147,99 €
Laser beam combining techniques allow increasing the power of lasers far beyond what it is possible to obtain from a single conventional laser.One step further, coherent beam combining (CBC) also helps to maintain the very unique properties of the laser emission with respect to its spectral and spatial properties. Such lasers are of major interest for many applications, including industrial, environmental, defense, and
scientific applications. Recently, significant progress has beenmade in coherent beam combining lasers, with a total output power of 100 kW already achieved. Scaling
analysis indicates that further increase of output power with excellent beam quality is feasible by using existing state-of-the-art lasers. Thus, the knowledge of coherent beam combining techniques will become crucial for the design of next-generation highpower lasers. The purpose of this book is to present the more recent concepts of coherent beam combining by world leader teams in the field.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 850
Veröffentlichungsjahr: 2013
Contents
Cover
Related Titles
Title Page
Copyright
Preface
Acronyms
List of Contributors
Part One: Coherent Combining with Active Phase Control
Chapter 1: Engineering of Coherently Combined, High-Power Laser Systems
1.1 Introduction
1.2 Coherent Beam Combining System Requirements
1.3 Active Phase-Locking Controls
1.4 Geometric Beam Combining
1.5 High-Power Coherent Beam Combining Demonstrations
1.6 Conclusion
Acknowledgments
References
Chapter 2: Coherent Beam Combining of Fiber Amplifiers via LOCSET
2.1 Introduction
2.2 Locking of Optical Coherence by Single-Detector Electronic-Frequency Tagging
2.3 LOCSET Phase Error and Channel Scalability
2.4 LOCSET High-Power Beam Combining
2.5 Conclusion
References
Chapter 3: Kilowatt Coherent Beam Combining of High-Power Fiber Amplifiers Using Single-Frequency Dithering Techniques
3.1 Introduction
3.2 Single-Frequency Dithering Technique
3.3 Sine–Cosine Single-Frequency Dithering Technique
3.4 Summary
References
Chapter 4: Active Coherent Combination Using Hill Climbing-Based Algorithms for Fiber and Semiconductor Amplifiers
4.1 Introduction to Hill Climbing Control Algorithms for Active Phase Control
4.2 Applications of Active Phase Control Using Hill Climbing Control Algorithms
4.3 Summary
Disclaimer
References
Chapter 5: Collective Techniques for Coherent Beam Combining of Fiber Amplifiers
5.1 Introduction
5.2 The Tiled Arrangement
5.3 Key Elements for Active Coherent Beam Combining of a Large Number of Fibers
5.4 Beam Combining of 64 Fibers with Active Phase Control
5.5 Beam Combining by Digital Holography
5.6 Conclusion
Acknowledgments
References
Chapter 6: Coherent Beam Combining and Atmospheric Compensation with Adaptive Fiber Array Systems
6.1 Introduction
6.2 Fiber Array Engineering
6.3 Turbulence-Induced Phase Aberration Compensation with Fiber Array-Integrated Piston and Tip–Tilt Control
6.4 Target Plane Phase Locking of a Coherent Fiber Array on an Unresolved Target
6.5 Target Plane Phase Locking for Resolved Targets
6.6 Conclusion
Acknowledgments
References
Chapter 7: Refractive Index Changes in Rare Earth-Doped Optical Fibers and Their Applications in All-Fiber Coherent Beam Combining
7.1 Introduction
7.2 Theoretical Description of the RIC Effect in Yb-Doped Optical Fibers
7.3 Experimental Studies of the RIC Effect in Yb-Doped Optical Fibers
7.4 All-Fiber Coherent Combining through RIC Effect in Rare Earth-Doped Fibers
7.5 Conclusions and Recent Progress
References
Chapter 8: Coherent Beam Combining of Pulsed Fiber Amplifiers in the Long-Pulse Regime (Nano- to Microseconds)
8.1 Introduction
8.2 Beam Combining Techniques
8.3 Amplification of Optical Pulse in Active Fiber
8.4 Power Limitations in Pulsed Fiber Amplifiers
8.5 Phase Noise and Distortion in Fiber Amplifiers
8.6 Experimental Setup and Results of Coherent Beam Combining of Pulsed Amplifiers Using a Signal Leak between the Pulses
8.7 Alternative Techniques for Pulse Energy Scaling
8.8 Conclusion
References
Chapter 9: Coherent Beam Combining in the Femtosecond Regime
9.1 Introduction
9.2 General Aspects of Coherent Combining over Large Optical Bandwidths
9.3 Coherent Combining with Identical Spectra: Power/Energy Scaling
9.4 Other Coherent Combining Concepts
9.5 Conclusion
References
Part Two: Passive and Self-Organized Phase Locking
Chapter 10: Modal Theory of Coupled Resonators for External Cavity Beam Combining
10.1 Introduction
10.2 Coherent Beam Combining Requirements
10.3 General Mathematical Framework of Passive Laser Resonators
10.4 Coupled Cavity Architectures Based on Beam Superposition
10.5 Parallel Coupled Cavities Based on Space-Invariant Optical Architectures
10.6 Parallel Coupled Resonators Based on Space-Variant Optical Architectures: the Self-Fourier Cavity
10.7 Conclusion
Acknowledgments
References
Chapter 11: Self-Organized Fiber Beam Combining
11.1 Introduction
11.2 Principles of Passively Combined Fiber Lasers
11.3 Phase Coupling Characteristics
11.4 Upscaling the Number of Coupled Lasers
11.5 Passive Combining in Pulsed Regime
11.6 Conclusion
References
Chapter 12: Coherent Combining and Phase Locking of Fiber Lasers
12.1 Introduction
12.2 Passive Phase Locking and Coherent Combining of Small Arrays
12.3 Effects of Amplitude Dynamics, Noise, Longitudinal Modes, and Time-Delayed Coupling
12.4 Upscaling the Number of Phase-Locked Fiber Lasers
12.5 Conclusion
References
Chapter 13: Intracavity Combining of Quantum Cascade Lasers
13.1 Introduction
13.2 External Cavity Passive Coherent Beam Combining
13.3 Experimental Realization: Five-Arm Cavity with a Dammann Grating
13.4 Subwavelength Gratings
13.5 Conclusion
References
Chapter 14: Phase-Conjugate Self-Organized Coherent Beam Combination
14.1 Introduction
14.2 Phase Conjugation
14.3 PCSOCBC
14.4 Conclusions
References
Chapter 15: Coherent Beam Combining Using Phase-Controlled Stimulated Brillouin Scattering Phase Conjugate Mirror
15.1 Introduction
15.2 Principles of SBS-PCM
15.3 Reflectivity of an SBS-PCM
15.4 Beam Combining Architectures
15.5 Phase Controlling Theory
15.6 Coherent Beam Combined Laser System with Phase-Stabilized SBS-PCMs
15.7 Conclusions
References
Index
Related Titles
Sze, S.M., Ng, K.K.
Physics of Semiconductor Devices 3rd Edition
3rd Edition
2006
Print ISBN: 978-0-470-06832-8
Numai, T.
Laser Diodes and their Applications to Communications and Information Processing
2010
Print ISBN: 978-0-470-53668-1
Also available in digital format
Paschotta, R.
Encyclopedia of Laser Physics and Technology
2008
Print ISBN: 978-3-527-40828-3
Epstein, R., Sheik-Bahae, M. (eds.)
Optical Refrigeration
Science and Applications of Laser Cooling of Solids
2009
Print ISBN: 978-3-527-40876-4
Mandel, P.
Nonlinear Optics
An Analytical Approach
2010
Print ISBN: 978-3-527-40923-5
Rafailov, E.U., Cataluna, M.A., Avrutin, E.A.
Ultrafast Lasers Based on Quantum Dot Structures
Physics and Devices
2011
Print ISBN: 978-3-527-40928-0
Also available in digital format
Okhotnikov, O.G. (ed.)
Semiconductor Disk Lasers
Physics and Technology
2010
Print ISBN: 978-3-527-40933-4
Diels, J., Arissian, L.
Lasers
The Power and Precision of Light
2011
Print ISBN: 978-3-527-41039-2
Also available in digital format
Lüdge, K. (ed.)
Nonlinear Laser Dynamics
From Quantum Dots to Cryptography
2012
Print ISBN: 978-3-527-41100-9
Also available in digital format
Okhotnikov, O.G. (ed.)
Fiber Lasers
2012
Print ISBN: 978-3-527-41114-6
Also available in digital format
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-41150-4
ePDF ISBN: 978-3-527-65280-8
ePub ISBN: 978-3-527-65279-2
mobi ISBN: 978-3-527-65278-5
oBook ISBN: 978-3-527-65277-8
Cover Design Formgeber, Eppelheim
Typesetting Thomson Digital, Noida, India
Preface
Laser beam combining techniques allow increasing the power of lasers far beyond what it is possible to obtain from a single conventional laser. One step further, coherent beam combining (CBC) also helps to maintain the very unique properties of the laser emission with respect to its spectral and spatial properties. Such lasers are of major interest for many applications, including industrial, environmental, defense, and scientific applications. Recently, significant progress has been made in coherent beam combining lasers, with a total output power of 100 kW already achieved. Scaling analysis indicates that further increase of output power with excellent beam quality is feasible by using existing state-of-the-art lasers. Thus, the knowledge of coherent beam combining techniques will become crucial for the design of next-generation high-power lasers. The purpose of this book is to present the more recent concepts of coherent beam combining by world leader teams in the field.
It is now well established that the availability of high-power laser diodes has allowed the realization of efficient solid-state lasers. New configurations of diode pumping schemes permit to increase laser efficiency and extract more energy from the amplifying medium operating in the continuous-wave or pulsed regimes. However, the resulting thermal load induces a reduction of the source brightness and a degradation of the spatial beam profile. Recently, development of double-clad fiber lasers has allowed to solve these limitations and to maintain excellent beam quality with single-mode or large-mode area fibers. However, the fiber output power is inherently limited by its damage threshold or parasitic nonlinear effects, which spoil the laser emission. Coherent laser beam combining brings a solution to overcome all these limitations. The idea is to make a coherent summation of the power of individual laser sources or amplifiers, each modular element operating at a power or an energy under the threshold of all these parasitic effects.
The critical issue of CBC is to identify the most efficient architectures and techniques, depending on the requirements and the applications. The central theme of the book is thus to review the most advanced achievements in the field. This book intends to provide a guide for scientists and engineers working on, or with, lasers. Coherent beam combining techniques handle multidisciplinary fields such as laser physics, adaptive optics, electronics, optoelectronics, imaging, and nonlinear optics. In consequence, this book should interest a large community of people involved in these areas. Each technique has been presented in detail with an emphasis on practical implementations. Thus, both scientific and engineering aspects are addressed.
Part One of this book will review in detail the most promising CBC techniques with active phase control (Chapters 1–7). These techniques – strongly connected to adaptive optics – include heterodyne phase detection technique, stochastic parallel gradient descent algorithm phase locking, multidithering or single-frequency dithering techniques, imaging, and interferometric techniques. Active coherent phase combining may also offer unique functionalities such as nonmechanical beam steering and compensation of atmospheric turbulences. These aspects are discussed in Chapters 5 and 6. The use of coherent laser beam combining in the pulsed and the ultrafast regimes are also introduced in Chapters 8 and 9.
Part Two deals with passive phase locking of multiple gain media. Coherent combining is obtained through self-organization of the laser emission (Chapters 10–14) or by nonlinear interactions (Chapter 15). These more advanced concepts do not require electronic control and provide self-adaptive phase locking. Applications of these techniques to fiber lasers are highlighted in Chapters 11 and 12. Combining of quantum cascade lasers in the mid-infrared is detailed in Chapter 13.
This book represents a collective effort and I would like to express my warm thanks to all the authors for their very valuable contributions and cooperation during the preparation of this book.
Arnaud Brignon
Palaiseau, France
May 2013
Acronyms
2Dtwo-dimensionalACalternating currentAOadaptive opticsAOMacousto-optic modulatorARantireflectionASEamplified spontaneous emissionBCbeam combinerBCMback-seeding concave mirrorsBEFWMBrillouin-enhanced four-wave mixingBGSBrillouin gain spectrumBQbeam qualityBSbeam splitterCBCcoherent beam combiningCCDcharge-coupled deviceCCEPSconduction-cooled, end-pumped slabCMOScomplementary metal oxide semiconductorCOMDcatastrophic optical mirror damageCPAchirped-pulse amplifierCPBCcoherent polarization beam combiningCWcontinuous waveDCdirect currentDF-SPGDdelayed-feedback stochastic parallel gradient descentDFBdistributed feedbackDGDammann gratingDLdiffraction limitedDMdeformable mirrorDOEdiffractive optical elementDPAdivided pulse amplificationDSPdigital signal processorDXRLdeep X-ray lithographyEDFerbium-doped fiberEDFAerbium-doped fiber amplifierEOMelectro-optic modulatorEYDFerbium/ytterbium-doped fiberFAfiber amplifierFBGfiber Bragg gratingFCfiber couplerFFfar fieldFPAfocal plane arrayFPGAfield-programmable gate arrayFRFaraday rotatorFROGfrequency-resolved optical gatingFSMfast steering mirrorFWHMfull width at half maximumFWMfour wave mixingGEVgeneralized extreme valueGRINgradient indexHRhigh-reflectionHWPhalf-wave plateICPinductively coupled plasmaIECindividual external cavityIRinfraredJHPSSLJoint High Power Solid State LaserLCliquid crystalLIDARlight detection and rangingLMAlarge mode areaLOCSETlocking of optical coherence by single-detector electronic-frequency taggingLPlow-passMFDmode field diameterMIRmid-infraredMOmaster oscillatorMOCVDmetalorganic chemical vapor depositionMOPAmaster oscillator power amplifierMOPFAmaster oscillator power fiber amplifierNAnumerical apertureNFnear fieldNPCnonphase conjugateNPROnonplanar ring oscillatorNRTEnonreciprocal transmission elementOCoutput couplerOHDoptical heterodyne detectionOPCPAoptical parametric chirped pulse amplificationOPDoptical path differenceOPOoptical parametric oscillatorOTDMoptical time division multiplexingPBSpolarizing beam splitterPCpersonal computerPCFphotonic crystal fiberPCMphase conjugate mirrorPCSOCBCphase conjugate self-organized coherent beam combinationPDphotodiodePIproportional integratorPIBpower-in-the-bucketPLCplanar lightwave circuitPLZTLanthanum-doped lead zirconate titanatePMpolarization-maintainingPMMApolymethylmethacrylatePoDpolarizability differencePOLpolarizerPRFpulse repetition frequencyPSDpower spectral densityPVpeak-to-valleyPZTpiezoelectric translatorQCLquantum cascade laserQCWquasi-continuous waveQWquantum wellQWLSIquadri-wave lateral shearing interferometerQWPquarter-wave plateRCWArigorous coupled wave analysisRFradio frequencyRICrefractive index changeRINrelative intensity noiseRMSroot-mean-squareRTroom temperatureRWGridge waveguideSBCspectral beam combiningSBSstimulated Brillouin scatteringSBS-PCMstimulated Brillouin scattering phase conjugate mirrorSCOWslab-coupled optical waveguideSCOWAslab-coupled optical waveguide amplifiersSCOWLslab-coupled optical waveguide laserSCSFDsine-cosine single-frequency ditheringSEMscanning electron microscopeSESAMsemiconductor saturable absorber mirrorSFsingle frequencySFDsingle-frequency ditheringSLMspatial light modulatorSMsingle modeSMPLspeckle metric optimization-based phase lockingSOCBCself-organized coherent beam combiningSPGDstochastic parallel gradient descentSPIDERspectral phase interferometry for direct electric field reconstructionSPMself-phase modulationSRStrehl ratioSRSstimulated Raman scatteringSSLsolid-state laserSWaPsize, weight, and powerTBPtime-bandwidth productTDFATm-doped fiber amplifierTILtarget-in-the-loopTIRtotal internal reflectionUVultravioletVBGvolume Bragg gratingVBQvertical beam qualityVDLvariable delay lineWDMwavelength-division multiplexerWFSwavefront sensorYDFytterbium-doped fiberYDFAytterbium-doped fiber amplifierList of Contributors
Oleg Antipov
Institute of Applied Physics of the Russian Academy of Science
Nizhny Novgorod 603950
Russia
Alain Barthélémy
Université de Limoges
CNRS
Xlim Institut de Recherche
87060 Limoges
France
Cindy Bellanger
Onera – The French Aerospace Lab
91761 Palaiseau cedex
France
Guillaume Bloom
Thales Research and Technology
1 avenue Augustin Fresnel
91767 Palaiseau cedex
France
Jérome Bourderionnet
Thales Research & Technology
1 avenue Augustin Fresnel
91767 Palaiseau cedex
France
Pierre Bourdon
Onera – The French Aerospace Lab
91761 Palaiseau cedex
France
Arnaud Brignon
Thales Research & Technology
1 avenue Augustin Fresnel
91767 Palaiseau cedex
France
Guillaume Canat
Onera – The French Aerospace Lab
91761 Palaiseau cedex
France
Gary Carhart
Computational and Information Sciences Directorate
U.S. Army Research Laboratory
Intelligent Optics Laboratory
Adelphi, MD 20783
USA
Mathieu Carras
III-V Lab
Campus de Polytechnique
1 avenue Augustin Fresnel
91767 Palaiseau cedex
France
Seongwoo Cha
Korea Advanced Institute of Science and Technology
Department of Physics
Daejeon 305-701
Republic of Korea
Kevin Creedon
Massachusetts Institute of Technology
Lincoln Laboratory
244 Wood Street
Lexington, MA 02420-9108
USA
Michael J. Damzen
Imperial College London
The Blackett Laboratory
London SW7 2AZ
UK
Louis Daniault
Université Paris-Sud
CNRS
Institut d'Optique
Laboratoire Charles Fabry
2 avenue Augustin Fresnel
91127 Palaiseau cedex
France
Nir Davidson
Weizmann Institute of Science
Department of Physics of Complex Systems
234 Herzl Street
Rehovot 76100
Israel
Andrew Deck
Optonicus
711 East Monument Avenue Suite 101
Dayton, OH 45402
USA
Agnès Desfarges-Berthelemot
Université de Limoges
CNRS
Xlim Institut de Recherche
87060 Limoges
France
Joseph Donnelly
Massachusetts Institute of Technology
Lincoln Laboratory
244 Wood Street
Lexington, MA 02420-9108
USA
Frédéric Druon
Université Paris-Sud
CNRS
Institut d'Optique
Laboratoire Charles Fabry
2 avenue Augustin Fresnel
91127 Palaiseau cedex
France
Tso Y. Fan
Massachusetts Institute of Technology
Lincoln Laboratory
244 Wood Street
Lexington, MA 02420-9108
USA
Angel Flores
Air Force Research Laboratory
Directed Energy Directorate
Kirtland Air Force Base
Albuquerque, NM 87117
USA
Andrei Fotiadi
University of Mons
20, place du Parc
7000 Mons
Belgium
and
Ulyanovsk State University
Leo Tolstoy St.
432970 Ulyanovsk
Russia
and
Ioffe Physico-Technical Institute of the RAS,
194021 St. Petersburg
Russia
Moti Fridman
Weizmann Institute of Science
Department of Physics of Complex Systems
234 Herzl Street
Rehovot 76100
Israel
Asher A. Friesem
Weizmann Institute of Science
Department of Physics of Complex Systems
234 Herzl Street
Rehovot 76100
Israel
Micah Gatz
University of Dayton
School of Engineering
Intelligent Optics Laboratory
300 College Park
Dayton, OH 45469
USA
Patrick Georges
Université Paris-Sud
CNRS
Institut d'Optique
Laboratoire Charles Fabry
2 avenue Augustin Fresnel
91127 Palaiseau cedex
France
Gregory D. Goodno
Northrop Grumman Aerospace
Systems
One Space Park Boulevard
Mail Stop ST71LK/R1184D
Redondo Beach, CA 90278
USA
Julien Le Gouët
Onera – The French Aerospace Lab
91761 Palaiseau cedex
France
Marc Hanna
Université Paris-Sud
CNRS
Institut d'Optique
Laboratoire Charles Fabry
2 avenue Augustin Fresnel
91127 Palaiseau cedex
France
Milan Kalal
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering
Brehova 7
115 19 Prague 1
Czech Republic
Vincent Kermène
Université de Limoges
CNRS
Xlim Institut de Recherche
87060 Limoges
France
Mercedeh Khajavikhan
University of Minnesota
Department of Electrical and Computer Engineering
Minneapolis, MN 55455
USA
Hong J. Kong
Korea Advanced Institute of Science and Technology
Department of Physics
Daejeon 305-701
Republic of Korea
Maxim Kuznetsov
Institute of Applied Physics of the Russian Academy of Science
Nizhny Novgorod 603950
Russia
Svetlana Lachinova
Optonicus
711 East Monument Avenue Suite 101
Dayton, OH 45402
USA
Eric Lallier
Thales Research and Technology
91767 Palaiseau cedex
France
Christian Larat
Thales Research and Technology
91767 Palaiseau cedex
France
Seong K. Lee
Gwangju Institute of Science and Technology
Advanced Photonics Research Institute
Gwangju 500-712
Republic of Korea
James R. Leger
University of Minnesota
Department of Electrical and Computer Engineering
Minneapolis, MN 55455
USA
Zejin Liu
National University of Defense Technology
College of Opto-Electronic Science and Engineering
Deya road
Changsha 410073
China
Laurent Lombard
Onera – The French Aerospace Lab
91761 Palaiseau cedex
France
Chunte A. Lu
Air Force Research Laboratory
Directed Energy Directorate
Kirtland Air Force Base
Albuquerque, NM 87117
USA
Yanxing Ma
National University of Defense Technology
College of Opto-Electronic Science and Engineering
Deya road
Changsha 410073
China
Xavier Marcadet
III-V Lab
91767 Palaiseau cedex
France
Patrice Mégret
University of Mons
7000 Mons
Belgium
Micha Nixon
Weizmann Institute of Science
Department of Physics of Complex Systems
234 Herzl Street
Rehovot 76100
Israel
Dimitrios N. Papadopoulos
CNRS
Ecole Polytechnique
Laboratoire pour l'utilisation des lasers intenses
91128 Palaiseau cedex
France
Vladimir Paramonov
Optonicus
711 East Monument Avenue Suite 101
Dayton, OH 45402
USA
Sangwoo Park
Korea Advanced Institute of Science and Technology
Department of Physics
Daejeon 305-701
Republic of Korea
Jérome Primot
Onera – The French Aerospace Lab
91761 Palaiseau cedex
France
Benjamin Pulford
Air Force Research Laboratory
Directed Energy Directorate
Kirtland Air Force Base
Albuquerque, NM 87117
USA
Shawn Redmond
Massachusetts Institute of Technology
Lincoln Laboratory
244 Wood Street
Lexington, MA 02420-9108
USA
Craig Robin
Air Force Research Laboratory
Directed Energy Directorate
Kirtland Air Force Base
Albuquerque, NM 87117
USA
Joshua E. Rothenberg
Northrop Grumman Aerospace Systems
One Space Park Boulevard
Mail Stop ST71LK/R1184D
Redondo Beach, CA 90278
USA
Thomas Ryan
Optonicus
711 East Monument Avenue Suite 101
Dayton, OH 45402
USA
Antonio Sanchez-Rubio
Massachusetts Institute of Technology
Lincoln Laboratory
244 Wood Street
Lexington, MA 02420-9108
USA
Peter C. Shardlow
University of Southampton
Optoelectronics Research Centre
Southampton SO17 1BJ
UK
Thomas M. Shay
Air Force Research Laboratory
Directed Energy Directorate
Kirtland Air Force Base
Albuquerque, NM 87117
USA
Ondrej Slezak
Czech Academy of Sciences
Institute of Physics
HiLASE Project
Na Slovance 1999/2
182 21 Prague 8
Czech Republic
Mikhail Vorontsov
University of Dayton
School of Engineering
Intelligent Optics Laboratory
300 College Park
Dayton, OH 45469
USA
and
Optonicus
711 East Monument Avenue Suite 101
Dayton, OH 45402
USA
Xiaolin Wang
National University of Defense Technology
College of Opto-Electronic Science and Engineering
Deya Road
Changsha 410073
China
Thomas Weyrauch
University of Dayton
School of Engineering
Intelligent Optics Laboratory
300 College Park
Dayton, OH 45469
USA
Xiaojun Xu
National University of Defense Technology
College of Opto-Electronic Science and Engineering
Deya Road
Changsha 410073
China
Jin W. Yoon
Institute for Basic Science
Daejeon 305-811
Republic of Korea
Charles Yu
Massachusetts Institute of Technology
Lincoln Laboratory
244 Wood Street
Lexington, MA 02420-9108
USA
Yoann Zaouter
Amplitude Systèmes
11 avenue de Canteranne
Cité de la Photonique
33600 Pessac
France
Pu Zhou
National University of Defense Technology
College of Opto-Electronic Science and Engineering
Deya Road
Changsha 410073
China
Part One
Coherent Combining with Active Phase Control
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!