parque

Rua dos Inventores

2825-182 Caparica

Portugal

Elena García Fruitós

Biomateriales y Nanomedicina (CIBER-BBN)

CIBER de Bioingeniería

Bellaterra

08193 Barcelona

Spain

and

Universitat Autònoma de Barcelona

Institut de Biotecnologia i de Biomedicina

Cerdanyola del Vallés

Carrer de la Vall Moronta

08193 Barcelona

Spain

and

Universitat Autònoma de Barcelona

Departament de Genètica i de Microbiologia

Cerdanyola del Vallés

Carrer de la Vall Moronta

08193 Barcelona

Spain

A. García-Márquez

UMR CNRS 8180

Université de Versailles Saint-Quentin-en-Yvelines

Institut Lavoisier

45 Avenue des Etats-Unis

78035 Versailles Cedex

France

Florence Gazeau

UMR 7057 CNRS/Université

Paris Diderot

Laboratoire Matières et Systèmes Complexes

10 rue Alice Domon et Léonie Duquet

75205 Paris

France

Joseph Gazella

Michigan Technological University

Department of Biomedical Engineering

1400 Townsend Dr.

Houghton, MI 49931

USA

Pablo Guardia

Istituto Italiano di Tecnologia

Nanochemistry

via Morego 30

16163 Genoa

Italy

Urs O. Häfeli

University of British Columbia

Faculty of Pharmaceutical Sciences

2405 Wesbrook Mall

Vancouver, BC V6T 1Z3

Canada

P. Horcajada

UMR CNRS 8180

Université de Versailles

Saint-Quentin-en-Yvelines

Institut Lavoisier

45 Avenue des Etats-Unis

78035 Versailles Cedex

France

Kazuhiko Ishihara

The University of Tokyo

School of Engineering

Department of Materials Engineering

Department of Bioengineering

7-3-1, Hongo

Bunkyo-ku

Tokyo 113–8656

Japan

Hamilton Kakwere

Istituto Italiano di Tecnologia

Nanochemistry

via Morego 30

16163 Genoa

Italy

Loredana Latterini

University of Perugia

Chemistry Department and Centro Eccellenza Materiali Innovativi Nanostrutturati (CEMIN)

Via Elce di Sotto 8

06123 Perugia

Italy

Bruce P. Lee

Michigan Technological University

Department of Biomedical Engineering

1400 Townsend Dr.

Houghton, MI 49931

USA

Rafael Libanori

ETH Zurich

Department of Materials

Complex Materials

8093 Zurich

Switzerland

Carlos Lodeiro

University NOVA of Lisbon

Faculty of Science and Technology

Chemistry Department

BIOSCOPE Research Group, REQUIMTE

Caparica Campus

Quinta da Torre

2829-516 Caparica

Portugal

and

ProteoMass Scientific Society

Madan Parque

Rua dos Inventores

2825-182 Caparica

Portugal

Julia Lorenzo

Universitat Autònoma de Barcelona

Institut de Biotecnologia i Biomedicina (IBB)

Departament de Bioquímica i de Biologia Molecular

Cerdanyola del Vallés

Carrer de la Vall Moronta

08193 Barcelona

Spain

Valentina Marchesano

Consiglio Nazionale delle Ricerche

Istituto di Cibernetica “E. Caianiello”

Via Campi Flegrei, 34

80078, Pozzuoli

Italy

Michael Maskos

Fraunhofer ICT-IMM

Nanoparticle Technologies Department

Carl-Zeiss-Str. 18-20

55129 Mainz

Germany

Hao Meng

Michigan Technological University

Department of Biomedical Engineering

1400 Townsend Dr.

Houghton, MI 49931

USA

Jose Maria Montenegro

University of Malaga

Central Research Services

Bulevar Louis Pasteur 33

Edificio SCAI Campus de Teatinos

29071 Malaga

Spain

and

The Andalusian Centre for Nanomedicine and Biotechnology

BIONAND

Parque Tecnológico de Andalucía

Severo Ochoa, 35

29590 Campanillas, Málaga

Spain

Fernando Novio

Institut Catala de Nanociencia i

Nanotecnologia (ICN2)

Consejo Superior de Investigaciones

Científicas (CSIC)

Campus UAB

Bellatera

Av de Serragalliners

08193 Barcelona

Spain

Cristina Núñez

University NOVA of Lisbon

Faculty of Science and Technology

Chemistry Department

BIOSCOPE Research Group, REQUIMTE

Caparica Campus

Quinta da Torre

2829-516 Caparica

Portugal

and

ProteoMass Scientific Society

Madan Parque

Rua dos Inventores

2825-182 Caparica

Portugal

and

Canterbury Christ Church University

Department of Geographical and Life Sciences

Ecology Research Group

North Holmes Road

CT1 1QU Canterbury

United Kingdom

Elisabete Oliveira

University NOVA of Lisbon

Faculty of Science and Technology

Chemistry Department

BIOSCOPE Research Group, REQUIMTE

Caparica Campus

Quinta da Torre

2829-516 Caparica

Portugal

and

ProteoMass Scientific Society

Madan Parque

Rua dos Inventores

2825-182 Caparica

Portugal

and

University of Trás-os-Montes and

Alto Douro

CECAV

Veterinary Science Department

Quinta de Prados

5001-801 Vila Real

Portugal

Wolfgang J. Parak

Philipps Universität Marburg

Fachbereich Physik

Renthof 7

35037 Marburg

Germany

and

CIC Biomagune

Paseo Miramón 182

20009 San Sebastian

Spain

Teresa Pellegrino

Istituto Italiano di Tecnologia

Nanochemistry

via Morego 30

16163 Genoa

Italy

and

Nanoscience Institute of CNR National Nanotechnology Laboratory,

Via Arnesano

73100 Lecce

Italy

Christian Pfeiffer

Philipps Universität Marburg

Fachbereich Physik

Renthof 7

35037 Marburg

Germany

Imma Ratera

Institut de Ciencia de Materials de Barcelona (CSIC)

Department of Molecular Nanoscience and Organic Materials

Bellaterra

Av de Serragalliners

08193 Barcelona

Spain

and

Biomateriales y Nanomedicina (CIBER-BBN)

CIBER de Bioingeniería

Bellaterra

08193 Barcelona

Spain

Andreas Riedinger

Istituto Italiano di Tecnologia

Nanochemistry

via Morego 30

16163 Genoa

Italy

Daniel Ruiz-Molina

Institut Catala de Nanociencia i

Nanotecnologia (ICN2)

Consejo Superior de Investigaciones

Científicas (CSIC)

Campus UAB

Bellatera

Av de Serragalliners

08193 Barcelona

Spain

Katayoun Saatchi

University of British Columbia

Faculty of Pharmaceutical Sciences

2405 Wesbrook Mall

Vancouver, BC V6T 1Z3

Canada

Javier Saiz-Poseu

Consejo Superior de Investigaciones, Científicas (CSIC)

Institut Català de Nanociència I Nanotecnologia (ICN2)

Campus UAB

Bellatera

Av de Serragalliners

08193 Barcelona

Spain

Hugo M. Santos

University NOVA of Lisbon

Faculty of Science and Technology

Chemistry Department

BIOSCOPE Research Group, REQUIMTE

Caparica Campus

Quinta da Torre

2829-516 Caparica

Portugal

and

ProteoMass Scientific Society

Madan Parque

Rua dos Inventores

2825-182 Caparica

Portugal

and

University of Trás-os-Montes and Alto Douro

Institute for Biotechnology and Bioengineering

Quinta de Prados

Center of Genomics and Biotechnology

5001-801 Vila Real

Portugal

Josep Sedó

Consejo Superior de Investigaciones, Científicas (CSIC)

Institut Català de Nanociència I Nanotecnologia (ICN2)

Campus UAB

Bellatera

Av de Serragalliners

08193 Barcelona

Spain

Joaquin Seras-Franzoso

Biomateriales y Nanomedicina (CIBER-BBN)

CIBER de Bioingeniería

Bellaterra

08193 Barcelona

Spain

and

Universitat Autònoma de Barcelona

Institut de Biotecnologia i de Biomedicina

Cerdanyola del Vallés

Carrer de la Vall Moronta

08193 Barcelona

Spain

and

Universitat Autònoma de Barcelona

Departament de Genètica i de Microbiologia

Cerdanyola del Vallés

Carrer de la Vall Moronta

08193 Barcelona

Spain

C. Serre

UMR CNRS 8180

Université de Versailles Saint-Quentin-en-Yvelines

Institut Lavoisier

45 Avenue des Etats-Unis

78035 Versailles Cedex

France

André R. Studart

ETH Zurich

Department of Materials

Complex Materials

8093 Zurich

Switzerland

C. Tamames-Tabar

UMR CNRS 8180

Université de Versailles Saint-Quentin-en-Yvelines

Institut Lavoisier

45 Avenue des Etats-Unis

78035 Versailles Cedex

France

and

Universidad de Navarra

Facultad de Farmacia

Departamento de Farmacia y Tecnología Farmacéutica

Irunlarrea 1

31008 Pamplona

Spain

Luigi Tarpani

University of Perugia

Chemistry Department and Centro Eccellenza Materiali Innovativi Nanostrutturati (CEMIN)

Via Elce di Sotto 8

06123 Perugia

Italy

Witold I. Tatkiewicz

Institut de Ciencia de Materials de Barcelona (CSIC)

Department of Molecular Nanoscience and Organic Materials

Bellaterra

Av de Serragalliners

08193 Barcelona

Spain

and

Biomateriales y Nanomedicina (CIBER-BBN)

CIBER de Bioingeniería

Bellaterra

08193 Barcelona

Spain

Angela Tino

Consiglio Nazionale delle Ricerche

Istituto di Cibernetica “E. Caianiello”

Via Campi Flegrei, 34

80078, Pozzuoli

Italy

Claudia Tortiglione

Consiglio Nazionale delle Ricerche

Istituto di Cibernetica “E. Caianiello”

Via Campi Flegrei, 34

80078, Pozzuoli

Italy

María Vallet-Regí

Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN)

C/Monforte de Lemos 3-5

Pabellón 11

28029 Madrid

Spain

and

Universidad Complutense de Madrid

Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12

Dpto. Química Inorgánica y Bioinorgánica

Plaza Ramón y Cajal s/n

28040 Madrid

Spain

Esther Vázquez

Biomateriales y Nanomedicina (CIBER-BBN)

CIBER de Bioingeniería

Bellaterra

08193 Barcelona

Spain

and

Universitat Autònoma de Barcelona

Institut de Biotecnologia i de Biomedicina

Cerdanyola del Vallés

Carrer de la Vall Moronta

08193 Barcelona

Spain

and

Universitat Autònoma de Barcelona

Departament de Genètica i de Microbiologia

Cerdanyola del Vallés

Carrer de la Vall Moronta

08193 Barcelona

Spain

Jaume Veciana

Institut de Ciencia de Materials de Barcelona (CSIC)

Department of Molecular Nanoscience and Organic Materials

Bellaterra

Av de Serragalliners

08193 Barcelona

Spain

and

Biomateriales y Nanomedicina (CIBER-BBN)

CIBER de Bioingeniería

Bellaterra

08193 Barcelona

Spain

Antoni Villaverde

Biomateriales y Nanomedicina (CIBER-BBN)

CIBER de Bioingeniería

Bellaterra

08193 Barcelona

Spain

and

Universitat Autònoma de Barcelona

Institut de Biotecnologia i de Biomedicina

Cerdanyola del Vallés

Carrer de la Vall Moronta

08193 Barcelona

Spain

and

Universitat Autònoma de Barcelona

Departament de Genètica i de Microbiologia

Cerdanyola del Vallés

Carrer de la Vall Moronta

08193 Barcelona

Spain

Foreword

Without being aware, mankind has been in contact with nanomaterials for a long time. For example, a bright blue pigment invented and used 5000 years ago in Egypt, or the fourth century Lycurgus Cup, the magnificent Roman glass cage cup made of a dichroic glass showing different colors depending on which angle light is shown through, provide today clues how to develop new nanomaterials that could be used in almost any field. In particular, with the latest developments in nanoscience and nanotechnology, biology and medicine have been making revolutionary progress that will provide in the future new diagnosis and therapeutic solutions. The editors of this book were able to collect valuable contributions from top-level scientists that illustrate representative examples of how bionanomaterials could lead to new devices or structures with unique properties. This fresh, exciting, and multidisciplinary field has been bridging principles and tools from physics, chemistry, or engineering to produce such novel elements at all dimensional ranges, including nanoparticles (0D), nanofibers (1D), thin-coating or nanostructured surfaces (2D), or 3D nano-organized materials (hybrid systems, nanocomposites, nano/meso-porous structures, and so on). Bionanomaterials are able to interact peculiarly with biological systems, permitting the accomplishment of tasks that could not be possible with higher-scale materials; well-established examples are nanoparticles for imaging with improved sensitivity, to be used as sensors or to deliver drugs to specific parts of the body.

The authors clearly realized the importance of using modern bioinspired concepts to develop tailored materials for a growing range of technological applications. Along with over 3.8 billion years of evolution, Nature has introduced highly effective biological mechanisms to produce surfaces and materials with exclusive or exceptional features. Biomimetic strategies rely first on the discovery of the structural or physicochemical reasons behind the manifestation of such characteristics, followed by the design and production of synthetic counterparts that could reproduce a similar effect. The second section of this book provides striking examples of bioinspired materials, including surfaces with extreme wettability properties, functional materials with improved adhesion (especially in wet environments), and structural and functional systems based on the complex and hierarchical organization of natural composites. These lessons from Nature are explored in the last section of the book, where bioinspired materials are specifically proposed for biomedical applications, showing their potential for future applications in drug delivery, theragnosis, and regenerative medicine.

This editorial project provides the latest scientific and technological developments in the fields of bionanomaterials and biological inspired nanomaterials, which will be of value to academic and industrial researchers – the accumulated knowledge, together with the potential applicability of such systems, will have a tremendous impact across a range of different fields, including in the biomedical arena. Young research workers will also have in the contents of this book an indispensable support that could guide them in choosing to begin, or to continue, working in this stimulating area of research, which encompasses a wide range of disciplines, including chemistry, physics, materials science and engineering, biology, and medicine.

João F. Mano (University of Minho);e-mail:[email protected]

João F. Mano is Professor at the University of Minho, Portugal, and staff member of the 3B's research group Biomaterials, Biodegradables and Biomimetics. His research interests include the development of new materials and concepts for biomedical applications. He was awarded the Stimulus to Excellence by the Portuguese Minister for Science and Technology in 2005 and the Materials Science and Technology Prize by the Federation of European Materials Societies in 2007.

Preface

Throughout history, far-reaching technical advances have changed established paradigms. Nowadays, nanotechnology is emerging as the latest revolutionary development that is expected to profoundly affect how novel materials, capable of delivering solutions that are cost-efficient, environmentally safe, and affording improved technical performance, are designed and manufactured.

Nanotechnology deals with the manipulation and fabrication of objects or structures at, and below, the nanometric scale, with the ultimate goal of developing new materials for specific technological niches. Because the physical and chemical properties of nanomaterials differ from those of bulk materials, they belong by themselves as a unique class. Although nanoscience started off as an academic research field in the mid-1980s, there are already plenty of examples of commercial applications of nanotechnology in the marketplace. Nanomaterials can be found as key components in healthcare, electronics, cosmetics, textiles, information technology, and environmental protection industries. Not surprisingly, the increasing interest they have attracted has translated into a sharp increase in both public and private funding in nanoscience and nanotechnology-related research.

In particular, the size-specific properties of nanomaterials make them a superior alternative to traditional materials in biology and medicine, and specifically for the fabrication of novel biomaterials, in such areas as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, and tissue engineering, all of which are reviewed in this book. Overall, understanding and controlling the action mechanisms of the nanodevices targeting key biological processes stand out as foremost scientific challenges.

Alongside purely synthetic approaches, Nature itself offers different models and strategies at the nanoscale that can be mimicked with success. Indeed, the study of nanostructures found in many different animals, plants, and other biological systems has shown us ways to develop new materials for energy production, superhydrophobics, adhesives, biosensors, and materials with improved physical and chemical resistance. As far as future technological applications are concerned, these bioinspired nanomaterials are already showing great potential.

This book includes some of the most recent breakthrough research in both bio- and bioinspired nanomaterials. In this respect, it is intended as a navigation guide through some innovative and elegant contributions from a wide group of researchers of high standing in their respective fields, aimed at an advanced and specialist readership community, and relevant in general to readers in research, academia, or private companies focused on high added value contributions.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!