Carbon Nanotube and Related Field Emitters -  - E-Book

Carbon Nanotube and Related Field Emitters E-Book

0,0
160,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Carbon nanotubes (CNTs) have novel properties that make them potentially useful in many applications in nanotechnology, electronics, optics and other fields of materials science. These characteristics include extraordinary strength, unique electrical properties, and the fact that they are efficient heat conductors. Field emission is the emission of electrons from the surface of a condensed phase into another phase due to the presence of high electric fields. CNT field emitters are expected to make a breakthrough in the development of field emission display technology and enable miniature X-ray sources that will find a wide variety of applications in electronic devices, industry, and medical and security examinations.
This first monograph on the topic covers all aspects in a concise yet comprehensive manner - from the fundamentals to applications. Divided into four sections, the first part discusses the preparation and characterization of carbon nanotubes, while part two is devoted to the field emission properties of carbon nanotubes, including the electron emission mechanism, characteristics of CNT electron sources, and dynamic behavior of CNTs during operation. Part three highlights field emission from other nanomaterials, such as carbon nanowalls, diamond, and silicon and zinc oxide nanowires, before concluding with frontier R&D applications of CNT emitters, from vacuum electronic devices such as field emission displays, to electron sources in electron microscopes, X-ray sources, and microwave amplifiers. Edited by a pioneer in the field, each chapter is written by recognized experts in the respective fields.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 780

Veröffentlichungsjahr: 2010

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Related Titles

Title Page

Copyright

Preface

List of Contributors

Part I: Preparation and Characterization of Carbon Nanotubes

1 Structures and Synthesis of Carbon Nanotubes

1.1 Structures of Carbon Nanotubes

1.2 Synthesis of Carbon Nanotubes

1.3 Electrical and Mechanical Properties of Carbon Nanotubes

2 Preparation of CNT Emitters

2.1 Introduction

2.2 CNT Point Emitters

2.3 CNT Film Emitters

3 Preparation of Patterned CNT Emitters

3.1 Background

3.2 Growth of Carbon Nanotubes from Patterned Catalysts

3.3 Single Nanotube Growth – Requirements and Uniformity

3.4 Nanotube Growth without Surface Carbon

3.5 Summary

3.6 Acknowledgments

Part II: Field Emission from Carbon Nanotubes

4 Field Emission Theory

4.1 Fowler–Nordheim Theory

4.2 Field Emission from CNTs

4.3 Concluding Remarks

5 Field Emission from Graphitic Nanostructures

5.1 Introduction

5.2 Method and Model

5.3 Results

5.4 Conclusion

5.5 Acknowledgments

6 The Optical Performance of Carbon Nanotube Field Emitters

6.1 Introduction

6.2 Making an Electron Source from an Individual Carbon Nanotube

6.3 The Emission Process

6.4 The Brightness

6.5 Conclusions

6.6 Acknowledgments

7 Heat Generation and Losses in Carbon Nanotubes during Field Emission

7.1 Introduction

7.2 Heat Diffusion Equation for Nanotubes

7.3 Simulations

7.4 Experiments

7.5 Conclusion

8 Field Emission Microscopy of Multiwall CNTs

8.1 Introduction

8.2 FEM of Carbon Nanotubes

8.3 Field Emission from Adsorbates on an MWNT

8.4 Resolution in FEM and Possible Observation of Atomic Detail

8.5 Concluding Remarks

9 In situ Transmission Electron Microscopy of CNT Emitters

9.1 Introduction

9.2 Degradation and Failure of Nanotubes at Large Emission Current Conditions

9.3 Effect of Tip Structure of Nanotubes on Field Emission

9.4 Relationship between Field Emission and Gap Width

9.5 Other Studies by In situ TEM of CNT Emitters

10 Field Emission from Single-Wall Nanotubes

10.1 Introduction

10.2 Single-Wall Nanotubes and Field Emission

10.3 Measuring the Properties of a Single SWNT

10.4 Field Emission from a Clean SWNT Surface

10.5 SWNT-Adsorbate Field Emission

10.6 Field Emission Stability

10.7 Conclusions

11 Simulated Electric Field in an Array of CNTs

11.1 Introduction

11.2 Simulation Method

11.3 Computational Model

11.4 Field Analysis for the VA-CNT System

11.5 Field Analysis for VA-CNT System with Uniform Length

11.6 Field Analysis for VA-CNT System with Nonuniform Length

11.7 Effect of Shape of CNT Apex

11.8 Effect of CNT Length

11.9 Electric Field Analysis of Network-Structured CNT System

12 Surface Coating of CNT Emitters

12.1 Effects of Surface Coating of CNT Emitters

12.2 Field Emission from Individual CNT Coated with BN

12.3 Field Emission from Brush-Like CNTs Coated with MgO

12.4 Field Emission from Brush-Like CNTs Coated with TiC

Part III: Field Emission from Related Nanomaterials

13 Graphite Nanoneedle Field Emitter

13.1 Introduction

13.2 Fabrication and Structure Characterization

13.3 Field Emission Characteristics

13.4 Applications

13.5 Stochastic Model

13.6 Summary

14 Field Emission from Carbon Nanowalls

14.1 General Description of Carbon Nanowalls

14.2 Synthesis of Carbon Nanowall Films

14.3 Field Emission Properties of Carbon Nanowalls

14.4 Surface Treatment for Improvement of Field Emission Properties

14.5 Prospects for the Future

15 Flexible Field Emitters: Carbon Nanofibers

15.1 Introduction

15.2 Room Temperature Fabrication of Ion-Induced Carbon Nanofibers

15.3 Applications to Field Electron Emission Sources

15.4 Summary

16 Diamond Emitters

16.1 Field Emission from Intrinsic or p-Type Diamonds

16.2 Field Emission from Nitrogen-Doped n-Type Diamonds

16.3 Field Emission from Phosphorus-Doped n-Type Diamonds

16.4 Electron Emission from pn-Junction Diamond Diodes

16.5 Other Application of Diamond Emitter

17 ZnO Nanowires and Si Nanowires

17.1 Introduction

17.2 Synthesis of ZnO and Si Nanowires or Nanobelts

17.3 Field Emission of Si and ZnO Nanowires

17.4 Summary

17.5 Acknowledgment

Part IV: Applications of Carbon Nanotubes

18 Lamp Devices and Character Displays

18.1 Introduction

18.2 Lamp Devices for Light Sources

18.3 Super-High-Luminance Light Source Device

18.4 Summary of Lamp Devices

18.5 Carbon Nanotube Field Emission Displays for Low-Power Character Displays

18.6 Summary of the Display Panel

18.7 Acknowledgments

19 Screen-Printed Carbon Nanotube Field Emitters for Display Applications

19.1 Introduction

19.2 Formulation of Photoimageable CNT Paste

19.3 Posttreatment

19.4 Field Emission Display Based on Printed CNTs

19.5 Conclusion

20 Nanotube Field Emission Displays: Nanotube Integration by Direct Growth Techniques

20.1 Introduction

20.2 Field Emission Display Design and Drive Voltage

20.3 Fabricating the Display

20.4 Luminance Uniformity and Control and Nanotube Distributions

20.5 Display Performance

20.6 Sealing

20.7 Operating Lifetime

20.8 Conclusions

21 Transparent-Like CNT-FED

21.1 Diode-Type CNT-FED

21.2 Structure of Diode-Type CNT-FED

21.3 Characteristics of CNT-FED

21.4 Relation between Gap and Emission

21.5 Property of CNT-FED

21.6 Nonevaporable Getter

21.7 Summary

22 CNT-Based FEL for BLU in LCD

22.1 Introduction

22.2 CNT-FEL Structure

22.3 CNT Cathode

22.4 Anode

22.5 Vacuum Packaging

22.6 Driving and Characterization

22.7 Future Works

22.8 Acknowledgments

23 High-Current-Density Field Emission Electron Source

23.1 Introduction

23.2 Guiding Principles and Practical Methods for High-Performance Emitter

23.3 Impregnation of RuO2 and OsO2

23.4 CNT Rooting

23.5 Effect of Impregnation on Field Emission Properties

23.6 Effect of Rooting on Field Emission Properties

23.7 Influence of Residual Gas

24 High-Resolution Microfocused X-ray Source with Functions of Scanning Electron Microscope

24.1 Introduction

24.2 Multiwalled CNT Field Emission Cathode

24.3 Construction of High-Resolution Transmission X-ray Microscope Equipped with the Function of SEM

24.4 Characteristic Evaluation of High-Resolution X-ray Microscope Provided with SEM Function

24.5 Factors Limiting Resolution of X-ray Transmission Image

24.6 Conclusion

25 Miniature X-ray Tubes

25.1 Introduction

25.2 Our Technical Basis for Miniaturizing X-ray Tubes

25.3 The Pd Emitter

25.4 Devising X-ray Tubes with Miniature Dimensions

25.5 Status Quo of Our MXT Technique

25.6 Future Prospect of MXTs in Radiation Therapy

26 Carbon Nanotube-Based Field Emission X-ray Technology

26.1 Introduction

26.2 Fabrication of CNT Cathodes for X-ray Generation

26.3 Field Emission Microfocus X-ray Tube

26.4 Distributed Multibeam Field Emission X-ray

26.5 Imaging Systems

26.6 Summary and Outlook

26.7 Acknowledgments

27 Microwave Amplifiers

27.1 Introduction

27.2 State of the Art of Thermionic Cathodes and Methodology to Review CNT Cathodes

27.3 CNT-Based Electron Guns as High Current Electron Sources

27.4 CNT Cathodes Delivering a Modulated Electron Beam

27.5 Conclusion

Index

Related Titles

Kim, Dae Mann

Introductory Quantum Mechanics for Semiconductor Nanotechnology

2010

ISBN: 978-3-527-40975-4

Krüger, Anke

Carbon Materials and Nanotechnology

2010

ISBN: 978-3-527-31803-2

Guldi, Dirk M., Martín, Nazario. (eds.)

Carbon Nanotubes and Related Structures

Synthesis, Characterization, Functionalization, and Applications

2010

ISBN: 978-3-527-32406-4

Hierold, C. (ed.)

Carbon Nanotube Devices

Properties, Modeling, Integration and Applications

2008

ISBN: 978-3-527-31720-2

Tsimring, S. E.

Electron Beams and Microwave Vacuum Electronics

2006

ISBN: 978-0-470-04816-0

Oks, E.

Plasma Cathode Electron Sources

Physics, Technology, Applications

2005

ISBN: 978-3-527-40634-0

The Editor

Prof. Yahachi Saito

Nagoya University Dept. of Quantum Engineering Furo-cho, Chikusa-ku Nagoya 464-8603 Japan

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form—by photoprinting, microfilm, or any other means—nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

ISBN: 978-3-527-32734-8

Preface

The discovery of carbon nanotubes (CNTs) in 1991 has not only opened a rich field in fundamental science but also given a scope of potential technological applications. CNT is a new class of materials that possess extraordinary properties and propagate nanotechnology and nanoscience. Among the numerous numbers of application proposals of CNTs, the most promising one is a tiny, nanometer-scale field electron emitter that works by applying a low electric voltage in a moderate vacuum. A field emission display (FED) is considered to be the most influential industrial product in which the nanotechnology, CNT, is utilized as a key material, since its commercial market is huge and consumers in general directly experience the technology. At the beginning of the CNT-based FED development, there is an atmosphere that it does not take so much time to realize the products. Through a few R & D projects on CNT-FED, however, it was cognized that it was not so easy to make the high-definition FED with CNT emitters. There are still a number of technical problems to be overcome to put CNT-based FEDs to practical use. Current reduction in retail prices of LCD (liquid crystal display) and PDP (plasma display panel) also makes it difficult to forward the development of FED for TV monitors. But, applications of CNT electron emitters are not limited to TV monitors; character display, digital sinage, back light unit, electron sources for various vacuum electronic devices such as miniature X-ray source, and microwave amplifiers. For example, CNT-based character displays are actively developed and are practically used as public signs. Fundamental studies of CNT and related emitters and also continuing development will make CNT electron sources indispensable and core elements in various fields from consumer devices, medical to industry, and space aviation.

This book is the first, comprehensive monograph dealing with CNT and related field emitters covering from the fundamental to the applications. The fundamental part includes structures and preparations of CNTs, electron emission mechanism, characteristics of CNT electron sources, dynamic behaviour of CNTs during operation and so on. Applications of CNT emitters to vacuum electronic devices include displays, electron sources in electron microscopes, X-ray sources, and microwave amplifiers. The book has sought to bring leading researchers in the respective fields to summarize, using tutorial style, the important advances and to suggest promising future research directions. Authors of the chapters are from different groups worldwide, including academic and industrial circles, guaranteeing a broad view of the topic. I am thankful to the authors who produced excellent chapters that will greatly benefit many readers interested in CNT and related field emitters, and also to John-Wiley for cooperating with us in implementing the book project.

Nagoya, March 2010

Yahachi Saito

List of Contributors

Masaaki Araidai

Tohoku University

WPI Advanced Institute for Materials Research

2-1-1 Katahira

Aoba-ku

Sendai

Miyagi 980-8577

Japan

Koji Asaka

Nagoya University

Department of Quantum Engineering

Furo-cho, Chikusa-ku

Nagoya 464-8603

Japan

Anthony Ayari

Université Claude Bernard Lyon l

Lab. de Physique de la Matière Condensée et Nanostructures

UMR CNRS 5586

43 Blvd 11 Novembre

F-69622

Villeurbanne Cedex

France

Xiomara Calderon-Colon

The University of North Carolina

Department of Physics and Astronomy and

Curriculum in Applied and Materials Science

Chapel Hill

NC 27599

USA

Costel S. Cojocaru

University of Cambridge

Electrical Engineering Division

Centre for Advanced Photonics and Electronics

9 JJ Thomson Avenue

Cambridge

CB3 0FA

UK

Kenneth A. Dean

Motorola Inc.

2100 East Elliot Road

Tempe

AZ 85284

USA

Laurent Gangloff

THALES-Ecole Polytechnique

1, Av. Augustin Fresnel

NANOCARB

91767

Palaiseau Cedex

France

Pierrick Guiset

THALES-Ecole Polytechnique

1, Av. Augustin Fresnel

NANOCARB

91767

Palaiseau Cedex

France

In Taek Han

Samsung Advanced Institute of Technology

Samsung Electronics

Gheung-gu

Yongin-si

Gyeonggi-do 446-712

Korea

Seungwu Han

Seoul National University

Department of Materials

Science and Engineering

Seoul 151-744

Korea

Koichi Hata

Mie University

Department of Electrical and Electronic Engineering

1577 Kurima-machiya-cho

Tsu 514-8507

Japan

Mineo Hiramatsu

Meijo University

Department of Electrical and Electronic Engineering

1-501 Shiogamaguchi

Tempaku

Nagoya 468-8502

Japan

Masaru Hori

Nagoya University

Department of Electrical Engineering and Computer Science

Furo-cho

Chikusa

Nagoya 464-8603

Japan

Shigeo Itoh

Futaba Corporation

R & D Center

Chosei-mura

Chosei-gun

Chiba 299-4395

Japan

Jin-Woo Jeong

Convergence Components & Materials Research Laboratory

Electronics and Telecommunications Research Institute

138 Gajeongno

Yuseong-Gu

Daejeon 305-700

Korea

Niels de Jonge

Oak Ridge National Laboratory

Materials Science and Technology Division

1 Bethel Valley Road

Oak Ridge

TN 37831-6064

USA

and

Vanderbilt University

Medical Center

Department of Molecular Physiology and Biophysics

2215 Garland Ave.

Nashville

37232-0615

USA

Shigeki Kato

High Energy Accelerator Research Organization

Accelerator Laboratory

Tsukuba

Ibaraki 305-0801

Japan

Dae-Jun Kim

Nano Convergence

Device Team

R&D Center

VSI, 461-34

Jeonmin-dong

Yuseong-gu

Daejeon 305-811

Korea

Jong Min Kim

Samsung Advanced

Institute of Technology

Samsung Electronics

Gheung-gu

Yongin-si

Gyeonggi-do 446-712

Korea

Yong Churl Kim

Samsung Advanced Institute of Technology

Samsung Electronics

Gheung-gu

Yongin-si

Gyeonggi-do 446-712

Korea

Shozo Kono

Tohoku University

Institute of Multidisciplinary Research for Advanced Materials

Katahira 2-1-1

Aoba-ku

Sendai 980-8577

Japan

Shu-Ping Lau

Department of Applied Physics

The Hong Kong Polytechnic University

Hung Hom, Kowloon

Hong Kong

Nicolas Le Sech

THALES-Ecole Polytechnique

1, Av. Augustin Fresnel

NANOCARB

91767

Palaiseau Cedex

France

Pierre Legagneux

THALES-Ecole Polytechnique

1, Av. Augustin Fresnel

NANOCARB

91767

Palaiseau Cedex

France

Mark Mann

University of Cambridge

Electrical Engineering Division

Centre for Advanced Photonics and Electronics

9 JJ Thomson Avenue

Cambridge

CB3 0FA

UK

Takahiro Matsumoto

Research and Development Center

Stanley Electric Corporation

5-9-5 Tokodai

Tsukuba

300-2635

Japan

and

Research Institute of Electronics

Shizuoka University

3-5-1 Johoku

Hamamatsu

432-8011

Japan

Hidenori Mimura

Research Institute of Electronics

Shizuoka University

3-5-1 Johoku

Hamamatsu

432-8011

Japan

William I. Milne

University of Cambridge

Electrical Engineering Division

Centre for Advanced Photonics and Electronics

9 JJ Thomson Avenue

Cambridge

CB3 0FA

UK

Hidekazu Murata

Meijo University

Department of Electrical and Electronic Engineering

Faculty of Science and Technology

1-501 Shiogamaguchi

Tempaku-ku

Nagoya 468-8502

Japan

Yoshikazu Nakayama

Osaka University

Department of Mechanical Engineering

2-1 Yamadaoka

Suita

Osaka 565-0871

Japan

Tsuneyuki Noguchi

KAKEN Inc.

1044, Holimachi

Mito

Ibaraki 310-0903

Japan

Fumio Okuyama

Kawauchi-Sanjyunin-Machi

49-53, Aoba-ku

Sendai 980-0866

Japan

Didier Pribat

THALES-Ecole Polytechnique

1, Av. Augustin Fresnel

NANOCARB

91767

Palaiseau Cedex

France

Stephen T. Purcell

Université Claude Bernard Lyon l

Lab. de Physique de la Matière Condensée et Nanostructures

UMR CNRS 5586

43 Blvd 11 Novembre

F-69622

Villeurbanne Cedex

France

Zhi Feng Ren

Department of Physics

Boston College

140 Commonwealth Ave.

Chestnut Hill MA 02467

USA

Yahachi Saito

Nagoya University

Department of Quantum Engineering

Furo-cho, Chikusa-ku

Nagoya 464-8603

Japan

Jean-Philippe Schnell

THALES-Ecole Polytechnique

1, Av. Augustin Fresnel

NANOCARB

91767

Palaiseau Cedex

France

Hiroshi Shimoyama

Meijo University

Department of Electrical and Electronic Engineering

Faculty of Science and Technology

1-501 Shiogamaguchi

Tempaku-ku

Nagoya 468-8502

Japan

Yoon-Ho Song

Convergence Components & Materials Research Laboratory

Electronics and Telecommunications Research Institute

138 Gajeongno

Yuseong-Gu

Daejeon 305-700

Korea

Masaki Tanemura

Department of Frontier Materials

Graduate School of Engineering

Nagoya Institute of Technology

Gokiso-cho, Showa-ku

Nagoya, 466-8555

Japan

Masateru Taniguchi

Futaba Corporation

R & D Center

Chosei-mura

Chosei-gun

Chiba 299-4395

Japan

Kenneth Boh Khin Teo

AIXTRON Nanoinstruments

Buckingway Business Park

Anderson Road

Cambridge

CB24 4FQ

UK

Takeshi Tonegawa

Futaba Corporation

R & D Center

Chosei-mura

Chosei-gun

Chiba 299-4395

Japan

Sashiro Uemura

Noritake Company Ltd.

728-23 Tsumura-cho

Ise 516-1103

Japan

Pascal Vincent

Université Claude Bernard Lyon l

Lab. de Physique de la Matière Condensée et Nanostructures

UMR CNRS 5586

43 Blvd 11 Novembre

F-69622

Villeurbanne Cedex

France

Kazuyuki Watanabe

Tokyo University of Science

Department of Physics and Research Institute for

Science and Technology

1-3 Kagurazaka

Shinjuku-ku

Tokyo 162-8601

Japan

Ryosuke Yabushita

Mie University

Department of Electrical and Electronic Engineering

1577 Kurima-machiya-cho

Tsu 514-8507

Japan

Baoqing Zeng

School of Physical Electronics

University of Electronic Science and Technology of China

Chengdu 610054

China

Otto Zhou

The University of North Carolina

Department of Physics and Astronomy and

Curriculum in Applied and Materials Science

Chapel Hill

NC 27599

USA

Part I

Preparation and Characterization of Carbon Nanotubes

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!