147,99 €
In this expert handbook both the topics and contributors are selected so as to provide an authoritative view of possible applications for this new technology. The result is an up-to-date survey of current challenges and opportunities in the design and operation of bioreactors for high-value products in the biomedical and chemical industries. Combining theory and practice, the authors explain such leading-edge technologies as single-use bioreactors, bioreactor simulators, and soft sensor monitoring, and discuss novel applications, such as stem cell production, process development, and multi-product reactors, using case studies from academia as well as from industry. A final section addresses the latest trends, including culture media design and systems biotechnology, which are expected to have an increasing impact on bioreactor design. With its focus on cutting-edge technologies and discussions of future developments, this handbook will remain an invaluable reference for many years to come.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1042
Veröffentlichungsjahr: 2016
Cover
Title Page
Copyright
Preface
List of Contributors
Chapter 1: Challenges for Bioreactor Design and Operation
1.1 Introduction
1.2 Biotechnology Milestones with Implications on Bioreactor Design
1.3 General Features of Bioreactor Design
1.4 Recent Trends in Designing and Operating Bioreactors
1.5 The Systems Biology Approach
1.6 Using Conceptual Design Methodology
1.7 An Outlook on Challenges for Bioreactor Design and Operation
References
Chapter 2: Design and Operation of Microbioreactor Systems for Screening and Process Development
2.1 Introduction
2.2 Key Engineering Parameters and Properties in Microbioreactor Design and Operation
2.3 Design of Novel Stirred and Bubble Aerated Microbioreactors
2.4 Robotics for Microbioreactors
2.5 Fed-Batch and Continuous Operation of Microbioreactors
2.6 Monitoring and Control of Microbioreactors
2.7 Conclusion
References
Chapter 3: Bioreactors on a Chip
3.1 Introduction
3.2 Advantages of Microsystems
3.3 Scaling Down the Bioreactor to the Microfluidic Format
3.4 Microfabrication Methods for Bioreactors-On-A-Chip
3.5 Fabrication Materials
3.6 Integrated Sensors for Key Bioreactor Parameters
3.7 Model Organisms Applied to BRoCs
3.8 Applications of Microfluidic Bioreactor Chip
3.9 Scale Up
3.10 Conclusion
References
Chapter 4: Scalable Manufacture for Cell Therapy Needs
4.1 Introduction
4.2 Requirements for Cell Therapy
4.3 Stem Cell Types and Products
4.4 Paradigms in Cell Therapy Manufacture
4.5 Cell Therapy Manufacturing Platforms
4.6 Microcarriers and Stirred-Tank Bioreactors
4.7 Future Trends for Microcarrier Culture
4.8 Preservation of Cell Therapy Products
4.9 Conclusions
References
Chapter 5: Artificial Liver Bioreactor Design
5.1 Need for Innovative Liver Therapies
5.2 Requirements to Liver Support Systems
5.3 Bioreactor Technologies Used in Clinical Trials
5.4 Optimization of Bioartificial Liver Bioreactor Designs
5.5 Improvement of Cell Biology in Bioartificial Livers
5.6 Bioreactors Enabling Cell Production for Transplantation
5.7 Cell Sources for Bioartificial Liver Bioreactors
5.8 Outlook
References
Chapter 6: Bioreactors for Expansion of Pluripotent Stem Cells and Their Differentiation to Cardiac Cells
6.1 Introduction
6.2 Culture Technologies for Pluripotent Stem Cell Expansion
6.3 3D Suspension Culture
6.4 Autologous Versus Allogeneic Cell Therapies: Practical and Economic Considerations for hPSC Processing
6.5 Upscaling hPSC Cardiomyogenic Differentiation in Bioreactors
6.6 Conclusion
References
Chapter 7: Culturing Entrapped Stem Cells in Continuous Bioreactors
7.1 Introduction
7.2 Materials Used in Stem Cell Entrapment
7.3 Synthetic Materials
7.4 Natural Materials
7.5 Manufacturing and Regulatory Constraints
7.6 Mass Transfer in the Entrapment Material
7.7 Continuous Bioreactors for Entrapped Stem Cell Culture
7.8 Future Perspectives
References
Chapter 8: Coping with Physiological Stress During Recombinant Protein Production by Bioreactor Design and Operation
8.1 Major Physiological Stress Factors in Recombinant Protein Production Processes
8.2 Monitoring Physiological Stress and Metabolic Load as a Tool for Bioprocess Design and Optimization
8.3 Design and Operation Strategies to Minimize/Overcome Problems Associated with Physiological Stress and Metabolic Load
8.4 Bioreactor Design Considerations to Minimize Shear Stress
Acknowledgments
References
Chapter 9: Design, Applications, and Development of Single-Use Bioreactors
9.1 Introduction
9.2 Design Challenges of Single-Use Bioreactors
9.3 Cell Culture Application
9.4 Microbial Application of Single-Use Bioreactors
9.5 Outlook
References
Chapter 10: Computational Fluid Dynamics for Bioreactor Design
10.1 Introduction
10.2 Multiphase Flows
10.3 Turbulent Flow
10.4 CFD Simulations
10.5 Case Studies for Application of CFD in Modeling of Bioreactors
Summary
References
Chapter 11: Scale-Up and Scale-Down Methodologies for Bioreactors
11.1 Introduction
11.2 Bioprocess Scale-Down Approaches
11.3 Characterization of the Large Scale
11.4 Computational Methods to Describe the Large Scale
11.5 Scale-Down Experiments and Physiological Responses
11.6 Outlook
References
Chapter 12: Integration of Bioreactors with Downstream Steps
12.1 Introduction
12.2 Improvements in Cell-Culture
12.3 Interactions with Centrifugation Steps
12.4 Interactions with Filtration Steps
12.5 Interactions with Chromatographic Steps
12.6 Integrated Processes
12.7 Integrated Models
12.8 Conclusions
References
Chapter 13: Multivariate Modeling for Bioreactor Monitoring and Control
13.1 Introduction
13.2 Analytical Measurement Methods for Bioreactor Monitoring
13.3 Multivariate Modeling Approaches
13.4 Case Studies
13.5 Conclusions
Acknowledgments
References
Chapter 14: Soft Sensor Design for Bioreactor Monitoring and Control
14.1 Introduction
14.2 The Process Analytical Technology Perspective on Soft Sensors
14.3 Conceptual Design of Soft Sensors for Bioreactors
14.4 “Hardware Sensor” Alternatives
14.5 The Modeling Part of Soft Sensors
14.6 Strategy for Using Soft Sensors
14.7 Applications of Soft Sensors in Bioreactors
14.8 Concluding Remarks and Outlook
References
Chapter 15: Design-of-Experiments for Development and Optimization of Bioreactor Media
15.1 Introduction
15.2 Fundamentals of Design-of-Experiments Methodology
15.3 Optimization of Culture Media by Design-of-Experiments
15.4 Conclusions and Outlook
References
Chapter 16: Operator Training Simulators for Bioreactors
16.1 Introduction
16.2 Simulators in the Process Industry
16.3 Training Simulators
16.4 Requirements on Training Simulators
16.5 Architecture of Training Simulators
16.6 Tools and Development Strategies
16.7 Process Models and Simulation Technology
16.8 Training Simulator Examples
16.9 Concluding Remarks
References
Index
End User License Agreement
xv
xvi
xvii
xviii
xix
xx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
Cover
Table of Contents
Preface
Begin Reading
Chapter 1: Challenges for Bioreactor Design and Operation
Figure 1.1 (a) An old fermentation plant from the late nineteenth century. (b) A modern fermentation plant one century later. The gap in time between the plants reveals that some of the design features have undergone changes, while others are unchanged: the bioreactors are cylindrical vessels, the containment of the broth and concern about contamination were in former days less, piping are essential, many vessels are using the available plant space, and few plant operators are close to the process.
Figure 1.2 Twelve examples of bioreactor designs: (a) stirred-tank reactor, (b) bubble reactor, (c) airlift reactor, (d) loop reactor, (e) reactor with immobilized cells, (f) fluidized reactor with recycling of cells, (g) solid-phase tray reactor, (h) rotary drum bioreactor, (i) agitated-tank reactor with movable impeller, (j) continuous screw bioreactor, (k) hollow-fiber reactor, and (l) wave bioreactor
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!