156,99 €
Neurowissenschaftler suchen nach Antworten auf die Fragen, wie wir lernen und Information speichern, welche Prozesse im Gehirn verantwortlich sind und in welchem Zeitrahmen diese ablaufen. Die Konzepte, die aus der Physik kommen und weiterentwickelt werden, können in Medizin und Soziologie, aber auch in Robotik und Bildanalyse Anwendung finden. Zentrales Thema dieses Buches sind die sogenannten kritischen Phänomene im Gehirn. Diese werden mithilfe mathematischer und physikalischer Modelle beschrieben, mit denen man auch Erdbeben, Waldbrände oder die Ausbreitung von Epidemien modellieren kann. Neuere Erkenntnisse haben ergeben, dass diese selbstgeordneten Instabilitäten auch im Nervensystem auftreten. Dieses Referenzwerk stellt theoretische und experimentelle Befunde internationaler Gehirnforschung vor zeichnet die Perspektiven dieses neuen Forschungsfeldes auf.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1102
Veröffentlichungsjahr: 2014
Cover
Reviews of Nonlinear Dynamics and Complexity
Title Page
Copyright
List of Contributors
Introduction
1.1 Criticality in Neural Systems
Chapter 2: Criticality in Cortex: Neuronal Avalanches and Coherence Potentials
2.1 The Late Arrival of Critical Dynamics to the Study of Cortex Function
2.2 Cortical Resting Activity Organizes as Neuronal Avalanches
2.3 Neuronal Avalanches: Cascades of Cascades
2.4 The Statistics of Neuronal Avalanches and Earthquakes
2.5 Neuronal Avalanches and Cortical Oscillations
2.6 Neuronal Avalanches Optimize Numerous Network Functions
2.7 The Coherence Potential: Threshold-Dependent Spread of Synchrony with High Fidelity
2.8 The Functional Architecture of Neuronal Avalanches and Coherence Potentials
Acknowledgement
References
Chapter 3: Critical Brain Dynamics at Large Scale
3.1 Introduction
3.2 What is Criticality Good for?
3.3 Statistical Signatures of Critical Dynamics
3.4 Beyond Averages: Spatiotemporal Brain Dynamics at Criticality
3.5 Consequences
3.6 Summary and Outlook
References
Chapter 4: The Dynamic Brain in Action: Coordinative Structures, Criticality, and Coordination Dynamics
4.1 Introduction
4.2 The Organization of Matter
4.3 Setting the Context: A Window into Biological Coordination
4.4 Beyond Analogy
4.5 An Elementary Coordinative Structure: Bimanual Coordination
4.6 Theoretical Modeling: Symmetry and Phase Transitions
4.7 Predicted Signatures of Critical Phenomena in Biological Coordination
4.8 Some Comments on Criticality, Timescales, and Related Aspects
4.9 Symmetry Breaking and Metastability
4.10 Nonequilibrium Phase Transitions in the Human Brain: MEG, EEG, and fMRI
4.11 Neural Field Modeling of Multiple States and Phase Transitions in the Brain
4.12 Transitions, Transients, Chimera, and Spatiotemporal Metastability
4.13 The Middle Way: Mesoscopic Protectorates
4.14 Concluding Remarks
Acknowledgments
References
Chapter 5: The Correlation of the Neuronal Long-Range Temporal Correlations, Avalanche Dynamics with the Behavioral Scaling Laws and Interindividual Variability
5.1 Introduction
5.2 Criticality in the Nervous System: Behavioral and Physiological Evidence
5.3 Magneto- and Electroencephalography (M/EEG) as a Tool for Noninvasive Reconstruction of Human Cortical Dynamics
5.4 Slow Neuronal Fluctuations: The Physiological Substrates of LRTC
5.6 Neuronal Avalanches, LRTC, and Oscillations: Enigmatic Coexistence?
5.7 Conclusions
Acknowledgments
References
Chapter 6: The Turbulent Human Brain: An MHD Approach to the MEG
6.1 Introduction
6.2 Autonomous, Intermittent, Hierarchical Motions, from Brain Proteins Fluctuations to Emergent Magnetic Fields
6.3 Magnetic Field Induction and Turbulence; Its Maintenance, Decay, and Modulation
6.4 Localizing a Time-Varying Entropy Measure of Turbulence,
Rank Vector Entropy
(
RVE
) [35] [107], Using a
Linearly Constrained Minimum Variance
(LCMV)
Beamformer
Such as
Synthetic Aperture Magnetometry
(SAM) [25] [34], Yields State and Function-Related Localized Increases and Decreases in the
RVE
Estimate
6.5 Potential Implications of the MHD Approach to MEG Magnetic Fields for Understanding the Mechanisms of Action and Clinical Applications of the Family of TMS (Transcranial Magnetic Stimulation) Human Brain Therapies
References
Chapter 7: Thermodynamic Model of Criticality in the Cortex Based on EEG/ECoG Data
7.1 Introduction
7.2 Principles of Hierarchical Brain Models
7.3 Mathematical Formulation of Neuropercolation
7.4 Critical Regimes of Coupled Hierarchical Lattices
7.5 BroadBand Chaotic Oscillations
7.6 Conclusions
References
Chapter 8: Neuronal Avalanches in the Human Brain
8.1 Introduction
8.2 Data and Cascade-Size Analysis
8.3 Cascade-Size Distributions are Power Laws
8.4 The Data are Captured by a Critical Branching Process
8.5 Discussion
8.6 Summary
Acknowledgements
References
Chapter 9: Critical Slowing and Perception
9.1 Introduction
9.2 Itinerant Dynamics
9.3 The Free Energy Principle
9.4 Neurobiological Implementation of Active Inference
9.5 Self-Organized Instability
9.6 Birdsong, Attractors, and Critical Slowing
9.7 Conclusion
References
Chapter 10: Self-Organized Criticality in Neural Network Models
10.1 Introduction
10.2 Avalanche Dynamics in Neuronal Systems
10.3 Simple Models for Self-Organized Critical Adaptive Neural Networks
10.4 Conclusion
Acknowledgments
References
Chapter 11: Single Neuron Response Fluctuations: A Self-Organized Criticality Point of View
11.1 Neuronal Excitability
11.2 Experimental Observations on Excitability Dynamics
11.3 Self-Organized Criticality Interpretation
11.4 Adaptive Rates and Contact Processes
11.5 Concluding Remarks
References
Chapter 12: Activity Dependent Model for Neuronal Avalanches
12.1 The Model
12.2 Neuronal Avalanches in Spontaneous Activity
12.3 Learning
12.4 Temporal Organization of Neuronal Avalanches
12.5 Conclusions
References
Chapter 13: The Neuronal Network Oscillation as a Critical Phenomenon
13.1 Introduction
13.2 Properties of Scale-Free Time Series
13.3 The Detrended Fluctuation Analysis (DFA)
13.4 DFA Applied to Neuronal Oscillations
13.5 Insights from the Application of DFA to Neuronal Oscillations
13.6 Scaling Behavior of Oscillations: a Sign of Criticality?
Acknowledgment
References
Chapter 14: Critical Exponents, Universality Class, and Thermodynamic “Temperature” of the Brain
14.1 Introduction
14.2 Thermodynamic Quantities at the Critical Point and Their Neuronal Interpretations
14.3 Finite-Size Scaling
14.4 Studying the Thermodynamics Properties of Neuronal Avalanches at Different Scales
14.5 What Could be the “Temperature” for the Brain?
Acknowledgment
References
Chapter 15: Peak Variability and Optimal Performance in Cortical Networks at Criticality
15.1 Introduction
15.2 Fluctuations are Highest Near Criticality
15.3 Variability of Spatial Activity Patterns
15.4 Variability of Phase Synchrony
15.5 High Variability, but Not Random
15.6 Functional Implications of High Entropy of Ongoing Cortex Dynamics
References
Chapter 16: Criticality at Work: How Do Critical Networks Respond to Stimuli?
16.1 Introduction
16.2 Responding to Stimuli
16.3 Concluding Remarks
Acknowledgements
References
Chapter 17: Critical Dynamics in Complex Networks
17.1 Introduction: Critical Branching Processes
17.2 Description and Properties of Networks
17.3 Branching Processes in Complex Networks
17.4 Discussion
References
Chapter 18: Mechanisms of Self-Organized Criticality in Adaptive Networks
18.1 Introduction
18.2 Basic Considerations
18.3 A Toy Model
18.4 Mechanisms of Self-Organization
18.5 Implications for Information Processing
18.6 Discussion
References
Chapter 19: Cortical Networks with Lognormal Synaptic Connectivity and Their Implications in Neuronal Avalanches
19.1 Introduction
19.2 Critical Dynamics in Neuronal Wiring Development
19.3 Stochastic Resonance by Highly Inhomogeneous Synaptic Weights on Spike Neurons
19.4 SSWD Recurrent Networks Generate Optimal Intrinsic Noise
19.5 Incorporation of Local Clustering Structure
19.6 Emergence of Bistable States in the Clustered Network
19.7 Possible Implications of SSWD Networks for Neuronal Avalanches
19.8 Summary
Acknowledgment
References
Chapter 20: Theoretical Neuroscience of Self-Organized Criticality: From Formal Approaches to Realistic Models
20.1 Introduction
20.2 The Eurich Model of Criticality in Neural Networks
20.3 LHG Model: Dynamic Synapses Control Criticality
20.4 Criticality by Homeostatic Plasticity
20.5 Conclusion
Acknowledgment
References
Chapter 21: Nonconservative Neuronal Networks During Up-States Self-Organize Near Critical Points
21.1 Introduction
21.2 Model
21.3 Simulations
21.4 Heterogeneous Synapses
21.5 Conclusion
Acknowledgment
References
Chapter 22: Self-Organized Criticality and Near-Criticality in Neural Networks
22.1 Introduction
22.2 A Neural Network Exhibiting Self-Organized Criticality
22.3 Excitatory and Inhibitory Neural Network Dynamics
22.4 An E–I Neural Network Exhibiting Self-Organized Near-Criticality
22.5 Discussion
Acknowledgments
References
Chapter 23: Neural Dynamics: Criticality, Cooperation, Avalanches, and Entrainment between Complex Networks
23.1 Introduction
23.2 Decision-Making Model (DMM) at Criticality
23.3 Neural Dynamics
23.4 Avalanches and Entrainment
23.5 Concluding Remarks
References
Chapter 24: Complex Networks: From Social Crises to Neuronal Avalanches
24.1 Introduction
24.2 The Decision-Making Model (DMM)
24.3 Topological Complexity
24.4 Temporal Complexity
24.5 Inflexible Minorities
24.6 Conclusions
References
Chapter 25: The Dynamics of Neuromodulation
25.1 Introduction
25.2 Background
25.3 Discussion and Conclusions
25.4 A Final Thought
25.5 Summary
References
Color Plates
Index
End User License Agreement
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
26
25
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
59
57
58
60
61
62
63
64
23
66
67
68
70
69
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
169
168
170
171
173
172
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
285
284
286
288
287
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
314
313
315
316
317
318
319
320
321
322
323
324
325
326
327
329
328
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
372
371
373
374
375
376
377
378
379
380
381
382
383
384
385
388
387
386
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
448
447
449
452
450
451
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
Cover
Table of Contents
Introduction
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7
Figure 9.8
Figure 9.9
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7
Figure 10.8
Figure 10.9
Figure 10.10
Figure 10.11
Figure 10.12
Figure 10.13
Figure 10.14
Figure 10.15
Figure 10.16
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4
Figure 12.5
Figure 12.6
Figure 12.7
Figure 12.8
Figure 12.9
Figure 13.1
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5
Figure 13.6
Figure 13.7
Figure 13.8
Figure 14.1
Figure 14.2
Figure 14.3
Figure 14.4
Figure 15.1
Figure 15.2
Figure 15.3
Figure 15.4
Figure 15.5
Figure 16.1
Figure 16.2
Figure 16.3
Figure 16.4
Figure 16.5
Figure 16.6
Figure 16.7
Figure 17.1
Figure 17.2
Figure 17.3
Figure 17.4
Figure 17.5
Figure 17.6
Figure 17.7
Figure 17.8
Figure 17.9
Figure 18.1
Figure 19.1
Figure 19.2
Figure 19.3
Figure 19.4
Figure 19.5
Figure 20.1
Figure 20.2
Figure 20.3
Figure 20.4
Figure 20.5
Figure 20.6
Figure 20.7
Figure 20.8
Figure 20.9
Figure 20.10
Figure 20.11
Figure 20.12
Figure 21.1
Figure 21.2
Figure 21.3
Figure 21.4
Figure 21.5
Figure 21.6
Figure 21.7
Figure 21.8
Figure 21.9
Figure 21.10
Figure 21.11
Figure 21.12
Figure 21.13
Figure 21.14
Figure 22.1
Figure 22.2
Figure 22.3
Figure 22.4
Figure 22.5
Figure 22.6
Figure 22.7
Figure 22.8
Figure 22.9
Figure 22.10
Figure 22.11
Figure 23.1
Figure 23.2
Figure 23.3
Figure 23.4
Figure 23.5
Figure 23.6
Figure 23.7
Figure 23.8
Figure 24.1
Figure 24.2
Figure 24.3
Figure 24.4
Figure 24.5
Figure 24.6
Figure 24.7
Figure 24.8
Table 9.1
Table 14.1
Table 17.1
Schuster, H. G. (ed.)
Reviews of Nonlinear Dynamics and Complexity
Volume 1
2008
ISBN: 978-3-527-40729-3
Schuster, H. G. (ed.)
Reviews of Nonlinear Dynamics and Complexity
Volume 2
2009
ISBN: 978-3-527-40850-4
Schuster, H. G. (ed.)
Reviews of Nonlinear Dynamics and Complexity
Volume 3
2010
ISBN: 978-3-527-40945-7
Grigoriev, R. and Schuster, H.G. (eds.)
Transport and Mixing in Laminar Flows
From Microfluidics to Oceanic Currents
2011
ISBN: 978-3-527-41011-8
Lüdge, K. (ed.)
Nonlinear Laser Dynamics
From Quantum Dots to Cryptography
2011
ISBN: 978-3-527-41100-9
Klages, R., Just, W., Jarzynski (eds.)
Nonequilibrium Statistical Physics of Small Systems
Fluctuation Relations and Beyond
2013
ISBN: 978-3-527-41094-1
Plenz, D., Niebur, E., Schuster, H.G. (eds.)
Criticality in Neural Systems
2014
ISBN: 978-3-527-41104-7
Pesenson, M. M. (ed.)
Multiscale Analysis and Nonlinear Dynamics
From Genes to the Brain
2013
ISBN: 978-3-527-41198-6
Edited by
Dietmar Plenz and Ernst Niebur
The Editors
Sr. Invest. Dr. Dietmar Plenz
Nat. Inst. of Mental Health
Systems Neuroscience
Sect. Critical Brain Dynamics
Bethesda, USA
Prof. Dr. Ernst Niebur
The Zanvyl Krieger Mind/ Brain
Inst./John Hopkins University
Baltimore, USA
A book of the series ‘Reviews of Nonlinear Dynamics and Complexity’
The Series Editor
Prof. Dr. Heinz Georg Schuster
Saarbrücken, Germany
Cover Picture
Neuronal avalanches in the awake brain a power law in sizes that grows with the area of cortex observed, a hallmark of criticality (see chapter 02 for details).
Background: Cultured pyramidal neurons from the mammalian brain expressing a genetically encoded calcium indicator to study neuronal avalanches.
From Plenz, NIMH.
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-41104-7
ePDF ISBN: 978-3-527-65103-0
ePub ISBN: 978-3-527-65102-3
mobi ISBN: 978-3-527-65101-6
oBook ISBN: 978-3-527-65100-9
List of Contributors
Lucilla de Arcangelis
Second University of Naples
Department of Industrial and Information Engineering & CNISM
81031 Aversa, CE
Italy
Stefan Bornholdt
Universität Bremen
Institut für Theoretische Physik
Hochschulring 18
28359 Bremen
Germany
Michael Breakspear
Queensland Institute of Medical Research, Royal Brisbane Hospital
Brisbane, QLD 4029
Australia
Dante R. Chialvo
David Geffen School of Medicine
UCLA
Department of Physiology
1500 Wilshire Boulevard
Bldg, 115
Los Angeles, CA 90017
USA
and
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Rivadavia 1917
1033 Buenos Aires
Argentina
Mauro Copelli
Federal University of Pernambuco (UFPE)
Physics Department
50670-901 Recife-PE
Brazil
Richard Coppola
National Institute of Mental Health
MEG Core Facility
10 Center Drive
Bethesda, MD 20892
USA
Jack D. Cowan
University of Chicago
Dept of Mathematics
5734 S. University Ave.
Chicago, IL 60637
USA
Gustavo Deco
Universitat Pompeu Fabra
Theoretical and Computational Neuroscience Center for Brain and Cognition
Roc Boronat 138
08018 Barcelona
Spain
Anne-Ly Do
Max-Planck Institute for the Physics of Complex Systems
Nöthnitzer Str. 38
01187 Dresden
Germany
Wim van Drongelen
University of Chicago
Departments of Pediatrics and Neurology
KCBD 4124
900 E. 57th St.
Chicago, IL 60637
USA
Felix Droste
Bernstein Center for Computational Neuroscience
Haus 2
Philippstrasse 13
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!