Bioreactors -  - E-Book

Bioreactors E-Book

0,0
147,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

In this expert handbook both the topics and contributors are selected so as to provide an authoritative view of possible applications for this new technology. The result is an up-to-date survey of current challenges and opportunities in the design and operation of bioreactors for high-value products in the biomedical and chemical industries. Combining theory and practice, the authors explain such leading-edge technologies as single-use bioreactors, bioreactor simulators, and soft sensor monitoring, and discuss novel applications, such as stem cell production, process development, and multi-product reactors, using case studies from academia as well as from industry. A final section addresses the latest trends, including culture media design and systems biotechnology, which are expected to have an increasing impact on bioreactor design. With its focus on cutting-edge technologies and discussions of future developments, this handbook will remain an invaluable reference for many years to come.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1042

Veröffentlichungsjahr: 2016

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Title Page

Copyright

Preface

List of Contributors

Chapter 1: Challenges for Bioreactor Design and Operation

1.1 Introduction

1.2 Biotechnology Milestones with Implications on Bioreactor Design

1.3 General Features of Bioreactor Design

1.4 Recent Trends in Designing and Operating Bioreactors

1.5 The Systems Biology Approach

1.6 Using Conceptual Design Methodology

1.7 An Outlook on Challenges for Bioreactor Design and Operation

References

Chapter 2: Design and Operation of Microbioreactor Systems for Screening and Process Development

2.1 Introduction

2.2 Key Engineering Parameters and Properties in Microbioreactor Design and Operation

2.3 Design of Novel Stirred and Bubble Aerated Microbioreactors

2.4 Robotics for Microbioreactors

2.5 Fed-Batch and Continuous Operation of Microbioreactors

2.6 Monitoring and Control of Microbioreactors

2.7 Conclusion

References

Chapter 3: Bioreactors on a Chip

3.1 Introduction

3.2 Advantages of Microsystems

3.3 Scaling Down the Bioreactor to the Microfluidic Format

3.4 Microfabrication Methods for Bioreactors-On-A-Chip

3.5 Fabrication Materials

3.6 Integrated Sensors for Key Bioreactor Parameters

3.7 Model Organisms Applied to BRoCs

3.8 Applications of Microfluidic Bioreactor Chip

3.9 Scale Up

3.10 Conclusion

References

Chapter 4: Scalable Manufacture for Cell Therapy Needs

4.1 Introduction

4.2 Requirements for Cell Therapy

4.3 Stem Cell Types and Products

4.4 Paradigms in Cell Therapy Manufacture

4.5 Cell Therapy Manufacturing Platforms

4.6 Microcarriers and Stirred-Tank Bioreactors

4.7 Future Trends for Microcarrier Culture

4.8 Preservation of Cell Therapy Products

4.9 Conclusions

References

Chapter 5: Artificial Liver Bioreactor Design

5.1 Need for Innovative Liver Therapies

5.2 Requirements to Liver Support Systems

5.3 Bioreactor Technologies Used in Clinical Trials

5.4 Optimization of Bioartificial Liver Bioreactor Designs

5.5 Improvement of Cell Biology in Bioartificial Livers

5.6 Bioreactors Enabling Cell Production for Transplantation

5.7 Cell Sources for Bioartificial Liver Bioreactors

5.8 Outlook

References

Chapter 6: Bioreactors for Expansion of Pluripotent Stem Cells and Their Differentiation to Cardiac Cells

6.1 Introduction

6.2 Culture Technologies for Pluripotent Stem Cell Expansion

6.3 3D Suspension Culture

6.4 Autologous Versus Allogeneic Cell Therapies: Practical and Economic Considerations for hPSC Processing

6.5 Upscaling hPSC Cardiomyogenic Differentiation in Bioreactors

6.6 Conclusion

References

Chapter 7: Culturing Entrapped Stem Cells in Continuous Bioreactors

7.1 Introduction

7.2 Materials Used in Stem Cell Entrapment

7.3 Synthetic Materials

7.4 Natural Materials

7.5 Manufacturing and Regulatory Constraints

7.6 Mass Transfer in the Entrapment Material

7.7 Continuous Bioreactors for Entrapped Stem Cell Culture

7.8 Future Perspectives

References

Chapter 8: Coping with Physiological Stress During Recombinant Protein Production by Bioreactor Design and Operation

8.1 Major Physiological Stress Factors in Recombinant Protein Production Processes

8.2 Monitoring Physiological Stress and Metabolic Load as a Tool for Bioprocess Design and Optimization

8.3 Design and Operation Strategies to Minimize/Overcome Problems Associated with Physiological Stress and Metabolic Load

8.4 Bioreactor Design Considerations to Minimize Shear Stress

Acknowledgments

References

Chapter 9: Design, Applications, and Development of Single-Use Bioreactors

9.1 Introduction

9.2 Design Challenges of Single-Use Bioreactors

9.3 Cell Culture Application

9.4 Microbial Application of Single-Use Bioreactors

9.5 Outlook

References

Chapter 10: Computational Fluid Dynamics for Bioreactor Design

10.1 Introduction

10.2 Multiphase Flows

10.3 Turbulent Flow

10.4 CFD Simulations

10.5 Case Studies for Application of CFD in Modeling of Bioreactors

Summary

References

Chapter 11: Scale-Up and Scale-Down Methodologies for Bioreactors

11.1 Introduction

11.2 Bioprocess Scale-Down Approaches

11.3 Characterization of the Large Scale

11.4 Computational Methods to Describe the Large Scale

11.5 Scale-Down Experiments and Physiological Responses

11.6 Outlook

References

Chapter 12: Integration of Bioreactors with Downstream Steps

12.1 Introduction

12.2 Improvements in Cell-Culture

12.3 Interactions with Centrifugation Steps

12.4 Interactions with Filtration Steps

12.5 Interactions with Chromatographic Steps

12.6 Integrated Processes

12.7 Integrated Models

12.8 Conclusions

References

Chapter 13: Multivariate Modeling for Bioreactor Monitoring and Control

13.1 Introduction

13.2 Analytical Measurement Methods for Bioreactor Monitoring

13.3 Multivariate Modeling Approaches

13.4 Case Studies

13.5 Conclusions

Acknowledgments

References

Chapter 14: Soft Sensor Design for Bioreactor Monitoring and Control

14.1 Introduction

14.2 The Process Analytical Technology Perspective on Soft Sensors

14.3 Conceptual Design of Soft Sensors for Bioreactors

14.4 “Hardware Sensor” Alternatives

14.5 The Modeling Part of Soft Sensors

14.6 Strategy for Using Soft Sensors

14.7 Applications of Soft Sensors in Bioreactors

14.8 Concluding Remarks and Outlook

References

Chapter 15: Design-of-Experiments for Development and Optimization of Bioreactor Media

15.1 Introduction

15.2 Fundamentals of Design-of-Experiments Methodology

15.3 Optimization of Culture Media by Design-of-Experiments

15.4 Conclusions and Outlook

References

Chapter 16: Operator Training Simulators for Bioreactors

16.1 Introduction

16.2 Simulators in the Process Industry

16.3 Training Simulators

16.4 Requirements on Training Simulators

16.5 Architecture of Training Simulators

16.6 Tools and Development Strategies

16.7 Process Models and Simulation Technology

16.8 Training Simulator Examples

16.9 Concluding Remarks

References

Index

End User License Agreement

Pages

xv

xvi

xvii

xviii

xix

xx

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

Guide

Cover

Table of Contents

Preface

Begin Reading

List of Illustrations

Chapter 1: Challenges for Bioreactor Design and Operation

Figure 1.1 (a) An old fermentation plant from the late nineteenth century. (b) A modern fermentation plant one century later. The gap in time between the plants reveals that some of the design features have undergone changes, while others are unchanged: the bioreactors are cylindrical vessels, the containment of the broth and concern about contamination were in former days less, piping are essential, many vessels are using the available plant space, and few plant operators are close to the process.

Figure 1.2 Twelve examples of bioreactor designs: (a) stirred-tank reactor, (b) bubble reactor, (c) airlift reactor, (d) loop reactor, (e) reactor with immobilized cells, (f) fluidized reactor with recycling of cells, (g) solid-phase tray reactor, (h) rotary drum bioreactor, (i) agitated-tank reactor with movable impeller, (j) continuous screw bioreactor, (k) hollow-fiber reactor, and (l) wave bioreactor

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!