160,99 €
Carbon nanotubes (CNTs) have novel properties that make them potentially useful in many applications in nanotechnology, electronics, optics and other fields of materials science. These characteristics include extraordinary strength, unique electrical properties, and the fact that they are efficient heat conductors. Field emission is the emission of electrons from the surface of a condensed phase into another phase due to the presence of high electric fields. CNT field emitters are expected to make a breakthrough in the development of field emission display technology and enable miniature X-ray sources that will find a wide variety of applications in electronic devices, industry, and medical and security examinations.
This first monograph on the topic covers all aspects in a concise yet comprehensive manner - from the fundamentals to applications. Divided into four sections, the first part discusses the preparation and characterization of carbon nanotubes, while part two is devoted to the field emission properties of carbon nanotubes, including the electron emission mechanism, characteristics of CNT electron sources, and dynamic behavior of CNTs during operation. Part three highlights field emission from other nanomaterials, such as carbon nanowalls, diamond, and silicon and zinc oxide nanowires, before concluding with frontier R&D applications of CNT emitters, from vacuum electronic devices such as field emission displays, to electron sources in electron microscopes, X-ray sources, and microwave amplifiers. Edited by a pioneer in the field, each chapter is written by recognized experts in the respective fields.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 780
Veröffentlichungsjahr: 2010
Table of Contents
Related Titles
Title Page
Copyright
Preface
List of Contributors
Part I: Preparation and Characterization of Carbon Nanotubes
1 Structures and Synthesis of Carbon Nanotubes
1.1 Structures of Carbon Nanotubes
1.2 Synthesis of Carbon Nanotubes
1.3 Electrical and Mechanical Properties of Carbon Nanotubes
2 Preparation of CNT Emitters
2.1 Introduction
2.2 CNT Point Emitters
2.3 CNT Film Emitters
3 Preparation of Patterned CNT Emitters
3.1 Background
3.2 Growth of Carbon Nanotubes from Patterned Catalysts
3.3 Single Nanotube Growth – Requirements and Uniformity
3.4 Nanotube Growth without Surface Carbon
3.5 Summary
3.6 Acknowledgments
Part II: Field Emission from Carbon Nanotubes
4 Field Emission Theory
4.1 Fowler–Nordheim Theory
4.2 Field Emission from CNTs
4.3 Concluding Remarks
5 Field Emission from Graphitic Nanostructures
5.1 Introduction
5.2 Method and Model
5.3 Results
5.4 Conclusion
5.5 Acknowledgments
6 The Optical Performance of Carbon Nanotube Field Emitters
6.1 Introduction
6.2 Making an Electron Source from an Individual Carbon Nanotube
6.3 The Emission Process
6.4 The Brightness
6.5 Conclusions
6.6 Acknowledgments
7 Heat Generation and Losses in Carbon Nanotubes during Field Emission
7.1 Introduction
7.2 Heat Diffusion Equation for Nanotubes
7.3 Simulations
7.4 Experiments
7.5 Conclusion
8 Field Emission Microscopy of Multiwall CNTs
8.1 Introduction
8.2 FEM of Carbon Nanotubes
8.3 Field Emission from Adsorbates on an MWNT
8.4 Resolution in FEM and Possible Observation of Atomic Detail
8.5 Concluding Remarks
9 In situ Transmission Electron Microscopy of CNT Emitters
9.1 Introduction
9.2 Degradation and Failure of Nanotubes at Large Emission Current Conditions
9.3 Effect of Tip Structure of Nanotubes on Field Emission
9.4 Relationship between Field Emission and Gap Width
9.5 Other Studies by In situ TEM of CNT Emitters
10 Field Emission from Single-Wall Nanotubes
10.1 Introduction
10.2 Single-Wall Nanotubes and Field Emission
10.3 Measuring the Properties of a Single SWNT
10.4 Field Emission from a Clean SWNT Surface
10.5 SWNT-Adsorbate Field Emission
10.6 Field Emission Stability
10.7 Conclusions
11 Simulated Electric Field in an Array of CNTs
11.1 Introduction
11.2 Simulation Method
11.3 Computational Model
11.4 Field Analysis for the VA-CNT System
11.5 Field Analysis for VA-CNT System with Uniform Length
11.6 Field Analysis for VA-CNT System with Nonuniform Length
11.7 Effect of Shape of CNT Apex
11.8 Effect of CNT Length
11.9 Electric Field Analysis of Network-Structured CNT System
12 Surface Coating of CNT Emitters
12.1 Effects of Surface Coating of CNT Emitters
12.2 Field Emission from Individual CNT Coated with BN
12.3 Field Emission from Brush-Like CNTs Coated with MgO
12.4 Field Emission from Brush-Like CNTs Coated with TiC
Part III: Field Emission from Related Nanomaterials
13 Graphite Nanoneedle Field Emitter
13.1 Introduction
13.2 Fabrication and Structure Characterization
13.3 Field Emission Characteristics
13.4 Applications
13.5 Stochastic Model
13.6 Summary
14 Field Emission from Carbon Nanowalls
14.1 General Description of Carbon Nanowalls
14.2 Synthesis of Carbon Nanowall Films
14.3 Field Emission Properties of Carbon Nanowalls
14.4 Surface Treatment for Improvement of Field Emission Properties
14.5 Prospects for the Future
15 Flexible Field Emitters: Carbon Nanofibers
15.1 Introduction
15.2 Room Temperature Fabrication of Ion-Induced Carbon Nanofibers
15.3 Applications to Field Electron Emission Sources
15.4 Summary
16 Diamond Emitters
16.1 Field Emission from Intrinsic or p-Type Diamonds
16.2 Field Emission from Nitrogen-Doped n-Type Diamonds
16.3 Field Emission from Phosphorus-Doped n-Type Diamonds
16.4 Electron Emission from pn-Junction Diamond Diodes
16.5 Other Application of Diamond Emitter
17 ZnO Nanowires and Si Nanowires
17.1 Introduction
17.2 Synthesis of ZnO and Si Nanowires or Nanobelts
17.3 Field Emission of Si and ZnO Nanowires
17.4 Summary
17.5 Acknowledgment
Part IV: Applications of Carbon Nanotubes
18 Lamp Devices and Character Displays
18.1 Introduction
18.2 Lamp Devices for Light Sources
18.3 Super-High-Luminance Light Source Device
18.4 Summary of Lamp Devices
18.5 Carbon Nanotube Field Emission Displays for Low-Power Character Displays
18.6 Summary of the Display Panel
18.7 Acknowledgments
19 Screen-Printed Carbon Nanotube Field Emitters for Display Applications
19.1 Introduction
19.2 Formulation of Photoimageable CNT Paste
19.3 Posttreatment
19.4 Field Emission Display Based on Printed CNTs
19.5 Conclusion
20 Nanotube Field Emission Displays: Nanotube Integration by Direct Growth Techniques
20.1 Introduction
20.2 Field Emission Display Design and Drive Voltage
20.3 Fabricating the Display
20.4 Luminance Uniformity and Control and Nanotube Distributions
20.5 Display Performance
20.6 Sealing
20.7 Operating Lifetime
20.8 Conclusions
21 Transparent-Like CNT-FED
21.1 Diode-Type CNT-FED
21.2 Structure of Diode-Type CNT-FED
21.3 Characteristics of CNT-FED
21.4 Relation between Gap and Emission
21.5 Property of CNT-FED
21.6 Nonevaporable Getter
21.7 Summary
22 CNT-Based FEL for BLU in LCD
22.1 Introduction
22.2 CNT-FEL Structure
22.3 CNT Cathode
22.4 Anode
22.5 Vacuum Packaging
22.6 Driving and Characterization
22.7 Future Works
22.8 Acknowledgments
23 High-Current-Density Field Emission Electron Source
23.1 Introduction
23.2 Guiding Principles and Practical Methods for High-Performance Emitter
23.3 Impregnation of RuO2 and OsO2
23.4 CNT Rooting
23.5 Effect of Impregnation on Field Emission Properties
23.6 Effect of Rooting on Field Emission Properties
23.7 Influence of Residual Gas
24 High-Resolution Microfocused X-ray Source with Functions of Scanning Electron Microscope
24.1 Introduction
24.2 Multiwalled CNT Field Emission Cathode
24.3 Construction of High-Resolution Transmission X-ray Microscope Equipped with the Function of SEM
24.4 Characteristic Evaluation of High-Resolution X-ray Microscope Provided with SEM Function
24.5 Factors Limiting Resolution of X-ray Transmission Image
24.6 Conclusion
25 Miniature X-ray Tubes
25.1 Introduction
25.2 Our Technical Basis for Miniaturizing X-ray Tubes
25.3 The Pd Emitter
25.4 Devising X-ray Tubes with Miniature Dimensions
25.5 Status Quo of Our MXT Technique
25.6 Future Prospect of MXTs in Radiation Therapy
26 Carbon Nanotube-Based Field Emission X-ray Technology
26.1 Introduction
26.2 Fabrication of CNT Cathodes for X-ray Generation
26.3 Field Emission Microfocus X-ray Tube
26.4 Distributed Multibeam Field Emission X-ray
26.5 Imaging Systems
26.6 Summary and Outlook
26.7 Acknowledgments
27 Microwave Amplifiers
27.1 Introduction
27.2 State of the Art of Thermionic Cathodes and Methodology to Review CNT Cathodes
27.3 CNT-Based Electron Guns as High Current Electron Sources
27.4 CNT Cathodes Delivering a Modulated Electron Beam
27.5 Conclusion
Index
Related Titles
Kim, Dae Mann
Introductory Quantum Mechanics for Semiconductor Nanotechnology
2010
ISBN: 978-3-527-40975-4
Krüger, Anke
Carbon Materials and Nanotechnology
2010
ISBN: 978-3-527-31803-2
Guldi, Dirk M., Martín, Nazario. (eds.)
Carbon Nanotubes and Related Structures
Synthesis, Characterization, Functionalization, and Applications
2010
ISBN: 978-3-527-32406-4
Hierold, C. (ed.)
Carbon Nanotube Devices
Properties, Modeling, Integration and Applications
2008
ISBN: 978-3-527-31720-2
Tsimring, S. E.
Electron Beams and Microwave Vacuum Electronics
2006
ISBN: 978-0-470-04816-0
Oks, E.
Plasma Cathode Electron Sources
Physics, Technology, Applications
2005
ISBN: 978-3-527-40634-0
The Editor
Prof. Yahachi Saito
Nagoya University Dept. of Quantum Engineering Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, Weinheim
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form—by photoprinting, microfilm, or any other means—nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
ISBN: 978-3-527-32734-8
Preface
The discovery of carbon nanotubes (CNTs) in 1991 has not only opened a rich field in fundamental science but also given a scope of potential technological applications. CNT is a new class of materials that possess extraordinary properties and propagate nanotechnology and nanoscience. Among the numerous numbers of application proposals of CNTs, the most promising one is a tiny, nanometer-scale field electron emitter that works by applying a low electric voltage in a moderate vacuum. A field emission display (FED) is considered to be the most influential industrial product in which the nanotechnology, CNT, is utilized as a key material, since its commercial market is huge and consumers in general directly experience the technology. At the beginning of the CNT-based FED development, there is an atmosphere that it does not take so much time to realize the products. Through a few R & D projects on CNT-FED, however, it was cognized that it was not so easy to make the high-definition FED with CNT emitters. There are still a number of technical problems to be overcome to put CNT-based FEDs to practical use. Current reduction in retail prices of LCD (liquid crystal display) and PDP (plasma display panel) also makes it difficult to forward the development of FED for TV monitors. But, applications of CNT electron emitters are not limited to TV monitors; character display, digital sinage, back light unit, electron sources for various vacuum electronic devices such as miniature X-ray source, and microwave amplifiers. For example, CNT-based character displays are actively developed and are practically used as public signs. Fundamental studies of CNT and related emitters and also continuing development will make CNT electron sources indispensable and core elements in various fields from consumer devices, medical to industry, and space aviation.
This book is the first, comprehensive monograph dealing with CNT and related field emitters covering from the fundamental to the applications. The fundamental part includes structures and preparations of CNTs, electron emission mechanism, characteristics of CNT electron sources, dynamic behaviour of CNTs during operation and so on. Applications of CNT emitters to vacuum electronic devices include displays, electron sources in electron microscopes, X-ray sources, and microwave amplifiers. The book has sought to bring leading researchers in the respective fields to summarize, using tutorial style, the important advances and to suggest promising future research directions. Authors of the chapters are from different groups worldwide, including academic and industrial circles, guaranteeing a broad view of the topic. I am thankful to the authors who produced excellent chapters that will greatly benefit many readers interested in CNT and related field emitters, and also to John-Wiley for cooperating with us in implementing the book project.
Nagoya, March 2010
Yahachi Saito
List of Contributors
Masaaki Araidai
Tohoku University
WPI Advanced Institute for Materials Research
2-1-1 Katahira
Aoba-ku
Sendai
Miyagi 980-8577
Japan
Koji Asaka
Nagoya University
Department of Quantum Engineering
Furo-cho, Chikusa-ku
Nagoya 464-8603
Japan
Anthony Ayari
Université Claude Bernard Lyon l
Lab. de Physique de la Matière Condensée et Nanostructures
UMR CNRS 5586
43 Blvd 11 Novembre
F-69622
Villeurbanne Cedex
France
Xiomara Calderon-Colon
The University of North Carolina
Department of Physics and Astronomy and
Curriculum in Applied and Materials Science
Chapel Hill
NC 27599
USA
Costel S. Cojocaru
University of Cambridge
Electrical Engineering Division
Centre for Advanced Photonics and Electronics
9 JJ Thomson Avenue
Cambridge
CB3 0FA
UK
Kenneth A. Dean
Motorola Inc.
2100 East Elliot Road
Tempe
AZ 85284
USA
Laurent Gangloff
THALES-Ecole Polytechnique
1, Av. Augustin Fresnel
NANOCARB
91767
Palaiseau Cedex
France
Pierrick Guiset
THALES-Ecole Polytechnique
1, Av. Augustin Fresnel
NANOCARB
91767
Palaiseau Cedex
France
In Taek Han
Samsung Advanced Institute of Technology
Samsung Electronics
Gheung-gu
Yongin-si
Gyeonggi-do 446-712
Korea
Seungwu Han
Seoul National University
Department of Materials
Science and Engineering
Seoul 151-744
Korea
Koichi Hata
Mie University
Department of Electrical and Electronic Engineering
1577 Kurima-machiya-cho
Tsu 514-8507
Japan
Mineo Hiramatsu
Meijo University
Department of Electrical and Electronic Engineering
1-501 Shiogamaguchi
Tempaku
Nagoya 468-8502
Japan
Masaru Hori
Nagoya University
Department of Electrical Engineering and Computer Science
Furo-cho
Chikusa
Nagoya 464-8603
Japan
Shigeo Itoh
Futaba Corporation
R & D Center
Chosei-mura
Chosei-gun
Chiba 299-4395
Japan
Jin-Woo Jeong
Convergence Components & Materials Research Laboratory
Electronics and Telecommunications Research Institute
138 Gajeongno
Yuseong-Gu
Daejeon 305-700
Korea
Niels de Jonge
Oak Ridge National Laboratory
Materials Science and Technology Division
1 Bethel Valley Road
Oak Ridge
TN 37831-6064
USA
and
Vanderbilt University
Medical Center
Department of Molecular Physiology and Biophysics
2215 Garland Ave.
Nashville
37232-0615
USA
Shigeki Kato
High Energy Accelerator Research Organization
Accelerator Laboratory
Tsukuba
Ibaraki 305-0801
Japan
Dae-Jun Kim
Nano Convergence
Device Team
R&D Center
VSI, 461-34
Jeonmin-dong
Yuseong-gu
Daejeon 305-811
Korea
Jong Min Kim
Samsung Advanced
Institute of Technology
Samsung Electronics
Gheung-gu
Yongin-si
Gyeonggi-do 446-712
Korea
Yong Churl Kim
Samsung Advanced Institute of Technology
Samsung Electronics
Gheung-gu
Yongin-si
Gyeonggi-do 446-712
Korea
Shozo Kono
Tohoku University
Institute of Multidisciplinary Research for Advanced Materials
Katahira 2-1-1
Aoba-ku
Sendai 980-8577
Japan
Shu-Ping Lau
Department of Applied Physics
The Hong Kong Polytechnic University
Hung Hom, Kowloon
Hong Kong
Nicolas Le Sech
THALES-Ecole Polytechnique
1, Av. Augustin Fresnel
NANOCARB
91767
Palaiseau Cedex
France
Pierre Legagneux
THALES-Ecole Polytechnique
1, Av. Augustin Fresnel
NANOCARB
91767
Palaiseau Cedex
France
Mark Mann
University of Cambridge
Electrical Engineering Division
Centre for Advanced Photonics and Electronics
9 JJ Thomson Avenue
Cambridge
CB3 0FA
UK
Takahiro Matsumoto
Research and Development Center
Stanley Electric Corporation
5-9-5 Tokodai
Tsukuba
300-2635
Japan
and
Research Institute of Electronics
Shizuoka University
3-5-1 Johoku
Hamamatsu
432-8011
Japan
Hidenori Mimura
Research Institute of Electronics
Shizuoka University
3-5-1 Johoku
Hamamatsu
432-8011
Japan
William I. Milne
University of Cambridge
Electrical Engineering Division
Centre for Advanced Photonics and Electronics
9 JJ Thomson Avenue
Cambridge
CB3 0FA
UK
Hidekazu Murata
Meijo University
Department of Electrical and Electronic Engineering
Faculty of Science and Technology
1-501 Shiogamaguchi
Tempaku-ku
Nagoya 468-8502
Japan
Yoshikazu Nakayama
Osaka University
Department of Mechanical Engineering
2-1 Yamadaoka
Suita
Osaka 565-0871
Japan
Tsuneyuki Noguchi
KAKEN Inc.
1044, Holimachi
Mito
Ibaraki 310-0903
Japan
Fumio Okuyama
Kawauchi-Sanjyunin-Machi
49-53, Aoba-ku
Sendai 980-0866
Japan
Didier Pribat
THALES-Ecole Polytechnique
1, Av. Augustin Fresnel
NANOCARB
91767
Palaiseau Cedex
France
Stephen T. Purcell
Université Claude Bernard Lyon l
Lab. de Physique de la Matière Condensée et Nanostructures
UMR CNRS 5586
43 Blvd 11 Novembre
F-69622
Villeurbanne Cedex
France
Zhi Feng Ren
Department of Physics
Boston College
140 Commonwealth Ave.
Chestnut Hill MA 02467
USA
Yahachi Saito
Nagoya University
Department of Quantum Engineering
Furo-cho, Chikusa-ku
Nagoya 464-8603
Japan
Jean-Philippe Schnell
THALES-Ecole Polytechnique
1, Av. Augustin Fresnel
NANOCARB
91767
Palaiseau Cedex
France
Hiroshi Shimoyama
Meijo University
Department of Electrical and Electronic Engineering
Faculty of Science and Technology
1-501 Shiogamaguchi
Tempaku-ku
Nagoya 468-8502
Japan
Yoon-Ho Song
Convergence Components & Materials Research Laboratory
Electronics and Telecommunications Research Institute
138 Gajeongno
Yuseong-Gu
Daejeon 305-700
Korea
Masaki Tanemura
Department of Frontier Materials
Graduate School of Engineering
Nagoya Institute of Technology
Gokiso-cho, Showa-ku
Nagoya, 466-8555
Japan
Masateru Taniguchi
Futaba Corporation
R & D Center
Chosei-mura
Chosei-gun
Chiba 299-4395
Japan
Kenneth Boh Khin Teo
AIXTRON Nanoinstruments
Buckingway Business Park
Anderson Road
Cambridge
CB24 4FQ
UK
Takeshi Tonegawa
Futaba Corporation
R & D Center
Chosei-mura
Chosei-gun
Chiba 299-4395
Japan
Sashiro Uemura
Noritake Company Ltd.
728-23 Tsumura-cho
Ise 516-1103
Japan
Pascal Vincent
Université Claude Bernard Lyon l
Lab. de Physique de la Matière Condensée et Nanostructures
UMR CNRS 5586
43 Blvd 11 Novembre
F-69622
Villeurbanne Cedex
France
Kazuyuki Watanabe
Tokyo University of Science
Department of Physics and Research Institute for
Science and Technology
1-3 Kagurazaka
Shinjuku-ku
Tokyo 162-8601
Japan
Ryosuke Yabushita
Mie University
Department of Electrical and Electronic Engineering
1577 Kurima-machiya-cho
Tsu 514-8507
Japan
Baoqing Zeng
School of Physical Electronics
University of Electronic Science and Technology of China
Chengdu 610054
China
Otto Zhou
The University of North Carolina
Department of Physics and Astronomy and
Curriculum in Applied and Materials Science
Chapel Hill
NC 27599
USA
Part I
Preparation and Characterization of Carbon Nanotubes
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!