CVD Polymers -  - E-Book

CVD Polymers E-Book

0,0
147,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

The method of CVD (chemical vapor deposition) is a versatile technique to fabricate high-quality thin films and structured surfaces in the nanometer regime from the vapor phase. Already widely used for the deposition of inorganic materials in the semiconductor industry, CVD has become the method of choice in many applications to process polymers as well. This highly scalable technique allows for synthesizing high-purity, defect-free films and for systematically tuning their chemical, mechanical and physical properties. In addition, vapor phase processing is critical for the deposition of insoluble materials including fluoropolymers, electrically conductive polymers, and highly crosslinked organic networks. Furthermore, CVD enables the coating of substrates which would otherwise dissolve or swell upon exposure to solvents.

The scope of the book encompasses CVD polymerization processes which directly translate the chemical mechanisms of traditional polymer synthesis and organic synthesis in homogeneous liquids into heterogeneous processes for the modification of solid surfaces. The book is structured into four parts, complemented by an introductory overview of the diverse process strategies for CVD of polymeric materials. The first part on the fundamentals of CVD polymers is followed by a detailed coverage of the materials chemistry of CVD polymers, including the main synthesis mechanisms and the resultant classes of materials. The third part focuses on the applications of these materials such as membrane modification and device fabrication. The final part discusses the potential for scale-up and commercialization of CVD polymers.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 830

Veröffentlichungsjahr: 2015

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Related Titles

Title Page

Copyright

List of Contributors

Chapter 1: Overview of Chemically Vapor Deposited (CVD) Polymers

1.1 Motivation and Characteristics

1.2 Fundamentals and Mechanisms

1.3 Scale-Up and Commercialization

1.4 Process and Materials Chemistry

1.5 Summary

Acknowledgments

References

Part I

Chapter 2: Growth Mechanism, Kinetics, and Molecular Weight

2.1 Introduction

2.2 iCVD Process

2.3 Kinetics and Growth Mechanism

2.4 Summary

References

Chapter 3: Copolymerization and Crosslinking

3.1 Introduction

3.2 Copolymer Composition and Structure

3.3 Copolymerization Kinetics

3.4 Tunable Properties of iCVD Copolymers

3.5 Conclusions

References

Chapter 4: Non-Thermal Initiation Strategies and Grafting

4.1 Introduction

4.2 Initiation Strategies

4.3 Grafting

4.4 Summary

References

Chapter 5: Conformal Polymer CVD

5.1 Introduction

5.2 Vapor Phase Transport

5.3 Conformal Polymer Coating Applications

5.4 Conformal Polymer Coating Technologies

5.5 Gas and Surface Reactions

5.6 The Reaction-Diffusion Model

5.7 Applications

5.8 Conclusion

Acknowledgment

References

Chapter 6: Plasma Enhanced-Chemical Vapor Deposited Polymers: Plasma Phase Reactions, Plasma–Surface Interactions, and Film Properties

6.1 Introduction: Chemical Vapor Deposition Methods, Advantages, and Challenges

6.2 Plasma Parameters, Plasma Phase Reactions, and the Role of Diagnostics

6.3 Plasma Polymerization: Is It Just Chemistry? The Role of Ions in Film Growth

6.4 Considerations on the Macroscopic Kinetics Approach to Plasma Polymerization

6.5 Polymer Film Characteristics

Acknowledgments

References

Chapter 7: Fabrication of Organic Interfacial Layers by Molecular Layer Deposition: Present Status and Future Opportunities

7.1 Introduction

7.2 MLD Coupling Chemistry

7.3 Applications of MLD Films

7.4 Study of MLD Film Structure

7.5 Challenges and Opportunities for MLD

7.6 Conclusions

Acknowledgments

References

Part II

Chapter 8: Reactive and Stimuli-Responsive Polymer Thin Films

8.1 Introduction

8.2 Reactive Polymer Thin Films

8.3 Responsive Polymer Thin Films

8.4 Conclusions

References

Chapter 9: Multifunctional Reactive Polymer Coatings

9.1 Introduction

9.2 CVD Copolymer Coatings with Randomly Distributed Functional Groups

9.3 Multifunctional Gradient Coatings

9.4 Functional Coatings with Micro- and Nanopatterns

9.5 Summary and Future Outlook

Acknowledgments

References

Chapter 10: CVD Fluoropolymers

10.1 Introduction

10.2 Polytetrafluoroethylene (PTFE)

10.3 Poly(vinylidene fluoride) (PVDF)

10.4 Poly(1H,1H,2H,2H-perfluorodecyl acrylate) [p(PFDA)]

10.5 Copolymerization of Fluorinated Monomers

10.6 Summary

References

Chapter 11: Conjugated CVD Polymers: Conductors and Semiconductors

11.1 Overview

11.2 Reactors and Process

11.3 Chemistry and Mechanism

11.4 Grafting and Patterning

11.5 Conformality

11.6 Dopants, Rinsing, Stability

11.7 Semiconductors

11.8 Electrical Properties

11.9 Functional oCVD Copolymers

11.10 Concluding Remarks

References

Part III

Chapter 12: Controlling Wetting with Oblique Angle Vapor-Deposited Parylene

12.1 Introduction

12.2 Definition of Anisotropy in Materials Science

12.3 OAP Surfaces: Fabrication

12.4 Directional OAP Surfaces: Form and Function

12.5 Modeling Adhesion, Wetting, and Transport on Directional Surfaces

12.6 Conclusions

Acknowledgments

References

Chapter 13: Membrane Modification by CVD Polymers

13.1 Modification of Membrane Surface and Internal Pores

13.2 Membrane Surface Energy Control Via Thin-Film Coatings

13.3 Antifouling and Antimicrobial Coatings for Membranes

13.4 Membrane Modification for Sustainability

References

Chapter 14: CVD Polymer Surfaces for Biotechnology and Biomedicine

14.1 Introduction

14.2 Biosensors

14.3 Controlled Drug Release

14.4 Tissue Engineering

14.5 Bio-MEMS

14.6 Biopassivating Coatings

14.7 Antimicrobial Coatings

14.8 Significance and Future Directions

References

Chapter 15: Encapsulation, Templating, and Patterning with Functional Polymers

15.1 Introduction

15.2 Encapsulation of 1D and 2D Structures with Functional Polymers

15.3 Patterning of Surfaces

15.4 Synthesis of Polymeric Micro/Nanostructures

15.5 Summary

References

Chapter 16: Deposition of Polymers onto New Substrates

16.1 Paper-Based Microfluidic Devices

16.2 Elastomeric Substrates

16.3 Liquids Substrates

16.4 Low-Temperature Substrates

Acknowledgments

References

Chapter 17: Organic Device Fabrication and Integration with CVD Polymers

17.1 Introduction

17.2 Energy Devices

17.3 Optical Devices

17.4 Nano-Adhesives

17.5 Encapsulation of Electronic Devices

17.6 Conclusion

Acknowledgments

References

Chapter 18: CVD Polymers for the Semiconductor Industry

18.1 Introduction

18.2 Application Areas for iCVD

18.3 Thin-Film Adhesives

18.4 Design Considerations for iCVD Tools in Semiconductor Manufacturing

18.5 Summary

References

Part IV

Chapter 19: Commercialization of CVD Polymer Coatings

19.1 Introduction

19.2 Case Study: CVD Deposited PTFE for Lubricity Applications

19.3 Commercial CVD Polymer Coating Systems

References

Chapter 20: Carrier Gas-Enhanced Polymer Vapor-Phase Deposition (PVPD): Industrialized Solutions by Example of Deposition of Parylene Films for Large-Area Applications

20.1 Motivation and Targets (Customer Requirements)

20.2 Requirements for Industrial Solutions

20.3 Conclusion

Reference

Index

End User License Agreement

Pages

xv

xvi

xvii

xviii

xix

1

2

3

4

5

6

7

8

9

10

11

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

455

456

457

458

459

460

461

Guide

Cover

Table of Contents

Part

Begin Reading

List of Illustrations

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

Figure 7.11

Figure 7.12

Figure 7.13

Figure 7.14

Figure 7.15

Figure 7.16

Figure 7.17

Figure 7.18

Figure 7.19

Figure 7.20

Figure 7.21

Scheme 8.1

Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5

Figure 8.6

Scheme 9.1

Scheme 9.2

Figure 9.1

Scheme 9.3

Figure 9.2

Figure 9.3

Figure 9.4

Figure 9.5

Figure 9.6

Figure 9.7

Figure 9.8

Figure 9.9

Figure 9.10

Figure 10.1

Figure 10.2

Figure 10.3

Figure 10.4

Figure 10.5

Figure 11.1

Figure 11.2

Figure 11.3

Figure 11.4

Figure 11.5

Figure 11.6

Figure 11.7

Figure 12.1

Figure 12.2

Figure 12.3

Figure 12.4

Figure 12.5

Figure 12.6

Figure 12.7

Figure 12.8

Figure 13.1

Figure 13.2

Figure 13.3

Figure 13.4

Figure 13.5

Figure 13.6

Figure 13.7

Figure 13.8

Figure 14.1

Figure 14.2

Figure 14.3

Figure 14.4

Figure 14.5

Figure 14.6

Figure 14.7

Figure 14.8

Figure 14.9

Figure 15.1

Figure 15.2

Figure 15.3

Figure 15.4

Figure 15.5

Figure 15.6

Figure 15.7

Figure 15.8

Figure 15.9

Figure 15.10

Figure 15.11

Figure 16.1

Figure 16.2

Figure 16.3

Figure 16.4

Figure 16.6

Figure 16.7

Figure 16.8

Figure 16.9

Figure 16.10

Figure 16.11

Figure 16.12

Figure 17.1

Figure 17.2

Figure 17.3

Figure 17.4

Figure 17.5

Figure 17.6

Figure 17.7

Figure 17.8

Figure 17.9

Figure 17.10

Scheme 17.1

Figure 17.11

Figure 17.12

Figure 18.1

Figure 18.2

Figure 18.3

Figure 18.4

Figure 18.5

Figure 18.6

Figure 18.7

Figure 18.8

Figure 18.9

Figure 18.10

Figure 18.11

Figure 18.12

Figure 18.13

Figure 19.1

Figure 19.2

Figure 19.3

Figure 19.4

Figure 19.5

Figure 19.6

Figure 20.1

Figure 20.2

Figure 20.3

Figure 20.4

Figure 20.5

Figure 20.7

Figure 20.8

Figure 20.9

Figure 20.10

List of Tables

Table 2.1

Table 5.1

Table 8.1

Table 10.1

Table 11.1

Table 11.2

Table 13.1

Table 13.2

Table 14.1

Table 16.1

Table 19.1

Table 19.2

Table 19.3

Table 20.1

Table 20.3

Related Titles

Picart, C., Caruso, F., Voegel, J.-C. (eds.)

Layer-by-Layer Films for Biomedical Applications

2014

Print ISBN: 978-3-527-33589-3; also available in electronic formats

Narayan, J.

Nanostructured Semiconductor Thin Films

2014

Print ISBN: 978-3-527-33473-5; also available in electronic formats

Ariga, K. (ed.)

Organized Organic Ultrathin Films

Fundamentals and Applications

2013

Print ISBN: 978-3-527-32733-1 also available in electronic formats

Theato, P., Klok, H. (eds.)

Functional Polymers by Post Polymerization Modification

Concepts, Guidelines, and Applications

2013

Print ISBN: 978-3-527-33115-4 also available in electronic formats

Decher, G., Schlenoff, J.B. (eds.)

Multilayer Thin Films

Sequential Assembly of Nanocomposite Materials

Second Edition

2012

Print ISBN: 978-3-527-31648-9 also available in electronic formats

Schlüter, D.A., Hawker, C., Sakamoto, J. (eds.)

Synthesis of Polymers

New Structures and Methods

2012

Print ISBN: 978-3-527-32757-7 also available in electronic formats

Pacchioni, G., Valeri, S. (eds.)

Oxide Ultrathin Films

Science and Technology

2012

Print ISBN: 978-3-527-33016-4 also available in electronic formats

Friedbacher, G., Bubert, H. (eds.)

Surface and Thin Film Analysis

A Compendium of Principles, Instrumentation, and Applications

Second Edition

2011

Print ISBN: 978-3-527-32047-9 also available in electronic formats

Knoll, W., Advincula, R.C. (eds.)

Functional Polymer Films

2 Volume Set

2011

Print ISBN: 978-3-527-32190-2; also available in electronic formats

Edited by Karen K. Gleason

CVD Polymers

Fabrication of Organic Surfaces and Devices

The Editor

Prof. Dr. Karen K. Gleason

Massachusetts Institute of Technology

Department of Chemical Engineering

77 Massachusetts Avenue

Cambridge, MA 02139

United States

Cover

We would like to thank Kenneth Lau from Drexel University, Philadelphia, USA for providing us with the images we used in the cover illustration.

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2015 Wiley-VCH Verlag GmbH & Co.

KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33799-6

ePDF ISBN: 978-3-527-69026-8

ePub ISBN: 978-3-527-69028-2

Mobi ISBN: 978-3-527-69029-9

oBook ISBN: 978-3-527-69027-5

List of Contributors

Peter Baumann

Aixtron SE

Dornkaulstraße 2

Kaiserstraße 98

52134 Herzogenrath

Germany

Salmaan Baxamusa

Physical and Life Sciences Directorate

Lawrence Livermore National Laboratory

7000 East Avenue

Livermore, CA

USA

Stacey F. Bent

Stanford University

Department of Chemical Engineering

Shriram Center

Stanford, CA 94305

USA

Magnus Bergkvist

SUNY College of Nanoscale Science and Engineering

255 Fuller Road

Albany, NY 12203

USA

Vijay Jain Bharamaiah Jeevendra Kumar

SUNY Polytechnic Institute

Colleges of Nanoscale Science & Engineering

255 Fuller Road

Albany, NY 12203

USA

Daniel D. Burkey

University of Connecticut

Chemical and Biomolecular Engineering

191 Auditorium Road

Unit 3187 Storrs

CT 06269-3237

USA

Kenneth C. K. Cheng

University of Michigan

Chemical Engineering

Materials Science and Engineering

Biointerfaces Institute

NCRC, B26, Rm. 133S

2800 Plymouth Road

Ann Arbor, MI 48109

USA

Anna Maria Coclite

Graz University of Technology

Institute of Solid State Physics

Petersgasse 16

8010 Graz

Austria

Mariadriana Creatore

Eindhoven University of Technology

Department of Applied Physics

P.O. Box 513

Groene Loper 19

5600 MB Eindhoven

The Netherlands

Melik C. Demirel

Pennsylvania State University

Engineering Science and Mechanics

Materials Research Institute

212 Earth and Engineering Science Building

University Park

PA 16802

USA

Xiaopei Deng

University of Michigan

Chemical Engineering

Materials Science and Engineering

Biointerfaces Institute

NCRC, B26, Rm. 133S

2800 Plymouth Road

Ann Arbor, MI 48109

USA

Markus Gersdorff

Aixtron SE

Dornkaulstraße 2

Kaiserstraße 98

52134 Herzogenrath

Germany

Karen K. Gleason

Massachusetts Institute of Technology

Department of Chemical Engineering

77 Massachusetts Avenue

Cambridge, MA 02139

USA

Malancha Gupta

University of Southern California

Chemical Engineering and Materials Science

925 Bloom Walk

HED 216

Los Angeles, CA 90089-1211

USA

Matthew J. Hancock

Veryst Engineering, LLC

47A Kearney Road

Needham, MA 02494

USA

Rachel M. Howden

Massachusetts Institute of Technology (MIT)

Department of Chemical Engineering

77 Massachusetts Avenue

Cambridge, MA 02139

USA

Sung Gap Im

Korea Advanced Institute of Science and Technology (KAIST)

Department of Chemical and Biomolecular Engineering and KI for NanoCentury

291 Daehak-ro (373-1 Guseong-dong)

Yuseong-gu

Daejeon 305-701

Republic of Korea

Bong Jun Kim

Korea Advanced Institute of Science and Technology (KAIST)

Department of Chemical and Biomolecular Engineering and KI for NanoCentury

291 Daehak-ro (373-1 Guseong-dong)

Yuseong-gu

Daejeon 305-701

Republic of Korea

Martin Kunat

Aixtron SE

Dornkaulstraße 2

Kaiserstraße 98

52134 Herzogenrath

Germany

Juergen Kreis

Aixtron SE

Dornkaulstraße 2

Kaiserstraße 98

52134 Herzogenrath

Germany

Joerg Lahann

University of Michigan

Chemical Engineering

Materials Science and Engineering

Biointerfaces Institute

NCRC, B26, Rm. 133S

2800 Plymouth Road

Ann Arbor, MI 48109

USA

Kenneth K. S. Lau

Drexel University

Department of Chemical and Biological Engineering

3141 Chestnut Street

Philadelphia, PA 19104

USA

Yu Mao

Oklahoma State University

Biosystems and Agricultural Engineering

111 Agricultural Hall

Stillwater, OK 74078-6016

USA

W. Shannan O'Shaughnessy

GVD Corporation

45 Spinelli Place

Cambridge, MA 02138

USA

Gozde Ozaydin Ince

Sabancı University

Faculty of Engineering and Natural Sciences

Materials Science and Nanoengineering

Orta Mahalle, Universite Caddesi No: 27

34956 Orhanlı Istanbul

Turkey

Alberto Perrotta

Eindhoven University of Technology

Department of Applied Physics

P.O. Box 513

Groene Loper 19

5600 MB Eindhoven

The Netherlands

and

Dutch Polymer Institute (DPI)

P.O. Box 902

J.F. Kennedylaan, 2

5600 AX Eindhoven

The Netherlands

Markus Schwambera

Aixtron SE

Dornkaulstraße 2

Kaiserstraße 98

52134 Herzogenrath

Germany

Hyejeong Seong

Korea Advanced Institute of Science and Technology (KAIST)

Department of Chemical and Biomolecular Engineering and KI for NanoCentury

291 Daehak-ro (373-1 Guseong-dong)

Yuseong-gu

Daejeon 305-701

Republic of Korea

Wyatt E. Tenhaeff

University of Rochester

Department of Chemical Engineering

249A Gavett Hall

500 Joseph C. Wilson Blvd.

Rochester, NY 14627

USA

Jose L. Yagüe

Massachusetts Institute of Technology

Department of Chemical Engineering

77 Massachusetts Avenue

Cambridge, MA 02139

USA

Rong Yang

Harvard Medical School

Children's Hospital Boston

Department of Anesthesiology

Division of Critical Care Medicine

Laboratory for Biomaterials and Drug Delivery

300 Longwood Avenue

Boston, MA 02115

USA

and

Massachusetts Institute of Technology

Department of Chemical Engineering

77 Massachusetts Avenue

Cambridge, MA 02139

USA

Youngmin Yoo

Korea Advanced Institute of Science and Technology (KAIST)

Department of Chemical and Biomolecular Engineering and KI for NanoCentury

291 Daehak-ro (373-1 Guseong-dong)

Yuseong-gu

Daejeon 305-701

Republic of Korea

Jae Bem You

Korea Advanced Institute of Science and Technology (KAIST)

Department of Chemical and Biomolecular Engineering and KI for NanoCentury

291 Daehak-ro (373-1 Guseong-dong)

Yuseong-gu

Daejeon 305-701

Republic of Korea

Han Zhou

Stanford University

Department of Chemical Engineering

Shriram Center

Stanford, CA 94305

USA

1Overview of Chemically Vapor Deposited (CVD) Polymers

Karen K. Gleason

1.1 Motivation and Characteristics

Chemical vapor deposition (CVD) is a powerful technology for surface engineering. When combined with the richness of organic chemistry, CVD enables polymeric coatings to be deposited without solvents [1–3]. The implantation of biomedical devices into humans, the stable functioning of printed circuit boards in harsh environments, and long-lasting, highly lubricious surfaces on industrial parts are just a few examples of the applications which employ CVD polymers. Research for CVD polymers has been undertaken in a diverse array of fields that include biotechnology, nanotechnology, optoelectronics, photonics, microfluidics, sensing, composites, and separations.

In CVD polymerization, gas phase monomers are converted directly to thin solid macromolecular films. By eliminating the need to dissolve macromolecules, CVD allows the synthesis of insoluble polymers and highly crosslinked organic networks. CVD also enables the polymerization of monomer units that undergo unwanted side reactions in solution and copolymerization of pairs of monomers that lack a common solvent.

CVD polymer films can be applied to nearly any substrate. Actually, for certain polymers and certain substrates, CVD polymerization can be the sole fabrication option. Low surface temperatures allow CVD polymers to be grown directly on fragile objects such as tissue paper and porous polymeric membranes. CVD is ideal for substrates that swell, dissolve, or otherwise degrade in solvents or for substrates that cannot withstand the high temperatures of “spray and bake” melt processing. This versatility is in contrast to, for example, self-assembled monolayers (SAMs) that are compatible only with specific surfaces, such as gold.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!