Coherent Laser Beam Combining -  - E-Book

Coherent Laser Beam Combining E-Book

0,0
147,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Laser beam combining techniques allow increasing the power of lasers far beyond what it is possible to obtain from a single conventional laser.One step further, coherent beam combining (CBC) also helps to maintain the very unique properties of the laser emission with respect to its spectral and spatial properties. Such lasers are of major interest for many applications, including industrial, environmental, defense, and
scientific applications. Recently, significant progress has beenmade in coherent beam combining lasers, with a total output power of 100 kW already achieved. Scaling
analysis indicates that further increase of output power with excellent beam quality is feasible by using existing state-of-the-art lasers. Thus, the knowledge of coherent beam combining techniques will become crucial for the design of next-generation highpower lasers. The purpose of this book is to present the more recent concepts of coherent beam combining by world leader teams in the field.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 850

Veröffentlichungsjahr: 2013

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Contents

Cover

Related Titles

Title Page

Copyright

Preface

Acronyms

List of Contributors

Part One: Coherent Combining with Active Phase Control

Chapter 1: Engineering of Coherently Combined, High-Power Laser Systems

1.1 Introduction

1.2 Coherent Beam Combining System Requirements

1.3 Active Phase-Locking Controls

1.4 Geometric Beam Combining

1.5 High-Power Coherent Beam Combining Demonstrations

1.6 Conclusion

Acknowledgments

References

Chapter 2: Coherent Beam Combining of Fiber Amplifiers via LOCSET

2.1 Introduction

2.2 Locking of Optical Coherence by Single-Detector Electronic-Frequency Tagging

2.3 LOCSET Phase Error and Channel Scalability

2.4 LOCSET High-Power Beam Combining

2.5 Conclusion

References

Chapter 3: Kilowatt Coherent Beam Combining of High-Power Fiber Amplifiers Using Single-Frequency Dithering Techniques

3.1 Introduction

3.2 Single-Frequency Dithering Technique

3.3 Sine–Cosine Single-Frequency Dithering Technique

3.4 Summary

References

Chapter 4: Active Coherent Combination Using Hill Climbing-Based Algorithms for Fiber and Semiconductor Amplifiers

4.1 Introduction to Hill Climbing Control Algorithms for Active Phase Control

4.2 Applications of Active Phase Control Using Hill Climbing Control Algorithms

4.3 Summary

Disclaimer

References

Chapter 5: Collective Techniques for Coherent Beam Combining of Fiber Amplifiers

5.1 Introduction

5.2 The Tiled Arrangement

5.3 Key Elements for Active Coherent Beam Combining of a Large Number of Fibers

5.4 Beam Combining of 64 Fibers with Active Phase Control

5.5 Beam Combining by Digital Holography

5.6 Conclusion

Acknowledgments

References

Chapter 6: Coherent Beam Combining and Atmospheric Compensation with Adaptive Fiber Array Systems

6.1 Introduction

6.2 Fiber Array Engineering

6.3 Turbulence-Induced Phase Aberration Compensation with Fiber Array-Integrated Piston and Tip–Tilt Control

6.4 Target Plane Phase Locking of a Coherent Fiber Array on an Unresolved Target

6.5 Target Plane Phase Locking for Resolved Targets

6.6 Conclusion

Acknowledgments

References

Chapter 7: Refractive Index Changes in Rare Earth-Doped Optical Fibers and Their Applications in All-Fiber Coherent Beam Combining

7.1 Introduction

7.2 Theoretical Description of the RIC Effect in Yb-Doped Optical Fibers

7.3 Experimental Studies of the RIC Effect in Yb-Doped Optical Fibers

7.4 All-Fiber Coherent Combining through RIC Effect in Rare Earth-Doped Fibers

7.5 Conclusions and Recent Progress

References

Chapter 8: Coherent Beam Combining of Pulsed Fiber Amplifiers in the Long-Pulse Regime (Nano- to Microseconds)

8.1 Introduction

8.2 Beam Combining Techniques

8.3 Amplification of Optical Pulse in Active Fiber

8.4 Power Limitations in Pulsed Fiber Amplifiers

8.5 Phase Noise and Distortion in Fiber Amplifiers

8.6 Experimental Setup and Results of Coherent Beam Combining of Pulsed Amplifiers Using a Signal Leak between the Pulses

8.7 Alternative Techniques for Pulse Energy Scaling

8.8 Conclusion

References

Chapter 9: Coherent Beam Combining in the Femtosecond Regime

9.1 Introduction

9.2 General Aspects of Coherent Combining over Large Optical Bandwidths

9.3 Coherent Combining with Identical Spectra: Power/Energy Scaling

9.4 Other Coherent Combining Concepts

9.5 Conclusion

References

Part Two: Passive and Self-Organized Phase Locking

Chapter 10: Modal Theory of Coupled Resonators for External Cavity Beam Combining

10.1 Introduction

10.2 Coherent Beam Combining Requirements

10.3 General Mathematical Framework of Passive Laser Resonators

10.4 Coupled Cavity Architectures Based on Beam Superposition

10.5 Parallel Coupled Cavities Based on Space-Invariant Optical Architectures

10.6 Parallel Coupled Resonators Based on Space-Variant Optical Architectures: the Self-Fourier Cavity

10.7 Conclusion

Acknowledgments

References

Chapter 11: Self-Organized Fiber Beam Combining

11.1 Introduction

11.2 Principles of Passively Combined Fiber Lasers

11.3 Phase Coupling Characteristics

11.4 Upscaling the Number of Coupled Lasers

11.5 Passive Combining in Pulsed Regime

11.6 Conclusion

References

Chapter 12: Coherent Combining and Phase Locking of Fiber Lasers

12.1 Introduction

12.2 Passive Phase Locking and Coherent Combining of Small Arrays

12.3 Effects of Amplitude Dynamics, Noise, Longitudinal Modes, and Time-Delayed Coupling

12.4 Upscaling the Number of Phase-Locked Fiber Lasers

12.5 Conclusion

References

Chapter 13: Intracavity Combining of Quantum Cascade Lasers

13.1 Introduction

13.2 External Cavity Passive Coherent Beam Combining

13.3 Experimental Realization: Five-Arm Cavity with a Dammann Grating

13.4 Subwavelength Gratings

13.5 Conclusion

References

Chapter 14: Phase-Conjugate Self-Organized Coherent Beam Combination

14.1 Introduction

14.2 Phase Conjugation

14.3 PCSOCBC

14.4 Conclusions

References

Chapter 15: Coherent Beam Combining Using Phase-Controlled Stimulated Brillouin Scattering Phase Conjugate Mirror

15.1 Introduction

15.2 Principles of SBS-PCM

15.3 Reflectivity of an SBS-PCM

15.4 Beam Combining Architectures

15.5 Phase Controlling Theory

15.6 Coherent Beam Combined Laser System with Phase-Stabilized SBS-PCMs

15.7 Conclusions

References

Index

Related Titles

Sze, S.M., Ng, K.K.

Physics of Semiconductor Devices 3rd Edition

3rd Edition

2006

Print ISBN: 978-0-470-06832-8

Numai, T.

Laser Diodes and their Applications to Communications and Information Processing

2010

Print ISBN: 978-0-470-53668-1

Also available in digital format

Paschotta, R.

Encyclopedia of Laser Physics and Technology

2008

Print ISBN: 978-3-527-40828-3

Epstein, R., Sheik-Bahae, M. (eds.)

Optical Refrigeration

Science and Applications of Laser Cooling of Solids

2009

Print ISBN: 978-3-527-40876-4

Mandel, P.

Nonlinear Optics

An Analytical Approach

2010

Print ISBN: 978-3-527-40923-5

Rafailov, E.U., Cataluna, M.A., Avrutin, E.A.

Ultrafast Lasers Based on Quantum Dot Structures

Physics and Devices

2011

Print ISBN: 978-3-527-40928-0

Also available in digital format

Okhotnikov, O.G. (ed.)

Semiconductor Disk Lasers

Physics and Technology

2010

Print ISBN: 978-3-527-40933-4

Diels, J., Arissian, L.

Lasers

The Power and Precision of Light

2011

Print ISBN: 978-3-527-41039-2

Also available in digital format

Lüdge, K. (ed.)

Nonlinear Laser Dynamics

From Quantum Dots to Cryptography

2012

Print ISBN: 978-3-527-41100-9

Also available in digital format

Okhotnikov, O.G. (ed.)

Fiber Lasers

2012

Print ISBN: 978-3-527-41114-6

Also available in digital format

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-41150-4

ePDF ISBN: 978-3-527-65280-8

ePub ISBN: 978-3-527-65279-2

mobi ISBN: 978-3-527-65278-5

oBook ISBN: 978-3-527-65277-8

Cover Design Formgeber, Eppelheim

Typesetting Thomson Digital, Noida, India

Preface

Laser beam combining techniques allow increasing the power of lasers far beyond what it is possible to obtain from a single conventional laser. One step further, coherent beam combining (CBC) also helps to maintain the very unique properties of the laser emission with respect to its spectral and spatial properties. Such lasers are of major interest for many applications, including industrial, environmental, defense, and scientific applications. Recently, significant progress has been made in coherent beam combining lasers, with a total output power of 100 kW already achieved. Scaling analysis indicates that further increase of output power with excellent beam quality is feasible by using existing state-of-the-art lasers. Thus, the knowledge of coherent beam combining techniques will become crucial for the design of next-generation high-power lasers. The purpose of this book is to present the more recent concepts of coherent beam combining by world leader teams in the field.

It is now well established that the availability of high-power laser diodes has allowed the realization of efficient solid-state lasers. New configurations of diode pumping schemes permit to increase laser efficiency and extract more energy from the amplifying medium operating in the continuous-wave or pulsed regimes. However, the resulting thermal load induces a reduction of the source brightness and a degradation of the spatial beam profile. Recently, development of double-clad fiber lasers has allowed to solve these limitations and to maintain excellent beam quality with single-mode or large-mode area fibers. However, the fiber output power is inherently limited by its damage threshold or parasitic nonlinear effects, which spoil the laser emission. Coherent laser beam combining brings a solution to overcome all these limitations. The idea is to make a coherent summation of the power of individual laser sources or amplifiers, each modular element operating at a power or an energy under the threshold of all these parasitic effects.

The critical issue of CBC is to identify the most efficient architectures and techniques, depending on the requirements and the applications. The central theme of the book is thus to review the most advanced achievements in the field. This book intends to provide a guide for scientists and engineers working on, or with, lasers. Coherent beam combining techniques handle multidisciplinary fields such as laser physics, adaptive optics, electronics, optoelectronics, imaging, and nonlinear optics. In consequence, this book should interest a large community of people involved in these areas. Each technique has been presented in detail with an emphasis on practical implementations. Thus, both scientific and engineering aspects are addressed.

Part One of this book will review in detail the most promising CBC techniques with active phase control (Chapters 1–7). These techniques – strongly connected to adaptive optics – include heterodyne phase detection technique, stochastic parallel gradient descent algorithm phase locking, multidithering or single-frequency dithering techniques, imaging, and interferometric techniques. Active coherent phase combining may also offer unique functionalities such as nonmechanical beam steering and compensation of atmospheric turbulences. These aspects are discussed in Chapters 5 and 6. The use of coherent laser beam combining in the pulsed and the ultrafast regimes are also introduced in Chapters 8 and 9.

Part Two deals with passive phase locking of multiple gain media. Coherent combining is obtained through self-organization of the laser emission (Chapters 10–14) or by nonlinear interactions (Chapter 15). These more advanced concepts do not require electronic control and provide self-adaptive phase locking. Applications of these techniques to fiber lasers are highlighted in Chapters 11 and 12. Combining of quantum cascade lasers in the mid-infrared is detailed in Chapter 13.

This book represents a collective effort and I would like to express my warm thanks to all the authors for their very valuable contributions and cooperation during the preparation of this book.

Arnaud Brignon

Palaiseau, France

May 2013

Acronyms

2Dtwo-dimensionalACalternating currentAOadaptive opticsAOMacousto-optic modulatorARantireflectionASEamplified spontaneous emissionBCbeam combinerBCMback-seeding concave mirrorsBEFWMBrillouin-enhanced four-wave mixingBGSBrillouin gain spectrumBQbeam qualityBSbeam splitterCBCcoherent beam combiningCCDcharge-coupled deviceCCEPSconduction-cooled, end-pumped slabCMOScomplementary metal oxide semiconductorCOMDcatastrophic optical mirror damageCPAchirped-pulse amplifierCPBCcoherent polarization beam combiningCWcontinuous waveDCdirect currentDF-SPGDdelayed-feedback stochastic parallel gradient descentDFBdistributed feedbackDGDammann gratingDLdiffraction limitedDMdeformable mirrorDOEdiffractive optical elementDPAdivided pulse amplificationDSPdigital signal processorDXRLdeep X-ray lithographyEDFerbium-doped fiberEDFAerbium-doped fiber amplifierEOMelectro-optic modulatorEYDFerbium/ytterbium-doped fiberFAfiber amplifierFBGfiber Bragg gratingFCfiber couplerFFfar fieldFPAfocal plane arrayFPGAfield-programmable gate arrayFRFaraday rotatorFROGfrequency-resolved optical gatingFSMfast steering mirrorFWHMfull width at half maximumFWMfour wave mixingGEVgeneralized extreme valueGRINgradient indexHRhigh-reflectionHWPhalf-wave plateICPinductively coupled plasmaIECindividual external cavityIRinfraredJHPSSLJoint High Power Solid State LaserLCliquid crystalLIDARlight detection and rangingLMAlarge mode areaLOCSETlocking of optical coherence by single-detector electronic-frequency taggingLPlow-passMFDmode field diameterMIRmid-infraredMOmaster oscillatorMOCVDmetalorganic chemical vapor depositionMOPAmaster oscillator power amplifierMOPFAmaster oscillator power fiber amplifierNAnumerical apertureNFnear fieldNPCnonphase conjugateNPROnonplanar ring oscillatorNRTEnonreciprocal transmission elementOCoutput couplerOHDoptical heterodyne detectionOPCPAoptical parametric chirped pulse amplificationOPDoptical path differenceOPOoptical parametric oscillatorOTDMoptical time division multiplexingPBSpolarizing beam splitterPCpersonal computerPCFphotonic crystal fiberPCMphase conjugate mirrorPCSOCBCphase conjugate self-organized coherent beam combinationPDphotodiodePIproportional integratorPIBpower-in-the-bucketPLCplanar lightwave circuitPLZTLanthanum-doped lead zirconate titanatePMpolarization-maintainingPMMApolymethylmethacrylatePoDpolarizability differencePOLpolarizerPRFpulse repetition frequencyPSDpower spectral densityPVpeak-to-valleyPZTpiezoelectric translatorQCLquantum cascade laserQCWquasi-continuous waveQWquantum wellQWLSIquadri-wave lateral shearing interferometerQWPquarter-wave plateRCWArigorous coupled wave analysisRFradio frequencyRICrefractive index changeRINrelative intensity noiseRMSroot-mean-squareRTroom temperatureRWGridge waveguideSBCspectral beam combiningSBSstimulated Brillouin scatteringSBS-PCMstimulated Brillouin scattering phase conjugate mirrorSCOWslab-coupled optical waveguideSCOWAslab-coupled optical waveguide amplifiersSCOWLslab-coupled optical waveguide laserSCSFDsine-cosine single-frequency ditheringSEMscanning electron microscopeSESAMsemiconductor saturable absorber mirrorSFsingle frequencySFDsingle-frequency ditheringSLMspatial light modulatorSMsingle modeSMPLspeckle metric optimization-based phase lockingSOCBCself-organized coherent beam combiningSPGDstochastic parallel gradient descentSPIDERspectral phase interferometry for direct electric field reconstructionSPMself-phase modulationSRStrehl ratioSRSstimulated Raman scatteringSSLsolid-state laserSWaPsize, weight, and powerTBPtime-bandwidth productTDFATm-doped fiber amplifierTILtarget-in-the-loopTIRtotal internal reflectionUVultravioletVBGvolume Bragg gratingVBQvertical beam qualityVDLvariable delay lineWDMwavelength-division multiplexerWFSwavefront sensorYDFytterbium-doped fiberYDFAytterbium-doped fiber amplifier

List of Contributors

Oleg Antipov

Institute of Applied Physics of the Russian Academy of Science

Nizhny Novgorod 603950

Russia

Alain Barthélémy

Université de Limoges

CNRS

Xlim Institut de Recherche

87060 Limoges

France

Cindy Bellanger

Onera – The French Aerospace Lab

91761 Palaiseau cedex

France

Guillaume Bloom

Thales Research and Technology

1 avenue Augustin Fresnel

91767 Palaiseau cedex

France

Jérome Bourderionnet

Thales Research & Technology

1 avenue Augustin Fresnel

91767 Palaiseau cedex

France

Pierre Bourdon

Onera – The French Aerospace Lab

91761 Palaiseau cedex

France

Arnaud Brignon

Thales Research & Technology

1 avenue Augustin Fresnel

91767 Palaiseau cedex

France

Guillaume Canat

Onera – The French Aerospace Lab

91761 Palaiseau cedex

France

Gary Carhart

Computational and Information Sciences Directorate

U.S. Army Research Laboratory

Intelligent Optics Laboratory

Adelphi, MD 20783

USA

Mathieu Carras

III-V Lab

Campus de Polytechnique

1 avenue Augustin Fresnel

91767 Palaiseau cedex

France

Seongwoo Cha

Korea Advanced Institute of Science and Technology

Department of Physics

Daejeon 305-701

Republic of Korea

Kevin Creedon

Massachusetts Institute of Technology

Lincoln Laboratory

244 Wood Street

Lexington, MA 02420-9108

USA

Michael J. Damzen

Imperial College London

The Blackett Laboratory

London SW7 2AZ

UK

Louis Daniault

Université Paris-Sud

CNRS

Institut d'Optique

Laboratoire Charles Fabry

2 avenue Augustin Fresnel

91127 Palaiseau cedex

France

Nir Davidson

Weizmann Institute of Science

Department of Physics of Complex Systems

234 Herzl Street

Rehovot 76100

Israel

Andrew Deck

Optonicus

711 East Monument Avenue Suite 101

Dayton, OH 45402

USA

Agnès Desfarges-Berthelemot

Université de Limoges

CNRS

Xlim Institut de Recherche

87060 Limoges

France

Joseph Donnelly

Massachusetts Institute of Technology

Lincoln Laboratory

244 Wood Street

Lexington, MA 02420-9108

USA

Frédéric Druon

Université Paris-Sud

CNRS

Institut d'Optique

Laboratoire Charles Fabry

2 avenue Augustin Fresnel

91127 Palaiseau cedex

France

Tso Y. Fan

Massachusetts Institute of Technology

Lincoln Laboratory

244 Wood Street

Lexington, MA 02420-9108

USA

Angel Flores

Air Force Research Laboratory

Directed Energy Directorate

Kirtland Air Force Base

Albuquerque, NM 87117

USA

Andrei Fotiadi

University of Mons

20, place du Parc

7000 Mons

Belgium

and

Ulyanovsk State University

Leo Tolstoy St.

432970 Ulyanovsk

Russia

and

Ioffe Physico-Technical Institute of the RAS,

194021 St. Petersburg

Russia

Moti Fridman

Weizmann Institute of Science

Department of Physics of Complex Systems

234 Herzl Street

Rehovot 76100

Israel

Asher A. Friesem

Weizmann Institute of Science

Department of Physics of Complex Systems

234 Herzl Street

Rehovot 76100

Israel

Micah Gatz

University of Dayton

School of Engineering

Intelligent Optics Laboratory

300 College Park

Dayton, OH 45469

USA

Patrick Georges

Université Paris-Sud

CNRS

Institut d'Optique

Laboratoire Charles Fabry

2 avenue Augustin Fresnel

91127 Palaiseau cedex

France

Gregory D. Goodno

Northrop Grumman Aerospace

Systems

One Space Park Boulevard

Mail Stop ST71LK/R1184D

Redondo Beach, CA 90278

USA

Julien Le Gouët

Onera – The French Aerospace Lab

91761 Palaiseau cedex

France

Marc Hanna

Université Paris-Sud

CNRS

Institut d'Optique

Laboratoire Charles Fabry

2 avenue Augustin Fresnel

91127 Palaiseau cedex

France

Milan Kalal

Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering

Brehova 7

115 19 Prague 1

Czech Republic

Vincent Kermène

Université de Limoges

CNRS

Xlim Institut de Recherche

87060 Limoges

France

Mercedeh Khajavikhan

University of Minnesota

Department of Electrical and Computer Engineering

Minneapolis, MN 55455

USA

Hong J. Kong

Korea Advanced Institute of Science and Technology

Department of Physics

Daejeon 305-701

Republic of Korea

Maxim Kuznetsov

Institute of Applied Physics of the Russian Academy of Science

Nizhny Novgorod 603950

Russia

Svetlana Lachinova

Optonicus

711 East Monument Avenue Suite 101

Dayton, OH 45402

USA

Eric Lallier

Thales Research and Technology

91767 Palaiseau cedex

France

Christian Larat

Thales Research and Technology

91767 Palaiseau cedex

France

Seong K. Lee

Gwangju Institute of Science and Technology

Advanced Photonics Research Institute

Gwangju 500-712

Republic of Korea

James R. Leger

University of Minnesota

Department of Electrical and Computer Engineering

Minneapolis, MN 55455

USA

Zejin Liu

National University of Defense Technology

College of Opto-Electronic Science and Engineering

Deya road

Changsha 410073

China

Laurent Lombard

Onera – The French Aerospace Lab

91761 Palaiseau cedex

France

Chunte A. Lu

Air Force Research Laboratory

Directed Energy Directorate

Kirtland Air Force Base

Albuquerque, NM 87117

USA

Yanxing Ma

National University of Defense Technology

College of Opto-Electronic Science and Engineering

Deya road

Changsha 410073

China

Xavier Marcadet

III-V Lab

91767 Palaiseau cedex

France

Patrice Mégret

University of Mons

7000 Mons

Belgium

Micha Nixon

Weizmann Institute of Science

Department of Physics of Complex Systems

234 Herzl Street

Rehovot 76100

Israel

Dimitrios N. Papadopoulos

CNRS

Ecole Polytechnique

Laboratoire pour l'utilisation des lasers intenses

91128 Palaiseau cedex

France

Vladimir Paramonov

Optonicus

711 East Monument Avenue Suite 101

Dayton, OH 45402

USA

Sangwoo Park

Korea Advanced Institute of Science and Technology

Department of Physics

Daejeon 305-701

Republic of Korea

Jérome Primot

Onera – The French Aerospace Lab

91761 Palaiseau cedex

France

Benjamin Pulford

Air Force Research Laboratory

Directed Energy Directorate

Kirtland Air Force Base

Albuquerque, NM 87117

USA

Shawn Redmond

Massachusetts Institute of Technology

Lincoln Laboratory

244 Wood Street

Lexington, MA 02420-9108

USA

Craig Robin

Air Force Research Laboratory

Directed Energy Directorate

Kirtland Air Force Base

Albuquerque, NM 87117

USA

Joshua E. Rothenberg

Northrop Grumman Aerospace Systems

One Space Park Boulevard

Mail Stop ST71LK/R1184D

Redondo Beach, CA 90278

USA

Thomas Ryan

Optonicus

711 East Monument Avenue Suite 101

Dayton, OH 45402

USA

Antonio Sanchez-Rubio

Massachusetts Institute of Technology

Lincoln Laboratory

244 Wood Street

Lexington, MA 02420-9108

USA

Peter C. Shardlow

University of Southampton

Optoelectronics Research Centre

Southampton SO17 1BJ

UK

Thomas M. Shay

Air Force Research Laboratory

Directed Energy Directorate

Kirtland Air Force Base

Albuquerque, NM 87117

USA

Ondrej Slezak

Czech Academy of Sciences

Institute of Physics

HiLASE Project

Na Slovance 1999/2

182 21 Prague 8

Czech Republic

Mikhail Vorontsov

University of Dayton

School of Engineering

Intelligent Optics Laboratory

300 College Park

Dayton, OH 45469

USA

and

Optonicus

711 East Monument Avenue Suite 101

Dayton, OH 45402

USA

Xiaolin Wang

National University of Defense Technology

College of Opto-Electronic Science and Engineering

Deya Road

Changsha 410073

China

Thomas Weyrauch

University of Dayton

School of Engineering

Intelligent Optics Laboratory

300 College Park

Dayton, OH 45469

USA

Xiaojun Xu

National University of Defense Technology

College of Opto-Electronic Science and Engineering

Deya Road

Changsha 410073

China

Jin W. Yoon

Institute for Basic Science

Daejeon 305-811

Republic of Korea

Charles Yu

Massachusetts Institute of Technology

Lincoln Laboratory

244 Wood Street

Lexington, MA 02420-9108

USA

Yoann Zaouter

Amplitude Systèmes

11 avenue de Canteranne

Cité de la Photonique

33600 Pessac

France

Pu Zhou

National University of Defense Technology

College of Opto-Electronic Science and Engineering

Deya Road

Changsha 410073

China

Part One

Coherent Combining with Active Phase Control

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!