Bioactive Heterocyclic Compound Classes -  - E-Book

Bioactive Heterocyclic Compound Classes E-Book

0,0
151,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

The chemistry of heterocycles is an important branch of organic chemistry. This is due to the fact that a large number of natural products, e. g. hormones, antibiotics, vitamins, etc. are composed of heterocyclic structures. Often, these compounds show beneficial properties and are therefore applied as pharmaceuticals to treat diseases or as insecticides, herbicides or fungicides in crop protection. This volume presents important agrochemicals. Each of the 21 chapters covers in a concise manner one class of heterocycles, clearly structured as follows: * Structural formulas of most important examples (market products) *Short background of history or discovery * Typical syntheses of important examples * Mode of action * Characteristic biological activity * Structure-activity relationship * Additional chemistry information (e.g. further transformations, alternative syntheses, metabolic pathways, etc.) * References A valuable one-stop reference source for researchers in academia and industry as well as for graduate students with career aspirations in the agrochemical chemistry.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 392

Veröffentlichungsjahr: 2012

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Related Titles

Title Page

Copyright

Preface

List of Contributors

Introduction

Chapter 1: The Significance of Heterocycles for Pharmaceuticalsand Agrochemicals

1.1 Introduction

1.2 Heterocycles as Framework of Biologically Active Compounds

1.3 Fine-Tuning the Physicochemical Properties with Heterocycles

1.4 Heterocycles as Prodrugs

1.5 Heterocycles as Peptidomimetics

1.6 Heterocycles as Isosteric Replacement of Functional Groups

1.7 Heterocycles as Isosteric Replacement of Alicyclic Rings

1.8 Heterocycles as Isosteric Replacement of other Heterocyclic Rings

References

Part I: Herbicides

Chapter 2: Triazine Herbicides

2.1 Introduction

2.2 History

2.3 Synthesis

2.4 Mode of Action

2.5 Biological Activity

2.6 Structure–Activity Relationships

References

Chapter 3: Pyrimidinyl and Triazinylsulfonylurea Herbicides

3.1 Introduction

3.2 History

3.3 Synthesis

3.4 Mode of Action

3.5 Biological Activity

3.6 Structure–Activity Relationship

References

Chapter 4: Acetohydroxyacid Synthase Inhibiting Triazolopyrimidine Herbicides

4.1 Introduction

4.2 History

4.3 Synthesis

4.4 Mode of Action

4.5 Biological Activity

4.6 Structure–Activity Relationship

Chapter 5: HPPD-Inhibiting Benzoylpyrazole Herbicides

5.1 Introduction

5.2 History

5.3 Synthesis

5.4 Mode of Action

5.5 Biological Activity

5.6 Structure–Activity Relationship

References

Chapter 6: Pyridyloxyphenoxypropionate Herbicides: Inhibitors of Acetyl-CoA Carboxylase

6.1 Introduction

6.2 History

6.3 Synthesis

6.4 Mode of Action

6.5 Biological Activity

6.6 Structure–Activity Relationships

References

Chapter 7: Imidazolinone Herbicides

7.1 Introduction

7.2 History

7.3 Synthesis

7.4 Mode of Action

7.5 Biological Activity

7.6 Structure–Activity Relationship

References

Chapter 8: Protoporphyrinogen-IX-Oxidase-Inhibiting Uracil Herbicides

8.1 Introduction

8.2 History

8.3 Synthesis

8.4 Mode of Action

8.5 Biological Activity

8.6 Structure–Activity Relationship

References

Part II: Fungicides

Chapter 9: Benzimidazole Fungicides

9.1 Introduction

9.2 History

9.3 Synthesis

9.4 Mode of Action

9.5 Biological Activity

9.6 Structure–Activity Relationship

References

Chapter 10: Morpholine Fungicides for the Treatment of Powdery Mildew

10.1 Introduction

10.2 History

10.3 Synthesis

10.4 Mode of Action

10.5 Biological Activity

10.6 Structure–Activity Relationship

References

Chapter 11: Sterol Biosynthesis Inhibiting Triazole Fungicides

11.1 Introduction

11.2 History

11.3 Synthesis

11.4 Mode of Action

11.5 Biological Activity

11.6 Structure–Activity Relationship

References

Chapter 12: Methionine Biosynthesis-Inhibiting Anilinopyrimidine Fungicides

12.1 Introduction

12.2 History

12.3 Synthesis

12.4 Mode of Action

12.5 Biological Activity

12.6 Structure–Activity Relationship

References

Chapter 13: Phenylpyrrole Fungicides

13.1 Introduction

13.2 History

13.3 Synthesis

13.4 Mode of Action

13.5 Biological Activity

13.6 Structure–Activity Relationship

References

Chapter 14: Broad-Spectrum Fungicidally Active Pyrimidinyldioxy Strobilurins Inhibiting the Respiratory Chain

14.1 Introduction

14.2 History

14.3 Synthesis

14.4 Mode of Action

14.5 Biological Activity

14.6 Structure–Activity Relationship

References

Chapter 15: Pyrazole Carboxamide Fungicides Inhibiting Succinate Dehydrogenase

15.1 Introduction

15.2 History

15.3 Synthesis

15.4 Mode of Action

15.5 Biological Activity

15.6 Structure–Activity Relationships

Acknowledgements

References

Part III: Insecticides

Chapter 16: Avermectin Insecticides and Acaricides

16.1 Introduction

16.2 History

16.3 Synthesis

16.4 Mode of Action

16.5 Biological Activity

16.6 Structure–Activity Relationship

References

Chapter 17: Pyridine and Thiazole-Containing Insecticides as Potent Agonists on Insect Nicotinic Acetylcholine Receptors

17.1 Introduction

17.2 History

17.3 Synthesis

17.4 Mode of Action

17.5 Biological Activity

17.6 Structure–Activity Relationship

References

Chapter 18: Pyrazole and Pyrimidine Acaricides and Insecticides Acting as Inhibitors of Mitochondrial Electron Transport at Complex I

18.1 Introduction

18.2 History

18.3 Synthesis

18.4 Mode of Action

18.5 Biological Activity

18.6 Structure–Activity Relationship

References

Chapter 19: Phenylpyrazole-Containing Fiprole Insecticides

19.1 Introduction

19.2 History

19.3 Synthesis

19.4 Mode of Action

19.5 Biological Activity

19.6 Structure–Activity Relationship

References

Chapter 20: Pyrazolylpyridine Activators of the Insect Ryanodine Receptor

20.1 Introduction

20.2 History

20.3 Synthesis

20.4 Mode of Action

20.5 Biological Activity

20.6 Structure–Activity Relationships

References

Chapter 21: Tetronic Acid Insecticides and Acaricides Inhibiting Acetyl-CoA Carboxylase

21.1 Introduction

21.2 History

21.3 Synthesis

21.4 Mode of Action

21.5 Biological Activity

21.6 Structure–Activity Relationship

References

Index

Related Titles

Jeschke, P., Krämer, W., Schirmer, U.,

Witschel, M. (eds.)

Modern Methods in Crop Protection Research

2012

Hardcover

ISBN: 978-3-527-33175-8

Dinges, J., Lamberth, C. (eds.)

Bioactive Heterocyclic Compound Classes

Pharmaceuticals

2012

Hardcover

ISBN: 978-3-527-33395-0

Krämer, W., Schirmer, U., Jeschke, P.,

Witschel, M. (eds.)

Modern Crop Protection Compounds

2012

Hardcover

ISBN: 978-3-527-32965-6

Majumdar, K. C., Chattopadhyay, S. K. (eds.)

Heterocycles in Natural Product Synthesis

2011

Hardcover

ISBN: 978-3-527-32706-5

Royer, J. (ed.)

Asymmetric Synthesis of Nitrogen Heterocycles

2009

Hardcover

ISBN: 978-3-527-32036-3

The Editors

Dr. Clemens Lamberth

Syngenta Crop Protection AG

Research Chemistry

Schaffhauserstr. 101

4332 Stein

Schweiz

Dr. Jürgen Dinges

Abbott Laboratories

Global Pharmaceutical R&D

200, Abbott Park Road

Abbott Park, IL 60064-6217

USA

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2012 Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form — by photoprinting, microfilm, or any other means — nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Bioactive Heterocyclic Compound Classes (Pharmaceuticals and Agrochemicals, 2 Volume Set)

ISBN: 978-3-527-32993-9

Print ISBN: 978-3-527-33396-7

ePDF ISBN: 978-3-527-66444-3

ePub ISBN: 978-3-527-66443-6

mobi ISBN: 978-3-527-66442-9

oBook ISBN: 978-3-527-66441-2

Preface

Approximately 70% of all the 2400 pharmaceuticals listed in the online version of “Pharmaceutical Substances” (A. Kleemann et al., Thieme) bear at least one heterocyclic ring; the latest edition of the “Pesticide Manual” (C. D. S. Tomlin, BCPC) contains a similar percentage of heterocyclic agrochemicals among its about 900 entries. This vast number of known pharmaceuticals and agrochemicals makes the field of commercialized active ingredients an unmanageable jungle. Only specialists are able to understand the connectivities of these active ingredients, many of which are heterocycles.

Therefore, we decided to put this book together, which tries to show the relationship of those heterocyclic active ingredients, which belong together, forming a biologically active heterocylic chemistry class. According to our definition, such a heterocyclic family is built from at least three compounds that fulfill the following conditions: (i) same heterocyclic scaffold, (ii) same mode of action, and (iii) similar substitution pattern.

Although the strength of this concept is that for the first time the members of the most important heterocyclic active ingredient families, their historical background, chemical syntheses, biochemical modes of action, and biological activities are discussed in detail, there are also some limitations. For instance, there are some heterocyclic families of drugs or crop protection agents, such as the analgesic COX-2 inhibitors celecoxib, valdecoxib, and rofecoxib or the dicarboxamide fungicides vinclozolin, iprodione, and procymidone, which are closely related by structure and possess the same mode of action, but bear different heterocyclic scaffolds and therefore could not be considered.

We would like to thank the authors of the 40 chapters of this book, all of them experts in their field, for spending their scarce time summarizing their area of interest. They all agreed to write the chapters according to the same outline: (i) introduction, (ii) history, (iii) synthesis, (iv) mode of action, and (v) structure–activity relationship. Only the agrochemical chapters possess an additional section “biological activity,” mainly describing the target spectrum of the active ingredients. This book would definitely not exist without your engagement!

Furthermore, we also would like to thank Anne Brennführer and Stefanie Volk of Wiley-VCH, who from the beginning guided us very efficiently through all different phases of this exciting project.

The introductory chapter about “The significance of heterocycles for pharmaceuticals and agrochemicals” tries to explain the different roles of heterocyclic scaffolds in active ingredients, e.g. as framework of biologically active substances, as prodrugs, as tool for fine-tuning the physicochemical properties, as isosteric replacements of functional groups, alicyclic rings or other heterocyclic rings. As this is demonstrated at the hand of many prominent and characteristical examples of pharmaceuticals as well as of agrochemicals, also pointing out the many similarities, but also some differences between the two big classes of active ingredients, we decided to put this chapter in front of both volumes.

Although currently living in two different continents, both of us enjoyed exactly the same excellent education, a Ph.D. in organic chemistry from the Technical University at Darmstadt, Germany, and a subsequent postdoctoral fellowship at the chemistry department of the University of California at Berkeley. We are very grateful to our teachers, mentors, and research advisors at both universities, who built the foundation for our successful work in the research departments of the agrochemical and pharmaceutical industry.

Finally, we are deeply indebted to our wives Annette and Petra, who continuously supported us, as always, and tolerated that we spent many hours of our spare time, which should have belonged to our families, working on this book. You really made this possible!

Clemens Lamberth

Switzerland

Jürgen Dinges

USA

List of Contributors

John T. Andaloro
DuPont Crop Protection
Stine-Haskell Research Center
1090 Elkton Road
Newark, DE 19711
USA
I. Billy Annan
DuPont Crop Protection
Stine-Haskell Research Center
1090 Elkton Road
Newark, DE 19711
USA
Thomas Bretschneider
Bayer Crop Science AG
Research/Chemistry Insecticides
Alfred-Nobel-Strasse 50
40789 Monheim
Germany
Daniel Cordova
DuPont Crop Protection
Stine-Haskell Research Center
1090 Elkton Road
Newark, DE 19711
USA
Jürgen Dinges
Abbott Laboratories
Global Pharmaceutical R&D
Department R4CP
200 Abbott Park Road
IL 60064-6217
USA
Andrew J.F. Edmunds
Syngenta Crop Protection AG
Research Chemistry
Schaffhauserstrasse 101
4332 Stein
Switzerland
Reiner Fischer
Bayer Crop Science AG
Research/Chemistry Insecticides
Alfred-Nobel-Strasse 50
40789 Monheim
Germany
Roger E. Gast
Dow AgroSciences
Discovery Research/Chemistry
9330 Zionsville Road
Indianapolis 46268
USA
Mary Ann Hanagan
Discovery, DuPont Crop Protection
Stine-Haskell Research Center
1090 Elkton Road
Newark, DE 19711
USA
Ottmar Franz Hüter
Syngenta Crop Protection AG
Research Chemistry
Schaffhauserstrasse 101
4332 Stein
Switzerland
Peter Jeschke
Bayer CropScience
R&D-CPR-PC Pest Control Chemistry
Alfred-Nobel-Strasse 50
40789 Monheim am Rhein
Germany
Timothy C. Johnson
Dow AgroSciences
Discovery Research/Chemistry
9330 Zionsville Road
Indianapolis 46268
USA
George P. Lahm
DuPont Crop Protection
Stine-Haskell Research Center
1090 Elkton Road
Newark, DE 19711
USA
Clemens Lamberth
Syngenta Crop Protection AG
Research Chemistry
Schaffhauserstrasse 101
4332 Stein
Switzerland
Richard K. Mann
Dow AgroSciences
Discovery Research/Chemistry
9330 Zionsville Road
Indianapolis 46268
USA
Ralf Nauen
Bayer Crop Science AG
Research/Biology Insecticides
Alfred-Nobel-Strasse 50
40789 Monheim
Germany
Thomas Pitterna
Syngenta Crop Protection AG
Research Chemistry
Schaffhauserstrasse 101
4332 Stein
Switzerland
Atul Puri
Discovery, DuPont Crop Protection
Stine-Haskell Research Center
1090 Elkton Road
Newark, DE 19711
USA
Laura Quaranta
Syngenta Crop Protection AG
Research Chemistry
Schaffhauserstrasse 101
4332 Stein
Switzerland
Paul R. Schmitzer
Dow AgroSciences
Discovery Research/Chemistry
9330 Zionsville Road
Indianapolis 46268
USA
Stefan Schnatterer
Bayer Crop Science
Research/Chemistry Weed Control
Industriepark Hoechst G836
65926 Frankfurt am Main
Germany
Thomas P. Selby
DuPont Crop Protection
Stine-Haskell Research Center
1090 Elkton Road
Newark, DE 19711
USA
Dale Shaner
USDA-ARS
Water Management Research
2150 Centre Avenue
Fort Collins
CO 80526-8119
USA
Thomas M. Stevenson
DuPont Crop Protection
Stine-Haskell Research Center
1090 Elkton Road
Newark, DE 19711
USA
George Theodoridis
The College of New Jersey
Department of Chemistry
2000 Pennington Road
Ewing, NJ 08628
USA
Harald Walter
Syngenta Crop Protection AG
Research Portfolio Management
Schaffhauserstrasse 101
4332 Stein
Switzerland
William G. Whittingham
Syngenta Ltd
Jealott's Hill International Research Centre
Bracknell
Berkshire RG42 6EY
UK
Matthias Witschel
BASF SE
Crop Protection
GVA/HC - B009
67056 Ludwigshafen
Germany
Paul Worthington
Syngenta Crop Protection
Jealott's Hill International Research Centre
Bracknell
Berkshire RG42 6EY
UK

Introduction

1

The Significance of Heterocycles for Pharmaceuticalsand Agrochemicals*

Clemens Lamberth and Jürgen Dinges

1.1 Introduction

Heterocycles, their preparation, transformation, and properties, are undoubtedly a cornerstone of organic chemistry. Several books not only on heterocyclic chemistry [1–6] but also on some special aspects, such as heterocyclic name reactions [7], heterocyclic palladium-catalyzed reactions [8], heterocyclic carbene complexes [9], and fluorinated heterocycles [10], have been published recently.

Approximately more than 70% of all pharmaceuticals and agrochemicals bear at least one heterocyclic ring. In addition, some of the biggest commercial products to date, such as the blockbuster blood cholesterol reducer atorvastatin (Lipitor®, 1) [11] for the treatment of dyslipidemia and the prevention of cardiovascular diseases and the broad-spectrum fungicide azoxystrobin (Amistar, ) [12], currently applied against diseases of more than 100 different crops in more than 100 different countries, belong to this huge heterocyclic group of active ingredients ().

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!