147,99 €
The method of CVD (chemical vapor deposition) is a versatile technique to fabricate high-quality thin films and structured surfaces in the nanometer regime from the vapor phase. Already widely used for the deposition of inorganic materials in the semiconductor industry, CVD has become the method of choice in many applications to process polymers as well. This highly scalable technique allows for synthesizing high-purity, defect-free films and for systematically tuning their chemical, mechanical and physical properties. In addition, vapor phase processing is critical for the deposition of insoluble materials including fluoropolymers, electrically conductive polymers, and highly crosslinked organic networks. Furthermore, CVD enables the coating of substrates which would otherwise dissolve or swell upon exposure to solvents.
The scope of the book encompasses CVD polymerization processes which directly translate the chemical mechanisms of traditional polymer synthesis and organic synthesis in homogeneous liquids into heterogeneous processes for the modification of solid surfaces. The book is structured into four parts, complemented by an introductory overview of the diverse process strategies for CVD of polymeric materials. The first part on the fundamentals of CVD polymers is followed by a detailed coverage of the materials chemistry of CVD polymers, including the main synthesis mechanisms and the resultant classes of materials. The third part focuses on the applications of these materials such as membrane modification and device fabrication. The final part discusses the potential for scale-up and commercialization of CVD polymers.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 830
Veröffentlichungsjahr: 2015
Cover
Related Titles
Title Page
Copyright
List of Contributors
Chapter 1: Overview of Chemically Vapor Deposited (CVD) Polymers
1.1 Motivation and Characteristics
1.2 Fundamentals and Mechanisms
1.3 Scale-Up and Commercialization
1.4 Process and Materials Chemistry
1.5 Summary
Acknowledgments
References
Part I
Chapter 2: Growth Mechanism, Kinetics, and Molecular Weight
2.1 Introduction
2.2 iCVD Process
2.3 Kinetics and Growth Mechanism
2.4 Summary
References
Chapter 3: Copolymerization and Crosslinking
3.1 Introduction
3.2 Copolymer Composition and Structure
3.3 Copolymerization Kinetics
3.4 Tunable Properties of iCVD Copolymers
3.5 Conclusions
References
Chapter 4: Non-Thermal Initiation Strategies and Grafting
4.1 Introduction
4.2 Initiation Strategies
4.3 Grafting
4.4 Summary
References
Chapter 5: Conformal Polymer CVD
5.1 Introduction
5.2 Vapor Phase Transport
5.3 Conformal Polymer Coating Applications
5.4 Conformal Polymer Coating Technologies
5.5 Gas and Surface Reactions
5.6 The Reaction-Diffusion Model
5.7 Applications
5.8 Conclusion
Acknowledgment
References
Chapter 6: Plasma Enhanced-Chemical Vapor Deposited Polymers: Plasma Phase Reactions, Plasma–Surface Interactions, and Film Properties
6.1 Introduction: Chemical Vapor Deposition Methods, Advantages, and Challenges
6.2 Plasma Parameters, Plasma Phase Reactions, and the Role of Diagnostics
6.3 Plasma Polymerization: Is It Just Chemistry? The Role of Ions in Film Growth
6.4 Considerations on the Macroscopic Kinetics Approach to Plasma Polymerization
6.5 Polymer Film Characteristics
Acknowledgments
References
Chapter 7: Fabrication of Organic Interfacial Layers by Molecular Layer Deposition: Present Status and Future Opportunities
7.1 Introduction
7.2 MLD Coupling Chemistry
7.3 Applications of MLD Films
7.4 Study of MLD Film Structure
7.5 Challenges and Opportunities for MLD
7.6 Conclusions
Acknowledgments
References
Part II
Chapter 8: Reactive and Stimuli-Responsive Polymer Thin Films
8.1 Introduction
8.2 Reactive Polymer Thin Films
8.3 Responsive Polymer Thin Films
8.4 Conclusions
References
Chapter 9: Multifunctional Reactive Polymer Coatings
9.1 Introduction
9.2 CVD Copolymer Coatings with Randomly Distributed Functional Groups
9.3 Multifunctional Gradient Coatings
9.4 Functional Coatings with Micro- and Nanopatterns
9.5 Summary and Future Outlook
Acknowledgments
References
Chapter 10: CVD Fluoropolymers
10.1 Introduction
10.2 Polytetrafluoroethylene (PTFE)
10.3 Poly(vinylidene fluoride) (PVDF)
10.4 Poly(1H,1H,2H,2H-perfluorodecyl acrylate) [p(PFDA)]
10.5 Copolymerization of Fluorinated Monomers
10.6 Summary
References
Chapter 11: Conjugated CVD Polymers: Conductors and Semiconductors
11.1 Overview
11.2 Reactors and Process
11.3 Chemistry and Mechanism
11.4 Grafting and Patterning
11.5 Conformality
11.6 Dopants, Rinsing, Stability
11.7 Semiconductors
11.8 Electrical Properties
11.9 Functional oCVD Copolymers
11.10 Concluding Remarks
References
Part III
Chapter 12: Controlling Wetting with Oblique Angle Vapor-Deposited Parylene
12.1 Introduction
12.2 Definition of Anisotropy in Materials Science
12.3 OAP Surfaces: Fabrication
12.4 Directional OAP Surfaces: Form and Function
12.5 Modeling Adhesion, Wetting, and Transport on Directional Surfaces
12.6 Conclusions
Acknowledgments
References
Chapter 13: Membrane Modification by CVD Polymers
13.1 Modification of Membrane Surface and Internal Pores
13.2 Membrane Surface Energy Control Via Thin-Film Coatings
13.3 Antifouling and Antimicrobial Coatings for Membranes
13.4 Membrane Modification for Sustainability
References
Chapter 14: CVD Polymer Surfaces for Biotechnology and Biomedicine
14.1 Introduction
14.2 Biosensors
14.3 Controlled Drug Release
14.4 Tissue Engineering
14.5 Bio-MEMS
14.6 Biopassivating Coatings
14.7 Antimicrobial Coatings
14.8 Significance and Future Directions
References
Chapter 15: Encapsulation, Templating, and Patterning with Functional Polymers
15.1 Introduction
15.2 Encapsulation of 1D and 2D Structures with Functional Polymers
15.3 Patterning of Surfaces
15.4 Synthesis of Polymeric Micro/Nanostructures
15.5 Summary
References
Chapter 16: Deposition of Polymers onto New Substrates
16.1 Paper-Based Microfluidic Devices
16.2 Elastomeric Substrates
16.3 Liquids Substrates
16.4 Low-Temperature Substrates
Acknowledgments
References
Chapter 17: Organic Device Fabrication and Integration with CVD Polymers
17.1 Introduction
17.2 Energy Devices
17.3 Optical Devices
17.4 Nano-Adhesives
17.5 Encapsulation of Electronic Devices
17.6 Conclusion
Acknowledgments
References
Chapter 18: CVD Polymers for the Semiconductor Industry
18.1 Introduction
18.2 Application Areas for iCVD
18.3 Thin-Film Adhesives
18.4 Design Considerations for iCVD Tools in Semiconductor Manufacturing
18.5 Summary
References
Part IV
Chapter 19: Commercialization of CVD Polymer Coatings
19.1 Introduction
19.2 Case Study: CVD Deposited PTFE for Lubricity Applications
19.3 Commercial CVD Polymer Coating Systems
References
Chapter 20: Carrier Gas-Enhanced Polymer Vapor-Phase Deposition (PVPD): Industrialized Solutions by Example of Deposition of Parylene Films for Large-Area Applications
20.1 Motivation and Targets (Customer Requirements)
20.2 Requirements for Industrial Solutions
20.3 Conclusion
Reference
Index
End User License Agreement
xv
xvi
xvii
xviii
xix
1
2
3
4
5
6
7
8
9
10
11
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
455
456
457
458
459
460
461
Cover
Table of Contents
Part
Begin Reading
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14
Figure 7.15
Figure 7.16
Figure 7.17
Figure 7.18
Figure 7.19
Figure 7.20
Figure 7.21
Scheme 8.1
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Scheme 9.1
Scheme 9.2
Figure 9.1
Scheme 9.3
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7
Figure 9.8
Figure 9.9
Figure 9.10
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4
Figure 12.5
Figure 12.6
Figure 12.7
Figure 12.8
Figure 13.1
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5
Figure 13.6
Figure 13.7
Figure 13.8
Figure 14.1
Figure 14.2
Figure 14.3
Figure 14.4
Figure 14.5
Figure 14.6
Figure 14.7
Figure 14.8
Figure 14.9
Figure 15.1
Figure 15.2
Figure 15.3
Figure 15.4
Figure 15.5
Figure 15.6
Figure 15.7
Figure 15.8
Figure 15.9
Figure 15.10
Figure 15.11
Figure 16.1
Figure 16.2
Figure 16.3
Figure 16.4
Figure 16.6
Figure 16.7
Figure 16.8
Figure 16.9
Figure 16.10
Figure 16.11
Figure 16.12
Figure 17.1
Figure 17.2
Figure 17.3
Figure 17.4
Figure 17.5
Figure 17.6
Figure 17.7
Figure 17.8
Figure 17.9
Figure 17.10
Scheme 17.1
Figure 17.11
Figure 17.12
Figure 18.1
Figure 18.2
Figure 18.3
Figure 18.4
Figure 18.5
Figure 18.6
Figure 18.7
Figure 18.8
Figure 18.9
Figure 18.10
Figure 18.11
Figure 18.12
Figure 18.13
Figure 19.1
Figure 19.2
Figure 19.3
Figure 19.4
Figure 19.5
Figure 19.6
Figure 20.1
Figure 20.2
Figure 20.3
Figure 20.4
Figure 20.5
Figure 20.7
Figure 20.8
Figure 20.9
Figure 20.10
Table 2.1
Table 5.1
Table 8.1
Table 10.1
Table 11.1
Table 11.2
Table 13.1
Table 13.2
Table 14.1
Table 16.1
Table 19.1
Table 19.2
Table 19.3
Table 20.1
Table 20.3
Related Titles
Picart, C., Caruso, F., Voegel, J.-C. (eds.)
Layer-by-Layer Films for Biomedical Applications
2014
Print ISBN: 978-3-527-33589-3; also available in electronic formats
Narayan, J.
Nanostructured Semiconductor Thin Films
2014
Print ISBN: 978-3-527-33473-5; also available in electronic formats
Ariga, K. (ed.)
Organized Organic Ultrathin Films
Fundamentals and Applications
2013
Print ISBN: 978-3-527-32733-1 also available in electronic formats
Theato, P., Klok, H. (eds.)
Functional Polymers by Post Polymerization Modification
Concepts, Guidelines, and Applications
2013
Print ISBN: 978-3-527-33115-4 also available in electronic formats
Decher, G., Schlenoff, J.B. (eds.)
Multilayer Thin Films
Sequential Assembly of Nanocomposite Materials
Second Edition
2012
Print ISBN: 978-3-527-31648-9 also available in electronic formats
Schlüter, D.A., Hawker, C., Sakamoto, J. (eds.)
Synthesis of Polymers
New Structures and Methods
2012
Print ISBN: 978-3-527-32757-7 also available in electronic formats
Pacchioni, G., Valeri, S. (eds.)
Oxide Ultrathin Films
Science and Technology
2012
Print ISBN: 978-3-527-33016-4 also available in electronic formats
Friedbacher, G., Bubert, H. (eds.)
Surface and Thin Film Analysis
A Compendium of Principles, Instrumentation, and Applications
Second Edition
2011
Print ISBN: 978-3-527-32047-9 also available in electronic formats
Knoll, W., Advincula, R.C. (eds.)
Functional Polymer Films
2 Volume Set
2011
Print ISBN: 978-3-527-32190-2; also available in electronic formats
Edited by Karen K. Gleason
The Editor
Prof. Dr. Karen K. Gleason
Massachusetts Institute of Technology
Department of Chemical Engineering
77 Massachusetts Avenue
Cambridge, MA 02139
United States
Cover
We would like to thank Kenneth Lau from Drexel University, Philadelphia, USA for providing us with the images we used in the cover illustration.
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
© 2015 Wiley-VCH Verlag GmbH & Co.
KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-33799-6
ePDF ISBN: 978-3-527-69026-8
ePub ISBN: 978-3-527-69028-2
Mobi ISBN: 978-3-527-69029-9
oBook ISBN: 978-3-527-69027-5
Peter Baumann
Aixtron SE
Dornkaulstraße 2
Kaiserstraße 98
52134 Herzogenrath
Germany
Salmaan Baxamusa
Physical and Life Sciences Directorate
Lawrence Livermore National Laboratory
7000 East Avenue
Livermore, CA
USA
Stacey F. Bent
Stanford University
Department of Chemical Engineering
Shriram Center
Stanford, CA 94305
USA
Magnus Bergkvist
SUNY College of Nanoscale Science and Engineering
255 Fuller Road
Albany, NY 12203
USA
Vijay Jain Bharamaiah Jeevendra Kumar
SUNY Polytechnic Institute
Colleges of Nanoscale Science & Engineering
255 Fuller Road
Albany, NY 12203
USA
Daniel D. Burkey
University of Connecticut
Chemical and Biomolecular Engineering
191 Auditorium Road
Unit 3187 Storrs
CT 06269-3237
USA
Kenneth C. K. Cheng
University of Michigan
Chemical Engineering
Materials Science and Engineering
Biointerfaces Institute
NCRC, B26, Rm. 133S
2800 Plymouth Road
Ann Arbor, MI 48109
USA
Anna Maria Coclite
Graz University of Technology
Institute of Solid State Physics
Petersgasse 16
8010 Graz
Austria
Mariadriana Creatore
Eindhoven University of Technology
Department of Applied Physics
P.O. Box 513
Groene Loper 19
5600 MB Eindhoven
The Netherlands
Melik C. Demirel
Pennsylvania State University
Engineering Science and Mechanics
Materials Research Institute
212 Earth and Engineering Science Building
University Park
PA 16802
USA
Xiaopei Deng
University of Michigan
Chemical Engineering
Materials Science and Engineering
Biointerfaces Institute
NCRC, B26, Rm. 133S
2800 Plymouth Road
Ann Arbor, MI 48109
USA
Markus Gersdorff
Aixtron SE
Dornkaulstraße 2
Kaiserstraße 98
52134 Herzogenrath
Germany
Karen K. Gleason
Massachusetts Institute of Technology
Department of Chemical Engineering
77 Massachusetts Avenue
Cambridge, MA 02139
USA
Malancha Gupta
University of Southern California
Chemical Engineering and Materials Science
925 Bloom Walk
HED 216
Los Angeles, CA 90089-1211
USA
Matthew J. Hancock
Veryst Engineering, LLC
47A Kearney Road
Needham, MA 02494
USA
Rachel M. Howden
Massachusetts Institute of Technology (MIT)
Department of Chemical Engineering
77 Massachusetts Avenue
Cambridge, MA 02139
USA
Sung Gap Im
Korea Advanced Institute of Science and Technology (KAIST)
Department of Chemical and Biomolecular Engineering and KI for NanoCentury
291 Daehak-ro (373-1 Guseong-dong)
Yuseong-gu
Daejeon 305-701
Republic of Korea
Bong Jun Kim
Korea Advanced Institute of Science and Technology (KAIST)
Department of Chemical and Biomolecular Engineering and KI for NanoCentury
291 Daehak-ro (373-1 Guseong-dong)
Yuseong-gu
Daejeon 305-701
Republic of Korea
Martin Kunat
Aixtron SE
Dornkaulstraße 2
Kaiserstraße 98
52134 Herzogenrath
Germany
Juergen Kreis
Aixtron SE
Dornkaulstraße 2
Kaiserstraße 98
52134 Herzogenrath
Germany
Joerg Lahann
University of Michigan
Chemical Engineering
Materials Science and Engineering
Biointerfaces Institute
NCRC, B26, Rm. 133S
2800 Plymouth Road
Ann Arbor, MI 48109
USA
Kenneth K. S. Lau
Drexel University
Department of Chemical and Biological Engineering
3141 Chestnut Street
Philadelphia, PA 19104
USA
Yu Mao
Oklahoma State University
Biosystems and Agricultural Engineering
111 Agricultural Hall
Stillwater, OK 74078-6016
USA
W. Shannan O'Shaughnessy
GVD Corporation
45 Spinelli Place
Cambridge, MA 02138
USA
Gozde Ozaydin Ince
Sabancı University
Faculty of Engineering and Natural Sciences
Materials Science and Nanoengineering
Orta Mahalle, Universite Caddesi No: 27
34956 Orhanlı Istanbul
Turkey
Alberto Perrotta
Eindhoven University of Technology
Department of Applied Physics
P.O. Box 513
Groene Loper 19
5600 MB Eindhoven
The Netherlands
and
Dutch Polymer Institute (DPI)
P.O. Box 902
J.F. Kennedylaan, 2
5600 AX Eindhoven
The Netherlands
Markus Schwambera
Aixtron SE
Dornkaulstraße 2
Kaiserstraße 98
52134 Herzogenrath
Germany
Hyejeong Seong
Korea Advanced Institute of Science and Technology (KAIST)
Department of Chemical and Biomolecular Engineering and KI for NanoCentury
291 Daehak-ro (373-1 Guseong-dong)
Yuseong-gu
Daejeon 305-701
Republic of Korea
Wyatt E. Tenhaeff
University of Rochester
Department of Chemical Engineering
249A Gavett Hall
500 Joseph C. Wilson Blvd.
Rochester, NY 14627
USA
Jose L. Yagüe
Massachusetts Institute of Technology
Department of Chemical Engineering
77 Massachusetts Avenue
Cambridge, MA 02139
USA
Rong Yang
Harvard Medical School
Children's Hospital Boston
Department of Anesthesiology
Division of Critical Care Medicine
Laboratory for Biomaterials and Drug Delivery
300 Longwood Avenue
Boston, MA 02115
USA
and
Massachusetts Institute of Technology
Department of Chemical Engineering
77 Massachusetts Avenue
Cambridge, MA 02139
USA
Youngmin Yoo
Korea Advanced Institute of Science and Technology (KAIST)
Department of Chemical and Biomolecular Engineering and KI for NanoCentury
291 Daehak-ro (373-1 Guseong-dong)
Yuseong-gu
Daejeon 305-701
Republic of Korea
Jae Bem You
Korea Advanced Institute of Science and Technology (KAIST)
Department of Chemical and Biomolecular Engineering and KI for NanoCentury
291 Daehak-ro (373-1 Guseong-dong)
Yuseong-gu
Daejeon 305-701
Republic of Korea
Han Zhou
Stanford University
Department of Chemical Engineering
Shriram Center
Stanford, CA 94305
USA
Karen K. Gleason
Chemical vapor deposition (CVD) is a powerful technology for surface engineering. When combined with the richness of organic chemistry, CVD enables polymeric coatings to be deposited without solvents [1–3]. The implantation of biomedical devices into humans, the stable functioning of printed circuit boards in harsh environments, and long-lasting, highly lubricious surfaces on industrial parts are just a few examples of the applications which employ CVD polymers. Research for CVD polymers has been undertaken in a diverse array of fields that include biotechnology, nanotechnology, optoelectronics, photonics, microfluidics, sensing, composites, and separations.
In CVD polymerization, gas phase monomers are converted directly to thin solid macromolecular films. By eliminating the need to dissolve macromolecules, CVD allows the synthesis of insoluble polymers and highly crosslinked organic networks. CVD also enables the polymerization of monomer units that undergo unwanted side reactions in solution and copolymerization of pairs of monomers that lack a common solvent.
CVD polymer films can be applied to nearly any substrate. Actually, for certain polymers and certain substrates, CVD polymerization can be the sole fabrication option. Low surface temperatures allow CVD polymers to be grown directly on fragile objects such as tissue paper and porous polymeric membranes. CVD is ideal for substrates that swell, dissolve, or otherwise degrade in solvents or for substrates that cannot withstand the high temperatures of “spray and bake” melt processing. This versatility is in contrast to, for example, self-assembled monolayers (SAMs) that are compatible only with specific surfaces, such as gold.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!