Die Akkumulatoren ihre Theorie, Herstellung, Behandlung und Verwendung. - Bermbach, Willibald - kostenlos E-Book

Die Akkumulatoren ihre Theorie, Herstellung, Behandlung und Verwendung. E-Book

Bermbach, Willibald

0,0
0,00 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Gratis E-Book downloaden und überzeugen wie bequem das Lesen mit Legimi ist.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB
MOBI

Seitenzahl: 238

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



The Project Gutenberg EBook of Die Akkumulatoren, by Willibald BermbachThis eBook is for the use of anyone anywhere in the United States and mostother parts of the world at no cost and with almost no restrictionswhatsoever.  You may copy it, give it away or re-use it under the terms ofthe Project Gutenberg License included with this eBook or online atwww.gutenberg.org.  If you are not located in the United States, you'll haveto check the laws of the country where you are located before using this ebook.Title: Die Akkumulatoren       ihre Theorie, Herstellung, Behandlung und Verwendung.Author: Willibald BermbachRelease Date: April 2, 2016 [EBook #51638]Language: German*** START OF THIS PROJECT GUTENBERG EBOOK DIE AKKUMULATOREN ***Produced by Peter Becker, Harry Lamé and the OnlineDistributed Proofreading Team at http://www.pgdp.net

Anmerkungen zur Transkription befinden sich am Ende dieses Textes.

Otto Wigand, Verlagsbuchhandlung m. b. H., Leipzig

HANDWÖRTERBUCHDER DEUTSCHEN SPRACHE von Dr. Daniel Sanders

Neu bearbeitet, ergänzt u. vermehrt von Dr. Ernst Wülfing

Achte (der Neubearbeitung erste) Auflage Geheftet Mark 8.—, gebunden Mark 10.—

Der „Kleine Sanders‟, der bekannte von Sanders selbst besorgte Auszug aus seinem großen vierbändigen „Wörterbuch‟, der seit seinem ersten Erscheinen vor gerade 40 Jahren sieben Auflagen erlebt hat und in rund 40000 Abdrucken verkauft worden ist, liegt in neuer, reich ergänzter und vermehrter Bearbeitung und in ganz neuem Gewande vor uns. Vor der alten Ausgabe zeichnet sich die neue schon rein äußerlich durch die vornehme Ausstattung und die größere Breite der Spalten aus; vor allem aber ist, wenn auch im ganzen die Druckanordnung der alten Ausgabe beibehalten wurde, doch in zahlreichen Einzelheiten alles getan worden, um dem Buch eine bei weitem größere Übersichtlichkeit zu verschaffen. — Der Bearbeiter Dr. E. Wülfing, hat das Buch mit besonderer Sorgfalt durchgesehen, es besonders, wo alte Lücken waren, aus dem „Großen Sanders‟ ergänzt und es anderseits durch zahlreiche neue Wörter vermehrt, die die verflossenen 40 Jahre, namentlich auf dem Gebiete der Technik aufgebracht haben. Auch wurde an manchen Stellen die bessernde Hand angelegt, wo das nach den Fortschritten der Sprachwissenschaft nötig erschien, besonders bei so mancher Bedeutungsentwicklung, die von Sanders s. Z. nicht richtig erkannt und aufgestellt wurde oder werden konnte. An Reichhaltigkeit, besonders auf dem Gebiete der neuesten technischen Ausdrücke und u. a. auch der Pflanzennamen, übertrifft der „Sanders-Wülfing‟, wie der „Kleine Sanders‟ wohl jetzt genannt werden wird, alle vorhandenen kleineren deutschen Wörterbücher. Besonders sei noch erwähnt, daß Wülfing an zahllosen Stellen dafür gesorgt hat, daß durch Einfügung von kurzen Belegen und Anführungen aus dem Schrifttum, sowie von knappen Beispielen die Erläuterungen, die ohne solche oft nicht ganz klar waren, belebt worden sind. Daß endlich die neue Rechtschreibung eingeführt worden ist, braucht nicht besonders betont zu werden.

Ein unentbehrliches Hand- und Nachschlagebuch für jeden Gebildeten

Die Akkumulatoren,ihre Theorie, Herstellung, Behandlung und Verwendung.

VonProf. Dr. W. Bermbach.

Zweite, vermehrte und verbesserte AuflageMit 38 Abbildungen.

Otto Wigand Verlagsbuchhandlung und Buchdruckerei m. b. H. Leipzig 1911.

Vorwortzur ersten Auflage.

Die Literatur über Akkumulatoren ist zwar eine ziemlich reichhaltige, jedoch fehlt es an einem nicht zu umfangreichen Buche, in dem sowohl die Theorie wie die Praxis, letztere, soweit sie größere Kreise interessiert, genügend berücksichtigt wird. Dieses dürfte in dem vorliegenden Werkchen geschehen sein.

Wenn irgendwo, so gilt für den Bleiakkumulator der Satz: Eine gute Theorie ist die beste Praxis. Denn hier gibt uns die Theorie Aufschluß über alle im Betriebe vorkommenden Erscheinungen. Aus diesem Grunde wurde die Theorie des Bleiakkumulators ausführlich behandelt. Damit sich nun auch solche Leser, denen die Grundbegriffe der modernen Elektrochemie nicht geläufig sind, zurechtfinden können, habe ich in dem ersten Kapitel die neueren Ansichten über die Elektrolyse und die Stromerzeugung in galvanischen Elementen gemeinverständlich behandelt.

Cöln, Mai 1905.

Vorwortzur zweiten Auflage.

Die meisten Kapitel wurden neu bearbeitet, die beiden letzten Kapitel außerdem nicht unwesentlich erweitert. Über den Edison-Akkumulator liegt jetzt genügend Material vor; dementsprechend wurde er in der neuen Auflage ausführlicher behandelt.

Herrn Dr. H. Geisler spreche ich für seine Unterstützung bei dem Lesen der Korrekturbogen meinen verbindlichsten Dank aus.

Cöln, Juni 1911.

Der Verfasser.

Inhalt.

Seite

1.

Kapitel

. Theorie der Elektrolyse und der galvanischen Elemente

1

2.

Kapitel

. Theorie des Bleiakkumulators

34

3.

Kapitel

. Kapazität, Wirkungsgrad, Nutzeffekt, innerer Widerstand

60

4.

Kapitel

. Ladung und Entladung

80

5.

Kapitel

. Vorgänge im ruhenden Akkumulator

105

6.

Kapitel

. Plattenkonstruktionen, Herstellung der Platten, Formation

116

7.

Kapitel

. Aufstellung der Batterie, Einbau der Platten, Vorschriften über die Behandlung, Lebensdauer

132

8.

Kapitel

. Der alkalische Akkumulator

152

9.

Kapitel

. Die Verwendung der Akkumulatoren

166

Erstes Kapitel.Theorie der galvanischen Elemente und der Elektrolyse.

Vorläufige Erklärung der Vorgänge im Bleiakkumulator. Ein Bleiakkumulator in seiner einfachsten Gestalt besteht aus zwei Bleiplatten, die in verdünnte Schwefelsäure eintauchen. Schickt man durch den elektrolytischen Apparat einen elektrischen Strom, so bildet sich an derjenigen Elektrode, die mit dem positiven Pole der Stromquelle verbunden ist, der Anode, Bleisuperoxyd, das eine braunrote Farbe hat; an der negativen Elektrode, der Kathode, wird Bleioxyd[1], das sich, bevor die Bleiplatten in die Säure getaucht wurden, an der Luft gebildet hatte, zu metallischem Blei reduziert.

Wenn an beiden Elektroden Gasentwicklung erfolgt — was bei unserem Laboratoriumsversuch schon nach kurzer Zeit der Fall ist —, so unterbricht man den Ladestrom. Wir haben jetzt die Kombination vor uns Blei und Bleisuperoxyd in verdünnter Schwefelsäure:

Pb

H

2

SO

4

 + aqua

PbO

2

-

+

Das Minuszeichen unter Blei bedeutet, daß die betreffende Platte der negative Pol des Elementes ist. Unsere Kombination ist, wie wir leicht mittels eines Galvanoskops nachweisen können, ein galvanisches Element, ähnlich wie

Zn

H

2

SO

4

 + aq

Cu.

-

+

Wie wir später sehen werden, bildet sich bei der Entladung auf beiden Elektroden Bleisulfat. Die beiden Platten werden also einander um so ähnlicher, je mehr Elektrizität unser Akkumulator abgibt. Wenn man aber zwei gleiche Elektroden in denselben Elektrolyten eintaucht, so erhält man kein galvanisches Element. Die elektromotorische Kraft unseres primitiven Akkumulators muß also während der Stromabgabe mehr oder weniger schnell abnehmen.

Bei dem beschriebenen Laboratoriumsversuch findet man, daß nach Beendigung der Entladung die braunrote Farbe keineswegs ganz verschwunden ist, daß also Reste von PbO2 zurückbleiben.

Laden wir den Akkumulator jetzt wieder, so wird Bleisulfat an der negativen Elektrode in metallisches Blei und an der positiven Platte in Bleisuperoxyd verwandelt.

Bei der Ladung sowohl wie bei der Entladung spielen sich im Akkumulator chemische Prozesse ab. Bei der Ladung wird ein chemisches System gleichsam gewaltsam verändert (ähnlich wie eine Spiralfeder beim Zusammendrücken), das veränderte System hat das Bestreben, in seinen ursprünglichen Zustand zurückzukehren. Bei der Ladung wird in dem Akkumulator chemische Energie aufgespeichert, und zwar entsteht diese aus elektrischer Energie. In dem Akkumulator wird also keineswegs elektrische Energie als solche aufbewahrt, gerade so wenig wie dies bei einem Gewichte der Fall ist, das durch einen Elektromotor gehoben wurde. Den Charakter eines galvanischen Elementes erhält der Akkumulator erst dadurch, daß man ihm elektrische Energie zuführt. Man bezeichnet ihn daher auch als Sekundärelement.

Im Prinzip unterscheidet sich ein geladener Akkumulator in nichts von einem gewöhnlichen Primärelement (z. B. einem Daniell-Element). Wir müssen daher im Folgenden auf die Theorie der galvanischen Elemente näher eingehen.

An den chemischen Vorgängen im Akkumulator ist der Elektrolyt in hervorragender Weise beteiligt. Es ist daher jedem, der nur etwas tiefer in die Theorie des Bleiakkumulators eindringen will, anzuraten, sich ein möglichst klares und vollständiges Bild von den Vorgängen, die sich bei der Elektrolyse der verdünnten Schwefelsäure abspielen, zu verschaffen. [Hingewiesen sei hier auf das Kapitel VIII in Le Blancs Lehrbuch der Elektrochemie.]

Da die neueren elektrochemischen Theorien, soweit es der Raum gestattet, in unserer Schrift Berücksichtigung finden sollen, so wollen wir mit einer Besprechung einiger wichtiger Grundbegriffe dieses Gebietes beginnen.

Der osmotische Druck. Um diesen außerordentlich wichtigen Begriff klar zu machen, wollen wir von einem Nichtelektrolyten ausgehen; als Beispiel diene eine Zuckerlösung. Ein Standglas mit vorspringendem Rande fülle man mit einer Zuckerlösung und verschließe das Glas mittels einer vorher in lauwarmem Wasser aufgeweichten Schweinsblase, wobei darauf zu achten ist, daß keine Luftblasen eingeschlossen werden. Durch einen Bindfaden ist die Membran unterhalb des Glasrandes gut zu befestigen. Stellt man das Präparat in ein größeres, mit Wasser gefülltes Gefäß, so findet man nach etwa 24 Stunden, daß sich die Membran sehr stark gewölbt hat, und wir schließen daraus, daß von der Zuckerlösung auf die Membran ein Druck ausgeübt wurde. Da die Wölbung nicht erfolgt, wenn wir das Standglas mit Wasser füllen, so schließen wir weiter, daß der eben erwähnte Druck von den Zuckermolekülen herrührt. — Die Schweinsblase hat die Eigenschaft[2], den Wassermolekülen den Durchgang zu gestatten, nicht aber den Zuckermolekülen, sie ist halbdurchlässig oder semipermeabel. Denken wir uns nun die Zeit in sehr kleine Intervalle geteilt, so können wir die Vorgänge in dem Standglase (Zelle) folgendermaßen erklären: Die Zuckermoleküle üben einen Druck auf die Membran aus; diese wird um ein unendlich kleines Stück gehoben, in den freien Raum dringt Wasser ein. Während des folgenden Zeitabschnittes wiederholt sich das Spiel usw. Die Membran wölbt sich also langsam im Laufe der Zeit. Dem osmotischen Drucke der Zuckermoleküle — so nennt man den auf die Membran ausgeübten Druck — wirkt die Spannung der Membran entgegen. Nehmen wir nun an, daß die Schweinsblase vollkommen, auch bei jedem Drucke halbdurchlässig ist, und daß sie jeden beliebig hohen Druck auszuhalten vermag, ohne zu platzen, so schließen wir weiter, daß sich nach einer gewissen Zeit ein Gleichgewichtszustand ausbildet, der natürlich dann vorhanden ist, wenn der osmotische Druck der Zuckermoleküle gleich ist der Spannung der Membran. Der nach Innen gerichtete Druck der gespannten Membran nach Eintritt des Gleichgewichtszustandes, d. h. wenn eine weitere Wölbung der Membran nicht mehr erfolgt, ist gleich dem osmotischen Drucke der Lösung.

Auch in folgender Weise gelangt man zu einer Vorstellung über den osmotischen Druck. Wenn wir bei Beginn des Versuches die Membran belasten, etwa durch Auflegen von Gewichtsteinen, so erfolgt das Eindringen des Wassers langsamer als eben und bei einer gewissen Belastung wölbt sich die Membran überhaupt nicht. Beträgt die betreffende Belastung p kg pro 1 cm2 Oberfläche, so ist p ein Maß für den osmotischen Druck.

Nach der kinetischen Theorie der Flüssigkeiten kommt der osmotische Druck dadurch zustande, daß Zuckermoleküle gegen die Membran prallen und Stöße auf diese ausüben.

Auf die für den osmotischen Druck gültigen Gesetze, die übrigens, wie van ’t Hoff zeigte, mit den Gasgesetzen übereinstimmen, soll nicht näher eingegangen werden; es sei nur bemerkt, daß der osmotische Druck mit der Konzentration wächst.

Die elektrolytische Dissoziation. Man fand, daß die Lösungen von Säuren, Salzen und Basen (Elektrolyte) einen anormal hohen osmotischen Druck haben. Arrhenius erklärte diese Erscheinung durch die Annahme, daß sich Moleküle der gelösten Substanz dissoziieren. Eine einfache Überlegung zeigt uns aber, daß die Dissoziation in Elektrolyten von der gewöhnlichen Dissoziation verschieden sein muß. Wählen wir als Beispiel eine Salmiaklösung. Bei hoher Temperatur spaltet sich (dampfförmiger) Salmiak nach der Gleichung

Würde die Dissoziation in der Salmiaklösung in derselben Weise erfolgen, so müßte die Flüssigkeit freies Ammoniak enthalten, das an seinem scharfen, stechenden Geruch leicht erkannt werden kann. Eine Salmiaklösung riecht aber nicht nach Ammoniak. Die Dissoziation in Elektrolyten erfolgt nun in der Weise, daß elektrisch geladene Komponenten entstehen. Das Kochsalzmolekül z. B. spaltet sich in ein positiv geladenes Natriumatom und ein negativ geladenes Chloratom. Die Komponenten nennt man Ionen, d. h. die Wandernden, weil sie sich unter dem Einflusse elektrischer Kräfte bewegen.

Die elektrolytische Dissoziation kann man als einen chemischen Prozeß auffassen, der sich zwischen einem Molekül der gelösten Substanz und einem Neutron[3] abspielt und den man für Kochsalz durch die Gleichung versinnlichen kann:

Statt dessen schreibt man kürzer

Dementsprechend sehen wir die Ionen als neue chemische Verbindungen an, z. B. ist das Natriumion (Na·) eine chemische Verbindung zwischen einem Natriumatom und einem positiven Elektron. Ebenso wie Natrium + Chlor etwas ganz anderes ist wie Natrium allein, so ist Natrium + Elektron, d. h. Natriumion, in seinem chemischen und physikalischen Verhalten durchaus verschieden von dem metallischen Natrium.

Der materielle Bestandteil eines Ions kann auch aus mehreren Atomen bestehen, z. B. aus der Hydroxylgruppe, dem Radikale SO4. Ist das Element oder die Atomgruppe mehrwertig, so verbindet es sich mit mehreren Elektronen. Beispiele für die elektrolytische Dissoziation:

Cu·· bedeutet, daß das Kupferatom mit zwei positiven Elektronen verbunden ist.

Da ein- und derselbe Elektrolyt (Salz) sich in Wasser stark, in Chloroform fast garnicht dissoziiert, so scheint es als ob dem Wasser eine besonders große dissoziierende Kraft innewohnt. Nernst wies zuerst darauf hin, daß zwischen dem Dissoziationsvermögen einer Flüssigkeit und der Dielektrizitätskonstante ein gewisser Parallelismus besteht.

In einem Elektrolyten, z. B. in verdünnter Salzsäure, befinden sich neben den Molekülen des Wassers, von dessen Dissoziation wir einstweilen absehen, nichtdissoziierte Moleküle der gelösten Substanz, positive Ionen, nämlich die Wasserstoffionen, und negative Ionen, nämlich die Chlorionen. Nur bei sehr starker Verdünnung sind sämtliche Moleküle der gelösten Substanzen dissoziiert. Befinden sich n Moleküle der gelösten Substanz (dissoziierte Moleküle + indissoziierte Moleküle) in einer Lösung und sind von diesen m Moleküle dissoziiert, so ist mn der Dissoziationsgrad.

In jedem noch so kleinen Tröpfchen des Elektrolyten befinden sich ebensoviele positive Ionen wie negative, so daß das Tröpfchen als Ganzes unelektrisch ist.

Inbezug auf den osmotischen Druck verhalten sich die Ionen wie die Moleküle der gelösten Substanz; auf eine semipermeable Wand üben sie also einen Druck aus. Man wird hier wieder an das Verhalten der Gase erinnert: Befinden sich in einem abgeschlossenen Raume gleichzeitig mehrere Gase oder Dämpfe, so übt jedes Gas einen gerade so großen Druck aus, wie wenn es allein vorhanden wäre. Bei einem Elektrolyten kommen also, wenn wir von den Ionen des Wassers selbst absehen, drei osmotische Drucke in Betracht, nämlich der osmotische Druck der nichtdissoziierten Moleküle, derjenige der positiven Ionen und derjenige der negativen Ionen.

Auf die Frage, warum in einem Elektrolyten (in der Regel) nicht alle Moleküle der gelösten Substanz dissoziiert sind, soll mit einigen wenigen Worten eingegangen werden. Nach der eben mitgeteilten Auffassung ist die elektrolytische Dissoziation ein Vorgang nach Art eines chemischen Prozesses. Für einen solchen gilt das Massenwirkungsgesetz[4]. Wenn wir also beispielsweise Salzsäure in Wasser gießen, so bildet sich ein Gleichgewichtszustand aus, der dadurch charakterisiert ist, daß die Anzahl der Moleküle, die in 1 Sekunde zerfallen, gerade so groß ist wie die Anzahl der durch Wiedervereinigungen eines positiven und negativen Ions entstehenden neutralen Moleküle. — Würden sich in einer starken Lösung, etwa in einer 30prozentigen Kochsalzlösung alle Moleküle der gelösten Substanz dissoziieren, so würde der Abstand zwischen den einzelnen Ionen ein außerordentlich kleiner sein; die entgegengesetzten Ladungen der positiven und negativen Ionen würden sich so stark anziehen, daß zahlreiche Wiedervereinigungen stattfinden würden. Man sieht ein, daß in jedem Kubikzentimeter der Lösung nur eine bestimmte Anzahl von Ionen existieren kann. Mit zunehmender Verdünnung muß also die Dissoziation fortschreiten.

Elektrolyse. Nur diejenigen Flüssigkeiten leiten den elektrischen Strom, in denen sich freie Ionen befinden. Die Stromleitung in einem Elektrolyten besteht nun darin, daß die von der positiven Elektrode abgestoßenen und von der negativen Elektrode angezogenen positiven Ionen nach der einen und die negativen nach der entgegengesetzten Richtung wandern. Die Geschwindigkeit, mit der sich die Ionen durch die Flüssigkeit hindurch bewegen, die übrigens wegen der sehr großen Reibung zwischen den Wassermolekülen und den Ionen eine sehr geringe ist, hat für die verschiedenen Ionenarten verschiedene Werte.

Die dem Elektrolyten zugeführte Energie kann also in zwei Teile zerlegt werden. Der eine Teil dient dazu, die Ionen zu bewegen; die entsprechende Arbeit wird in Wärme umgesetzt. Die zweite Arbeit, die der Strom leistet, besteht darin, daß die Ionen ihrer Ladungen beraubt werden. — Die Entionisierung eines Ions, z. B. eines Natriumions kann man als einen chemischen Prozeß auffassen, an dem das Natriumion und ein negatives Elektron beteiligt ist und bei dem Energie verbraucht wird.

Das Faradaysche Gesetz erscheint vom Standpunkte der Ionentheorie aus als etwas Selbstverständliches. Man sieht nämlich ohne weiteres ein, daß

1. die zersetzten Mengen des Elektrolyten den durchgegangenen Elektrizitätsmengen proportional sind und daß

2. die Mengen der gleichzeitig aus verschiedenen Elektrolyten ausgeschiedenen Stoffe ihren chemischen Äquivalenten proportional sind (an chemisch äquivalente Stoffmengen sind gleiche Elektrizitätsmengen gebunden). An 1 Gramm Wasserstoffionen sind 96540 Coulomb gebunden; ebenso an 23 Gramm Natriumionen etc. Um 1 Gramm Wasserstoff durch Elektrolyse irgend eines Elektrolyten zu erhalten, muß man der Stromquelle 96540 Coulomb positive Elektrizität entnehmen, oder bei 1 Ampere Stromstärke muß die Elektrolyse 96540 Sekunden lang dauern.

Wir wollen jetzt noch im Besonderen betrachten die Elektrolyse der verdünnten Schwefelsäure. Aus dem Umstande, daß chemisch reines Wasser den elektrischen Strom nur sehr schlecht leitet, muß man folgern, daß sich in reinem Wasser nur eine geringe Anzahl von Ionen befindet. In chemisch reinem Wasser können sich natürlich nur solche Ionen befinden, die durch Dissoziation der Wassermoleküle selbst entstehen. Diese spalten sich, allerdings nur zu einem sehr kleinen Prozentsatze, nach der Gleichung

Hierzu kommt wahrscheinlich eine noch geringfügigere Dissoziation, die zur Bildung von Wasserstoff und Sauerstoffionen führt:

Aus der von Kohlrausch und Heydweiller bestimmten Leitfähigkeit des Wassers kann man den Dissoziationsgrad berechnen. Man findet, daß bei 0 Grad 1 g Wasserstoffionen (und dementsprechend 17 g Hydroxylionen, wenn wir von der Dissoziation nach Gleichung 2 absehen) in etwa 14 Millionen Liter Wasser enthalten sind, bei 18° schon in 6,25 . 106 l. Die Leitfähigkeit nimmt also mit der Temperatur schnell zu. Nach neueren Messungen enthält 1 g Wasserstoff 0,352 . 1024 Atome. Ein Gramm Wasser enthält also trotz der sehr geringen Dissoziation viele Millionen Wasserstoffionen.

Die Anzahl der Wasserstoffionen, die sich in 1 cm3 Wasser befindet, wollen wir die Konzentration der Wasserstoffionen nennen, entsprechendes gilt für die anderen Ionen. Da die Leitfähigkeit des Wassers (wie aller Elektrolyte) mit der Temperatur stark wächst, so müssen wir schließen, daß entweder die Ionenkonzentrationen mit der Temperatur größer werden, oder daß die Reibung zwischen den Ionen und den Wassermolekülen kleiner wird oder daß beides zugleich stattfindet. So viele Ionen nun bei einer bestimmten Temperatur in einem cm3 existieren können, so viele existieren auch wirklich. Wenn also aus einem gegebenen Volumen Wasser ein Wasserstoff- und ein Hydroxylion auf irgend eine Weise entfernt werden, so dissoziiert sich sofort ein neues Molekül Wasser — das gestörte chemische Gleichgewicht wird sofort wieder hergestellt.

Es sei hier wieder auf eine Analogie aufmerksam gemacht. Befindet sich in einem abgeschlossenen Raume, etwa unter einer Glasglocke (Rezipient einer Luftpumpe) eine hinreichende Menge Wasser, so verdampft bei einer bestimmten Temperatur eine bestimmte Menge Wasser. Entfernen wir auf irgend eine Weise einen Teil des Wasserdampfes, so erfolgt neue Verdampfung; der Gleichgewichtszustand wird gestört und bildet sich von neuem. Wie bei diesem Vorgange eine gewisse Zeit vergeht, ehe sich der Gleichgewichtszustand von neuem gebildet hat, so auch bei der elektrolytischen Dissoziation.

Setzen wir reinem Wasser Schwefelsäure zu — es genügt eine ganz kleine Menge —, so wächst das Leitungsvermögen sehr stark, und wir schließen daraus, daß sich eine große Menge von neuen Ionen gebildet haben. Diese entstehen durch die Dissoziation der Schwefelsäure, die bei den für uns in Betracht kommenden Konzentrationen eine sehr weitgehende ist, und zwar verläuft der Zerfall nach den beiden Reaktionsgleichungen[6]

Es findet also eine stufenweise Dissoziation statt. Die Dissoziation nach der Gleichung (3) entspricht dem Zerfall des NaHSO4, der offenbar nach der Gleichung

erfolgt.

Bei geringerer Konzentration der Schwefelsäurelösung spielt die Dissoziation nach Gleichung (3) nur eine ganz untergeordnete Rolle gegenüber der Reaktion

Mit wachsender Konzentration tritt die Dissoziation im Sinne der Gleichung (3) mehr in den Vordergrund.

In verdünnter Schwefelsäure befindet sich also eine größere Anzahl von Ionenarten (H·, OH′, O′′, SO4′′, HSO′4), und daher sind verschiedene Elektrolysen möglich. An der Kathode werden immer Wasserstoffionen entionisiert, an der Anode aber können vier verschiedene Ionenarten herauselektrolysiert werden.

Welche Ionenart auch außer Wasserstoff abgeschieden werden mag, an der Stromleitung innerhalb des Elektrolyten sind alle Ionenarten beteiligt.

Um aus einem Elektrolyten zwei verschiedene Ionenarten dauernd herauszuelektrolysieren, muß man eine gewisse Minimalspannung anwenden; für uns kommen folgende von Le Blanc angegebene Zersetzungsspannungen in Betracht:

H

·

und

O′′

1,08

Volt

-

+ Überspannung

H

·

OH′

1,68

H

·

SO

4

′′

1,95

H

·

HSO

4

2,60

Die angegebenen Zersetzungsspannungen genügen i. A. noch nicht, eine sichtbare Gasentwickelung herbeizuführen, man muß diese vielmehr um einen von der Natur der Kathode abhängigen Betrag vergrößern[7] (natürlich ist hier nicht der Spannungsabfall im elektrolytischen Apparat, i × w, gemeint).

Wenn sichtbare Gasentwickelung erfolgen soll, so müssen sich Gasbläschen bilden. Man kann nun annehmen, daß für die Bildung der Bläschen eine gewisse Arbeit verbraucht wird, die der elektrische Strom liefern muß, und daß diese Arbeit von der Beschaffenheit der Oberfläche, an der die Wasserstoffbildung erfolgt, abhängig ist (Überspannung).

Wegen der Überspannung ist also eine Ladung des Akkumulators erst möglich, bezw. kann eine solche ohne ganz erhebliche Energieverluste erfolgen.

Bei kleinen Spannungen, z. B. bei 0,5 Volt, sinkt der Strom in einem Wasserzersetzungsapparat nicht völlig auf Null herab, es muß also auch in diesem Falle eine Elektrolyse stattfinden. Man erhält nicht Gase von Atmosphärendruck, sondern Wasserstoff und Sauerstoff von geringer Konzentration, gelöst in den Elektroden und im Elektrolyten. Den Strom bezeichnet man als Reststrom (s. S. 29).

In dem durch Elektrolyse gewonnenen Sauerstoff finden sich immer Spuren von Ozon, das durch einen sekundären Prozeß aus dem abgeschiedenen Sauerstoff entsteht (besonders bei größerer Stromdichte).

Die Ozonbildung nimmt mit wachsender Konzentration der Säure zu. Ebenso entsteht sekundär Wasserstoffsuperoxyd[10] (H2O2) in geringer Menge, wahrscheinlich an beiden Elektroden. Endlich ist zu erwähnen, daß sich Überschwefelsäure bilden kann nach der Gleichung

also primär. Die Entstehung von Überschwefelsäure bei der Elektrolyse der verdünnten Schwefelsäure wird durch große Stromdichte, Vergrößerung des Schwefelsäuregehaltes und Erniedrigung der Temperatur begünstigt. Nach den Zersetzungsspannungen auf Seite 13 dürfte aber, vorausgesetzt, daß die Überschwefelsäure nach Gleichung (6), also primär, entsteht, ihre Bildung erst bei Spannungen von mehr als 2,6 Volt erfolgen; hierzu ist noch beim Bleiakkumulator, da mit den HSO4-Ionen gleichzeitig Wasserstoffionen an der Bleielektrode entionisiert werden müssen, die Überspannung von 0,64 Volt zu addieren. Bei normaler Ladung wäre demnach eine Bildung von Überschwefelsäure im Akkumulator ausgeschlossen. Da übrigens die Überschwefelsäure Blei angreift und Bleisuperoxyd in Bleisulfat verwandelt, so ist ihre Gegenwart in dem Elektrolyten dem Akkumulator schädlich.

Ehe wir uns zu der Polarisation wenden, wollen wir uns mit der Beziehung zwischen der Wärmetönung und der elektromotorischen Kraft beschäftigen. Verdünnte Schwefelsäure möge zwischen indifferenten Elektroden, d. h. zwischen solchen, die durch die Produkte der Elektrolyse nicht angegriffen werden, zersetzt werden (z. B. zwischen Platinelektroden). Wir erhalten, wenn wir von den Nebenprodukten absehen, Wasserstoff und Sauerstoff. Nehmen wir an, daß wir 1 Gramm Wasserstoff durch Elektrolyse erhalten haben (und 8 Gramm Sauerstoff); es sind dann im ganzen 96540 Coulomb durch unseren Apparat geflossen, was der Fall war, wenn die Zersetzung bei 1 Ampère Stromstärke 96540 Sekunden lang gedauert hat. Der erhaltene Wasserstoff werde verbrannt; wir erhalten dann 9 Gramm Wasser. Lassen wir die Verbrennung im Kalorimeter vor sich gehen, so finden wir, daß wir etwa 34200 kleine Wärmeeinheiten (Grammkalorien, cal.) erhalten. Um diese Energie sind 9 Gramm Wasser von gewöhnlicher Temperatur ärmer als 1 g H + 8 g O von derselben Temperatur. Wollen wir nun, so schließen wir vorläufig, das eben gewonnene Wasser wieder in seine beiden Komponenten zerlegen, so müssen wir die eben gewonnene Energie, die wir die Wärmetönung des Prozesses

bezogen auf 1 Gramm H, nennen, dem Wasser wieder zuführen. Geschieht also die Zersetzung mittels des elektrischen Stromes, so müssen wir, abgesehen von der Jouleschen Wärme, in den elektrolytischen Apparat eine den 34200 cal. äquivalente Menge elektrischer Energie hineinschicken. Die elektrische Energie aber, die ein Apparat verbraucht, ist gegeben durch das Produkt

Anzahl Coulomb × Spannung zwischen den Elektroden.

Da nun die Anzahl Coulomb eine gegebene Größe ist, nämlich 96540, und außerdem das Produkt einer gegebenen Wärmemenge äquivalent ist (34200 cal.), so muß die Klemmenspannung einen bestimmten Wert haben.

Bezeichnen wir diese Spannung mit E, so gilt die Beziehung

96540 . E Wattsek. (Volt-Coulomb) äquival. 34200 cal.

1 Wattsekunde ist aber gleichwertig 0,239 cal. Daher

E ist also ungefähr gleich 1,5 Volt. Man sollte nun erwarten, daß eine Zersetzung des Wassers mit einer geringeren Spannung als 1,5 Volt nicht möglich ist. Von verschiedenen Forschern wurde aber nachgewiesen, daß man bei geeigneter Versuchsanordnung mit elektromotorischen Kräften in der Nähe von 1,1 Volt Gasentwickelung beobachtet[11]. Die von uns gezogenen Schlüsse entsprechen demnach nicht den Erfahrungstatsachen; wir müssen uns daher noch eingehender mit der Beziehung zwischen der chemischen und elektrischen Energie beschäftigen.

Thomsonsche Regel. In den galvanischen Elementen, zu denen wir auch den Akkumulator zu rechnen haben, entsteht die elektrische Energie, die das Element abgibt, aus chemischer Energie. Wir wählen als Beispiel das Daniell-Element: Zn in ZnSO4 + aq und Cu in CuSO4 + aq, weil bei ihm die Vorgänge leicht zu übersehen sind. Gibt das Element Strom ab, so geht Zink in Lösung, und Kupfer schlägt sich auf der positiven Elektrode nieder.

Beide Vorgänge kann man durch eine Gleichung ausdrücken

die man die Thomsonsche Regel nennt. Diese liefert, auf das Daniell-Element angewandt, einen mit der Erfahrung gut übereinstimmenden Wert, weil, wie wir später sehen werden, seine elektromotorische Kraft von der Temperatur unabhängig ist. Bei anderen Elementen findet man aber einen Unterschied zwischen der berechneten und gemessenen elektromotorischen Kraft; ganz versagt die Thomsonsche Regel bei den Konzentrationsketten[13].

Thomson ging von der Voraussetzung aus, daß die ganze dem chemischen Umsatze entsprechende Energie und nur diese im Elemente in elektrische Energie umgewandelt werde, daß sich also das Element während der Stromabgabe weder erwärme noch abkühle. (Wenn übrigens hier und im folgenden von der Erwärmung eines Elementes die Rede ist, so soll die betreffende Wärme nicht als Joulesche Wärme aufgefaßt werden. Wir nehmen an, daß diese durch die Wahl sehr großer Elektroden, die einen kleinen Abstand haben, verschwindend klein gemacht sei.) Diese Voraussetzung trifft aber im allgemeinen, wie durch experimentelle Untersuchungen von Braun, Raoult u. a. nachgewiesen wurde, nicht zu.