138,99 €
A comprehensive overview of nanomaterials that are inspired by or targeted at biology, including some of the latest breakthrough research. Throughout, valuable contributions from top-level scientists illustrate how bionanomaterials could lead to novel devices or structures with unique properties. The first and second part cover the most relevant synthetic and bioinspired nanomaterials, including surfaces with extreme wettability properties, functional materials with improved adhesion or structural and functional systems based on the complex and hierarchical organization of natural composites. These lessons from nature are explored in the last section where bioinspired materials are proposed for biomedical applications, showing their potential for future applications in drug delivery, theragnosis, and regenerative medicine. A navigational guide aimed at advanced and specialist readers, while equally relevant for readers in research, academia or private companies focused on high added-value contributions. Young researchers will also find this an indispensable guide in choosing or continuing to work in this stimulating area, which involves a wide range of disciplines, including chemistry, physics, materials science and engineering, biology, and medicine.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 920
Veröffentlichungsjahr: 2014
Cover
Related Titles
Title Page
Copyright
List of Contributors
Foreword
Preface
Part I: Bionanomaterials
Chapter 1: Synthesis of Colloidal Gold and Silver Nanoparticles and their Properties
1.1 Introduction
1.2 Physical and Chemical Properties of Gold and Silver Nanoparticles
1.3 Synthesis of Gold and Silver Core Nanoparticles
1.4 Transfer to Aqueous Media of Gold and Silver Nanoparticles from Organic Solvents
1.5 Some Applications of Gold and Silver Nanoparticles
Acknowledgments
References
Chapter 2: Ceramic Smart Drug Delivery Nanomaterials
2.1 Introduction
2.2 Biodistribution, Toxicity, and Excretion of Nanoparticles
2.3 Mesoporous Silica Nanoparticles
2.4 Calcium Phosphate Nanoparticles
2.5 Carbon Allotropes
2.6 Iron Oxide Nanoparticles
References
Chapter 3: Polymersomes and their Biological Implications
3.1 Introduction
3.2 Self-Assembly of Amphiphiles
3.3 Polymersome – The Synthetic Analog of a Liposome
3.4 Polymersomes as Drug Delivery Devices
3.5 Embedding Channel Proteins in Artificial Polymer Membranes and Creating New Applications
3.6 Conclusions and Outlook
List of Abbreviations
References
Chapter 4: MOFs in Pharmaceutical Technology
4.1 Introduction
4.2 Metal-Organic Frameworks
4.3 MOFs for Therapeutics
4.4 Conclusions
List of Abbreviations
References
Chapter 5: Amorphous Coordination Polymer Particles for Biomedicine
5.1 Introduction
5.2 Interaction of Nanoplatforms with the Biological Environment
5.3 CPPs as Realistic Alternative to Classical Nanosystems
5.4 Conclusion and Future Challenges
References
Chapter 6: Magnetic Nanoparticles for Magnetic Hyperthermia and Controlled Drug Delivery
6.1 Introduction
6.2 Principles of Magnetically Induced Heat Generation
6.3 Synthesis of MNPs and their Heat Performance
6.4 Local Heating and Induced Biological and Drug Release Effects
6.5 In Vivo Drug Release from Magnetic Hybrid Systems Under Alternating Magnetic Field Exposure
References
Chapter 7: Photothermal Effect of Gold Nanostructures for Application in Bioimaging and Therapy
7.1 Introduction
7.2 Photophysical Characterization of Gold Nanostructures
7.3 Tuning the Absorption Spectrum of Gold Nanostructures
7.4 Plasmonic Photothermal Effect of GNS in Imaging
7.5 Concluding Remarks
Acknowledgment
List of Abbreviations
References
Chapter 8: Nanomaterial-Based Bioimaging Probes
8.1 Introduction
8.2 Nanoprobes
8.3 Imaging Probes
8.4 Targeting Strategies
8.5 Nanotheranostics
8.6 Design Considerations
8.7 Summary and Future Trends
References
Chapter 9: Molecular Bases of Nanotoxicology
9.1 Introduction
9.2 Impact on Environment: Nanoecotoxicology
9.3 Impact on Health: Nanotoxicology
References
Part II: Bioinspired Materials – Bioinspired Materials for Technological Application
Chapter 10: Bioinspired Interfaces for Self-cleaning Technologies
10.1 The Concept of Bioinspiration in Materials Engineering
10.2 Basics of Wetting
10.3 Self-cleaning Technologies
10.4 Summary
References
Chapter 11: Catechol-Based Biomimetic Functional Materials and their Applications
11.1 Introduction
11.2 Adhesives
11.3 Functionalizable Platforms (Primers) on Macroscopic Surfaces
11.4 Micro-/Nanoscopic Surface Functionalization
11.5 Functional Scaffolds
11.6 Chelating Materials/Siderophore-Like Materials
11.7 Materials for Chemo-/Biosensing
11.8 Electronic Devices
References
Chapter 12: Current Approaches to Designing Nanomaterials Inspired by Mussel Adhesive Proteins
12.1 Introduction
12.2 Mussel Adhesive Proteins and DOPA
12.3 Nanoparticle Stabilization
12.4 Nanocomposite Materials
12.5 Gecko and Mussel Dual Mimetic Adhesive
12.6 Polydopamine as a Multifunctional Anchor
12.7 Summary and Future Outlook
Acknowledgment
References
Part III: Bioinspired Materials – Bioinspired Materials for Biomedical Applications
Chapter 13: Functional Gradients in Biological Composites
13.1 Introduction
13.2 Chemical Gradient
13.3 Hydration Gradient
13.4 Mineral Gradient
13.5 Texture Gradient
13.6 Porosity Gradient
13.7 Conclusions
References
Chapter 14: Novel Bioinspired Phospholipid Polymer Biomaterials for Nanobioengineering
14.1 Introduction
14.2 Molecular Design of an Artificial Cell Membrane Surface
14.3 Polymer Nanoparticles System with an Artificial Cell Membrane Structure
14.4 Nanomaterials Entrapped in the Polymeric Nanoparticles with an Artificial Cell Membrane
14.5 Future Perspectives
List of Abbreviations
References
Chapter 15: Bioinspired Functionalized Nanoparticles as Tools for Detection, Quantification and Targeting of Biomolecules
15.1 Introduction
15.2 Bioinspired Functionalized Nanoparticles
15.3 Biomedical Applications
15.4 Therapeutics Applications of Nanoparticles
15.5 Mass Spectrometry and Nanomaterials for Biomolecule Identification
15.6 Clinical Proteomics and Biomarker Detection
15.7 Concluding Remarks
Acknowledgments
Chapter 16: Engineering Protein Based Nanoparticles for Applications in Tissue Engineering
16.1 Introduction
16.2 Inclusion Bodies; Protein-Based Nanoparticles as Novel Bionanomaterials
16.3 Physicochemical and Nanoscale Properties of Inclusion Bodies
16.4 Cell Proliferation Assisted by Protein-Based Nanoparticles
16.5 Microscale Engineering of Protein-Based Nanoparticles for Cell Guidance
16.6 Conclusions and Perspectives
References
Index
End User License Agreement
Table 3.1
Table 3.2
Table 4.1
Table 6.1
Table 8.1
Table 8.2
Table 8.3
Table 9.1
Table 9.2
Table 10.1
Table 13.1
Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Scheme 1.1
Figure 1.8
Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Scheme 3.1
Scheme 3.2
Figure 3.15
Figure 3.16
Figure 3.17
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8
Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4
Figure 12.5
Figure 12.6
Figure 12.7
Figure 12.8
Figure 12.9
Figure 13.1
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5
Figure 13.6
Figure 13.7
Figure 13.8
Figure 13.9
Figure 13.10
Figure 13.11
Figure 14.1
Figure 14.2
Figure 14.3
Figure 14.4
Figure 14.5
Figure 14.6
Figure 14.7
Figure 14.8
Figure 14.9
Figure 14.10
Figure 14.11
Figure 14.12
Figure 14.13
Figure 14.14
Figure 14.15
Figure 14.16
Figure 14.17
Figure 14.18
Figure 15.1
Figure 15.2
Figure 15.3
Figure 15.4
Figure 15.5
Figure 15.6
Figure 15.7
Figure 15.8
Figure 15.9
Figure 15.10
Figure 15.11
Figure 15.12
Figure 15.13
Figure 15.14
Figure 16.1
Figure 16.2
Figure 16.3
Figure 16.4
Figure 16.5
Figure 16.6
Figure 16.7
Figure 16.8
Figure 16.9
Figure 16.10
Figure 16.11
Figure 16.12
Cover
Table of Contents
Begin Reading
Begin Reading
Part 1
Chapter 1
ii
iii
iii
iv
xiii
xiv
xv
xvi
xvii
xviii
xix
xx
xxi
xxii
xxiii
xxiv
xxv
xxvi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
Taubert, A., Mano, J.F., Rodréguez-Cabello, J.C. (eds.)
Biomaterials Surface Science
2013
Print ISBN: 978-3-527-33031-7
Pompe, W., R–del, G., Weiss, H., Mertig, M.
Bio-Nanomaterials
Designing materials inspired by nature
2013
Print ISBN: 978-3-527-41015-6
Santin, M., Phillips, G.J. (eds.)
Biomimetic, Bioresponsive, and Bioactive Materials
An Introduction to Integrating Materials with Tissues
2012
Print ISBN: 978-0-470-05671-4
Mano, J.F. (ed.)
Biomimetic Approaches for Biomaterials Development
2012
Print ISBN: 978-3-527-32916-8
Li, J., He, Q., Yan, X.
Molecular Assembly of Biomimetic Systems
2011
Print ISBN: 978-3-527-32542-9
Poupon, E., Nay, B. (eds.)
Biomimetic Organic Synthesis
2011
Print ISBN: 978-3-527-32580-1
Basu, B., Katti, D., Kumar, A. (eds.)
Advanced Biomaterials
Fundamentals, Processing, and Applications
2010
Print ISBN: 978-0-470-89131-5
Kumar, C.S. (ed.)
Biomimetic and Bioinspired Nanomaterials
2010
Print ISBN: 978-3-527-32167-4
Edited by Daniel Ruiz-Molina
Fernando Novio
Claudio Roscini
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-33581-7
ePDF ISBN: 978-3-527-67585-2
ePub ISBN: 978-3-527-67584-5
Mobi ISBN: 978-3-527-67583-8
oBook ISBN: 978-3-527-67582-1
Alfredo Ambrosone
Consiglio Nazionale delle Ricerche
Istituto di Cibernetica “E. Caianiello”
Via Campi Flegrei, 34
80078, Pozzusoli
Italy
Alejandro Baeza
Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN)
C/Monforte de Lemos 3-5
Pabellón 11
28029 Madrid
Spain
and
Universidad Complutense de Madrid
Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12
Dpto. Química Inorgánica y Bioinorgánica
Plaza Ramón y Cajal s/n
28040 Madrid
Spain
M. J. Blanco-Prieto
Universidad de Navarra
Facultad de Farmacia
Departamento de Farmacia y Tecnología Farmacéutica
Irunlarrea 1
31008 Pamplona
Spain
Regina Bleul
Fraunhofer ICT-IMM
Nanoparticle Technologies Department
Carl-Zeiss-Str. 18-20
55129 Mainz
Germany
Christian Buchwalder
University of British Columbia
Faculty of Pharmaceutical Sciences
2405 Wesbrook Mall
Vancouver, BC V6T 1Z3
Canada
Félix Busqué
Universitat Autònoma de Barcelona
Departament de Química
Campus UAB
08193 Barcelona
Spain
Jose Luis Capelo
University NOVA of Lisbon
Faculty of Science and Technology
Chemistry Department
BIOSCOPE Research Group, REQUIMTE
Caparica Campus
Quinta da Torre
2829-516 Caparica
Portugal
and
ProteoMass Scientific Society
Madan Parque
Rua dos Inventores
2825-182 Caparica
Portugal
Cesar Díez-Gil
Institut de Ciencia de Materials de Barcelona (CSIC)
Department of Molecular Nanoscience and Organic Materials
Bellaterra
Av de Serragalliners
08193 Barcelona
Spain
and
Biomateriales y Nanomedicina (CIBER-BBN)
CIBER de Bioingeniería
Bellaterra
08193 Barcelona
Spain
Victoria Dutschk
University of Twente
Faculty for Engineering Technology (CTW)
Engineering of Fibrous Smart Materials (EFSM)
Drienerlolaan 5
7522 NB Enschede
The Netherlands
Randall M. Erb
Northeastern University
Department of Mechanical and Industrial Engineering
Boston MA 02115
USA
Javier Fernández-Lodeiro
University NOVA of Lisbon
Faculty of Science and Technology
Chemistry Department
BIOSCOPE Research Group, REQUIMTE
Caparica Campus
Quinta da Torre
2829-516 Caparica
Portugal
and
ProteoMass Scientific Society
Madan Parque
Rua dos Inventores
2825-182 Caparica
Portugal
Elena García Fruitós
Biomateriales y Nanomedicina (CIBER-BBN)
CIBER de Bioingeniería
Bellaterra
08193 Barcelona
Spain
and
Universitat Autònoma de Barcelona
Institut de Biotecnologia i de Biomedicina
Cerdanyola del Vallés
Carrer de la Vall Moronta
08193 Barcelona
Spain
and
Universitat Autònoma de Barcelona
Departament de Genètica i de Microbiologia
Cerdanyola del Vallés
Carrer de la Vall Moronta
08193 Barcelona
Spain
A. García-Márquez
UMR CNRS 8180
Université de Versailles Saint-Quentin-en-Yvelines
Institut Lavoisier
45 Avenue des Etats-Unis
78035 Versailles Cedex
France
Florence Gazeau
UMR 7057 CNRS/Université
Paris Diderot
Laboratoire Matières et Systèmes Complexes
10 rue Alice Domon et Léonie Duquet
75205 Paris
France
Joseph Gazella
Michigan Technological University
Department of Biomedical Engineering
1400 Townsend Dr.
Houghton, MI 49931
USA
Pablo Guardia
Istituto Italiano di Tecnologia
Nanochemistry
via Morego 30
16163 Genoa
Italy
Urs O. Häfeli
University of British Columbia
Faculty of Pharmaceutical Sciences
2405 Wesbrook Mall
Vancouver, BC V6T 1Z3
Canada
P. Horcajada
UMR CNRS 8180
Université de Versailles
Saint-Quentin-en-Yvelines
Institut Lavoisier
45 Avenue des Etats-Unis
78035 Versailles Cedex
France
Kazuhiko Ishihara
The University of Tokyo
School of Engineering
Department of Materials Engineering
Department of Bioengineering
7-3-1, Hongo
Bunkyo-ku
Tokyo 113–8656
Japan
Hamilton Kakwere
Istituto Italiano di Tecnologia
Nanochemistry
via Morego 30
16163 Genoa
Italy
Loredana Latterini
University of Perugia
Chemistry Department and Centro Eccellenza Materiali Innovativi Nanostrutturati (CEMIN)
Via Elce di Sotto 8
06123 Perugia
Italy
Bruce P. Lee
Michigan Technological University
Department of Biomedical Engineering
1400 Townsend Dr.
Houghton, MI 49931
USA
Rafael Libanori
ETH Zurich
Department of Materials
Complex Materials
8093 Zurich
Switzerland
Carlos Lodeiro
University NOVA of Lisbon
Faculty of Science and Technology
Chemistry Department
BIOSCOPE Research Group, REQUIMTE
Caparica Campus
Quinta da Torre
2829-516 Caparica
Portugal
and
ProteoMass Scientific Society
Madan Parque
Rua dos Inventores
2825-182 Caparica
Portugal
Julia Lorenzo
Universitat Autònoma de Barcelona
Institut de Biotecnologia i Biomedicina (IBB)
Departament de Bioquímica i de Biologia Molecular
Cerdanyola del Vallés
Carrer de la Vall Moronta
08193 Barcelona
Spain
Valentina Marchesano
Consiglio Nazionale delle Ricerche
Istituto di Cibernetica “E. Caianiello”
Via Campi Flegrei, 34
80078, Pozzuoli
Italy
Michael Maskos
Fraunhofer ICT-IMM
Nanoparticle Technologies Department
Carl-Zeiss-Str. 18-20
55129 Mainz
Germany
Hao Meng
Michigan Technological University
Department of Biomedical Engineering
1400 Townsend Dr.
Houghton, MI 49931
USA
Jose Maria Montenegro
University of Malaga
Central Research Services
Bulevar Louis Pasteur 33
Edificio SCAI Campus de Teatinos
29071 Malaga
Spain
and
The Andalusian Centre for Nanomedicine and Biotechnology
BIONAND
Parque Tecnológico de Andalucía
Severo Ochoa, 35
29590 Campanillas, Málaga
Spain
Fernando Novio
Institut Catala de Nanociencia i
Nanotecnologia (ICN2)
Consejo Superior de Investigaciones
Científicas (CSIC)
Campus UAB
Bellatera
Av de Serragalliners
08193 Barcelona
Spain
Cristina Núñez
University NOVA of Lisbon
Faculty of Science and Technology
Chemistry Department
BIOSCOPE Research Group, REQUIMTE
Caparica Campus
Quinta da Torre
2829-516 Caparica
Portugal
and
ProteoMass Scientific Society
Madan Parque
Rua dos Inventores
2825-182 Caparica
Portugal
and
Canterbury Christ Church University
Department of Geographical and Life Sciences
Ecology Research Group
North Holmes Road
CT1 1QU Canterbury
United Kingdom
Elisabete Oliveira
University NOVA of Lisbon
Faculty of Science and Technology
Chemistry Department
BIOSCOPE Research Group, REQUIMTE
Caparica Campus
Quinta da Torre
2829-516 Caparica
Portugal
and
ProteoMass Scientific Society
Madan Parque
Rua dos Inventores
2825-182 Caparica
Portugal
and
University of Trás-os-Montes and
Alto Douro
CECAV
Veterinary Science Department
Quinta de Prados
5001-801 Vila Real
Portugal
Wolfgang J. Parak
Philipps Universität Marburg
Fachbereich Physik
Renthof 7
35037 Marburg
Germany
and
CIC Biomagune
Paseo Miramón 182
20009 San Sebastian
Spain
Teresa Pellegrino
Istituto Italiano di Tecnologia
Nanochemistry
via Morego 30
16163 Genoa
Italy
and
Nanoscience Institute of CNR National Nanotechnology Laboratory,
Via Arnesano
73100 Lecce
Italy
Christian Pfeiffer
Philipps Universität Marburg
Fachbereich Physik
Renthof 7
35037 Marburg
Germany
Imma Ratera
Institut de Ciencia de Materials de Barcelona (CSIC)
Department of Molecular Nanoscience and Organic Materials
Bellaterra
Av de Serragalliners
08193 Barcelona
Spain
and
Biomateriales y Nanomedicina (CIBER-BBN)
CIBER de Bioingeniería
Bellaterra
08193 Barcelona
Spain
Andreas Riedinger
Istituto Italiano di Tecnologia
Nanochemistry
via Morego 30
16163 Genoa
Italy
Daniel Ruiz-Molina
Institut Catala de Nanociencia i
Nanotecnologia (ICN2)
Consejo Superior de Investigaciones
Científicas (CSIC)
Campus UAB
Bellatera
Av de Serragalliners
08193 Barcelona
Spain
Katayoun Saatchi
University of British Columbia
Faculty of Pharmaceutical Sciences
2405 Wesbrook Mall
Vancouver, BC V6T 1Z3
Canada
Javier Saiz-Poseu
Consejo Superior de Investigaciones, Científicas (CSIC)
Institut Català de Nanociència I Nanotecnologia (ICN2)
Campus UAB
Bellatera
Av de Serragalliners
08193 Barcelona
Spain
Hugo M. Santos
University NOVA of Lisbon
Faculty of Science and Technology
Chemistry Department
BIOSCOPE Research Group, REQUIMTE
Caparica Campus
Quinta da Torre
2829-516 Caparica
Portugal
and
ProteoMass Scientific Society
Madan Parque
Rua dos Inventores
2825-182 Caparica
Portugal
and
University of Trás-os-Montes and Alto Douro
Institute for Biotechnology and Bioengineering
Quinta de Prados
Center of Genomics and Biotechnology
5001-801 Vila Real
Portugal
Josep Sedó
Consejo Superior de Investigaciones, Científicas (CSIC)
Institut Català de Nanociència I Nanotecnologia (ICN2)
Campus UAB
Bellatera
Av de Serragalliners
08193 Barcelona
Spain
Joaquin Seras-Franzoso
Biomateriales y Nanomedicina (CIBER-BBN)
CIBER de Bioingeniería
Bellaterra
08193 Barcelona
Spain
and
Universitat Autònoma de Barcelona
Institut de Biotecnologia i de Biomedicina
Cerdanyola del Vallés
Carrer de la Vall Moronta
08193 Barcelona
Spain
and
Universitat Autònoma de Barcelona
Departament de Genètica i de Microbiologia
Cerdanyola del Vallés
Carrer de la Vall Moronta
08193 Barcelona
Spain
C. Serre
UMR CNRS 8180
Université de Versailles Saint-Quentin-en-Yvelines
Institut Lavoisier
45 Avenue des Etats-Unis
78035 Versailles Cedex
France
André R. Studart
ETH Zurich
Department of Materials
Complex Materials
8093 Zurich
Switzerland
C. Tamames-Tabar
UMR CNRS 8180
Université de Versailles Saint-Quentin-en-Yvelines
Institut Lavoisier
45 Avenue des Etats-Unis
78035 Versailles Cedex
France
and
Universidad de Navarra
Facultad de Farmacia
Departamento de Farmacia y Tecnología Farmacéutica
Irunlarrea 1
31008 Pamplona
Spain
Luigi Tarpani
University of Perugia
Chemistry Department and Centro Eccellenza Materiali Innovativi Nanostrutturati (CEMIN)
Via Elce di Sotto 8
06123 Perugia
Italy
Witold I. Tatkiewicz
Institut de Ciencia de Materials de Barcelona (CSIC)
Department of Molecular Nanoscience and Organic Materials
Bellaterra
Av de Serragalliners
08193 Barcelona
Spain
and
Biomateriales y Nanomedicina (CIBER-BBN)
CIBER de Bioingeniería
Bellaterra
08193 Barcelona
Spain
Angela Tino
Consiglio Nazionale delle Ricerche
Istituto di Cibernetica “E. Caianiello”
Via Campi Flegrei, 34
80078, Pozzuoli
Italy
Claudia Tortiglione
Consiglio Nazionale delle Ricerche
Istituto di Cibernetica “E. Caianiello”
Via Campi Flegrei, 34
80078, Pozzuoli
Italy
María Vallet-Regí
Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN)
C/Monforte de Lemos 3-5
Pabellón 11
28029 Madrid
Spain
and
Universidad Complutense de Madrid
Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12
Dpto. Química Inorgánica y Bioinorgánica
Plaza Ramón y Cajal s/n
28040 Madrid
Spain
Esther Vázquez
Biomateriales y Nanomedicina (CIBER-BBN)
CIBER de Bioingeniería
Bellaterra
08193 Barcelona
Spain
and
Universitat Autònoma de Barcelona
Institut de Biotecnologia i de Biomedicina
Cerdanyola del Vallés
Carrer de la Vall Moronta
08193 Barcelona
Spain
and
Universitat Autònoma de Barcelona
Departament de Genètica i de Microbiologia
Cerdanyola del Vallés
Carrer de la Vall Moronta
08193 Barcelona
Spain
Jaume Veciana
Institut de Ciencia de Materials de Barcelona (CSIC)
Department of Molecular Nanoscience and Organic Materials
Bellaterra
Av de Serragalliners
08193 Barcelona
Spain
and
Biomateriales y Nanomedicina (CIBER-BBN)
CIBER de Bioingeniería
Bellaterra
08193 Barcelona
Spain
Antoni Villaverde
Biomateriales y Nanomedicina (CIBER-BBN)
CIBER de Bioingeniería
Bellaterra
08193 Barcelona
Spain
and
Universitat Autònoma de Barcelona
Institut de Biotecnologia i de Biomedicina
Cerdanyola del Vallés
Carrer de la Vall Moronta
08193 Barcelona
Spain
and
Universitat Autònoma de Barcelona
Departament de Genètica i de Microbiologia
Cerdanyola del Vallés
Carrer de la Vall Moronta
08193 Barcelona
Spain
Without being aware, mankind has been in contact with nanomaterials for a long time. For example, a bright blue pigment invented and used 5000 years ago in Egypt, or the fourth century Lycurgus Cup, the magnificent Roman glass cage cup made of a dichroic glass showing different colors depending on which angle light is shown through, provide today clues how to develop new nanomaterials that could be used in almost any field. In particular, with the latest developments in nanoscience and nanotechnology, biology and medicine have been making revolutionary progress that will provide in the future new diagnosis and therapeutic solutions. The editors of this book were able to collect valuable contributions from top-level scientists that illustrate representative examples of how bionanomaterials could lead to new devices or structures with unique properties. This fresh, exciting, and multidisciplinary field has been bridging principles and tools from physics, chemistry, or engineering to produce such novel elements at all dimensional ranges, including nanoparticles (0D), nanofibers (1D), thin-coating or nanostructured surfaces (2D), or 3D nano-organized materials (hybrid systems, nanocomposites, nano/meso-porous structures, and so on). Bionanomaterials are able to interact peculiarly with biological systems, permitting the accomplishment of tasks that could not be possible with higher-scale materials; well-established examples are nanoparticles for imaging with improved sensitivity, to be used as sensors or to deliver drugs to specific parts of the body.
The authors clearly realized the importance of using modern bioinspired concepts to develop tailored materials for a growing range of technological applications. Along with over 3.8 billion years of evolution, Nature has introduced highly effective biological mechanisms to produce surfaces and materials with exclusive or exceptional features. Biomimetic strategies rely first on the discovery of the structural or physicochemical reasons behind the manifestation of such characteristics, followed by the design and production of synthetic counterparts that could reproduce a similar effect. The second section of this book provides striking examples of bioinspired materials, including surfaces with extreme wettability properties, functional materials with improved adhesion (especially in wet environments), and structural and functional systems based on the complex and hierarchical organization of natural composites. These lessons from Nature are explored in the last section of the book, where bioinspired materials are specifically proposed for biomedical applications, showing their potential for future applications in drug delivery, theragnosis, and regenerative medicine.
This editorial project provides the latest scientific and technological developments in the fields of bionanomaterials and biological inspired nanomaterials, which will be of value to academic and industrial researchers – the accumulated knowledge, together with the potential applicability of such systems, will have a tremendous impact across a range of different fields, including in the biomedical arena. Young research workers will also have in the contents of this book an indispensable support that could guide them in choosing to begin, or to continue, working in this stimulating area of research, which encompasses a wide range of disciplines, including chemistry, physics, materials science and engineering, biology, and medicine.
João F. Mano (University of Minho);e-mail:[email protected]
João F. Mano is Professor at the University of Minho, Portugal, and staff member of the 3B's research group Biomaterials, Biodegradables and Biomimetics. His research interests include the development of new materials and concepts for biomedical applications. He was awarded the Stimulus to Excellence by the Portuguese Minister for Science and Technology in 2005 and the Materials Science and Technology Prize by the Federation of European Materials Societies in 2007.
Throughout history, far-reaching technical advances have changed established paradigms. Nowadays, nanotechnology is emerging as the latest revolutionary development that is expected to profoundly affect how novel materials, capable of delivering solutions that are cost-efficient, environmentally safe, and affording improved technical performance, are designed and manufactured.
Nanotechnology deals with the manipulation and fabrication of objects or structures at, and below, the nanometric scale, with the ultimate goal of developing new materials for specific technological niches. Because the physical and chemical properties of nanomaterials differ from those of bulk materials, they belong by themselves as a unique class. Although nanoscience started off as an academic research field in the mid-1980s, there are already plenty of examples of commercial applications of nanotechnology in the marketplace. Nanomaterials can be found as key components in healthcare, electronics, cosmetics, textiles, information technology, and environmental protection industries. Not surprisingly, the increasing interest they have attracted has translated into a sharp increase in both public and private funding in nanoscience and nanotechnology-related research.
In particular, the size-specific properties of nanomaterials make them a superior alternative to traditional materials in biology and medicine, and specifically for the fabrication of novel biomaterials, in such areas as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, and tissue engineering, all of which are reviewed in this book. Overall, understanding and controlling the action mechanisms of the nanodevices targeting key biological processes stand out as foremost scientific challenges.
Alongside purely synthetic approaches, Nature itself offers different models and strategies at the nanoscale that can be mimicked with success. Indeed, the study of nanostructures found in many different animals, plants, and other biological systems has shown us ways to develop new materials for energy production, superhydrophobics, adhesives, biosensors, and materials with improved physical and chemical resistance. As far as future technological applications are concerned, these bioinspired nanomaterials are already showing great potential.
This book includes some of the most recent breakthrough research in both bio- and bioinspired nanomaterials. In this respect, it is intended as a navigation guide through some innovative and elegant contributions from a wide group of researchers of high standing in their respective fields, aimed at an advanced and specialist readership community, and relevant in general to readers in research, academia, or private companies focused on high added value contributions.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!