153,99 €
This two-volume work covers ultrafast structural and electronic dynamics of elementary processes at solid surfaces and interfaces, presenting the current status of photoinduced processes. Providing valuable introductory information for newcomers to this booming field of research, it investigates concepts and experiments, femtosecond and attosecond time-resolved methods, as well as frequency domain techniques.
The whole is rounded off by a look at future developments.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1201
Veröffentlichungsjahr: 2010
Contents
Cover
Related Titles
Title Page
Copyright
Preface
List of Contributors
Part One: Quasiparticle Dynamics
Chapter 1: Nonlinear Terahertz Studies of Ultrafast Quasiparticle Dynamics in Semiconductors
1.1 Linear Optical Properties of Quasiparticles: The Polarization Cloud around a Charge Carrier
1.2 Femtosecond Nonlinear Terahertz and Mid-Infrared Spectroscopy
1.3 Ultrafast Quantum Kinetics of Polarons in Bulk GaAs
1.4 Coherent High-Field Transport in GaAs on Femtosecond Timescales
1.5 Conclusions and Outlook
Acknowledgments
References
Chapter 2: Higher Order Photoemission from Metal Surfaces
2.1 Introduction
2.2 Observation of Higher Order Photoemission at Cu Surfaces
2.3 Electronic Structure Mapping Using Coherent Multiphoton Resonances
2.4 Dynamical Trapping of Electrons in Quasibound States
2.5 Above-Threshold Photoemission
2.6 Spin-Polarized Multiphoton Photoemission
2.7 Summary and Outlook
Acknowledgments
References
Chapter 3: Electron Dynamics in Image Potential States at Metal Surfaces
3.1 Scattering Processes
3.2 Energies and Dispersion of Image Potential States
3.3 Inelastic Scattering
3.4 Quasielastic Scattering
3.5 Electron–Phonon Scattering
3.6 Electron Defect Scattering
3.7 Summary and Outlook
Acknowledgments
References
Chapter 4: Relaxation Dynamics in Image Potential States at Solid Interfaces
4.1 Stochastic Interpretation of IPS Decay
4.2 IPS Decay for Solvating Molecules
4.3 Conclusions
References
Chapter 5: Dynamics of Electronic States at Metal/Insulator Interfaces
5.1 Introduction
5.2 Spectroscopy by One-Photon Photoemission
5.3 Observation by Two-Photon Photoemission
5.4 Lifetimes
5.5 Momentum-Resolved Dynamics
5.6 Summary
Acknowledgments
References
Chapter 6: Spin-Dependent Relaxation of Photoexcited Electrons at Surfaces of 3d Ferromagnets
6.1 Introduction
6.2 Spin-Resolved Two-Photon Photoemission on Image Potential States
6.3 Spin-Dependent Dynamics
6.4 Image Potential States: A Sensor for Surface Magnetization
6.5 Summary
Acknowledgment
References
Chapter 7: Electron–Phonon Interaction at Interfaces
7.1 Introduction
7.2 Calculation of the Electron–Phonon Coupling Strength
7.3 Experimental Determination of the Electron–Phonon Coupling Strength
7.4 Some Examples
7.5 Conclusions
References
Part Two: Collective Excitations
Chapter 8: Low-Energy Collective Electronic Excitations at Metal Surfaces
8.1 Introduction
8.2 Analytical and Numerical Calculations
8.3 Results of Numerical Calculations
8.4 Concluding Remarks
References
Chapter 9: Low-Dimensional Plasmons in Atom Sheets and Atom Chains
9.1 Introduction
9.2 Difference between the Surface Plasmons and the Atomic Scale Plasmons
9.3 Measurement of Atomic Scale Low-Dimensional Metallic Objects
9.4 Plasmons Confined in Ag Nanolayers
9.5 Plasmon in a Two-Dimensional Monoatomic Ag Layer
9.6 Plasmons in Atomic Scale Quantum Wires
9.7 Conclusions
References
Chapter 10: Excitation and Time-Evolution of Coherent Optical Phonons
10.1 Coherent Phonons in Group V Semimetals
10.2 Ultrafast Electron–Phonon Coupling in Graphitic Materials
10.3 Quasiparticle Dynamics in Silicon
10.4 Coherent Optical Phonons in Metals
10.5 Coherent Phonon-Polaritons in Ferroelectrics
10.6 Current Developments in Other Materials
10.7 Concluding Remarks
References
Chapter 11: Photoinduced Coherent Nuclear Motion at Surfaces: Alkali Overlayers on Metals
11.1 Introduction
11.2 Impulsive Excitation
11.3 Alkali Metal Overlayers
11.4 Time-Resolved SHG Spectroscopy
11.5 Electronic and Nuclear Responses in TRSHG Signals
11.6 Excitation Mechanism
11.7 Summary and Outlook
References
Chapter 12: Coherent Excitations at Ferromagnetic Gd(0001) and Tb(0001) Surfaces
12.1 Introduction
12.2 Relaxation of the Optically Excited State
12.3 Coupled Lattice and Spin Excitations
12.4 Conclusion
Acknowledgments
References
Part Three: Heterogeneous Electron Transfer
Chapter 13: Studies on Auger Neutralization of He+ Ions in Front of Metal Surfaces
13.1 Introduction
13.2 Concept of Method
13.3 Studies on Auger Neutralization of He+ Ions
13.4 Summary and Conclusions
Acknowledgments
References
Chapter 14: Electron Transfer Investigated by X-Ray Spectroscopy
14.1 Core Hole Clock Spectroscopy
14.2 Time-Resolved Soft X-Ray Spectroscopy
14.3 Summary
Acknowledgments
References
Chapter 15: Exciton Formation and Decay at Surfaces and Interfaces
15.1 Introduction
15.2 Exciton Models
15.3 Photoelectron Spectroscopy of Excitons
15.4 Frenkel Excitons in C60
15.5 Charge Transfer Excitons at the Surface of Pentacene
15.6 Conclusions
References
Chapter 16: Electron Dynamics at Polar Molecule–Metal Interfaces: Competition between Localization, Solvation, and Transfer
16.1 Introduction
16.2 Competing Channels of Electron Relaxation in Amorphous Layers
16.3 Ultrafast Trapping and Ultraslow Stabilization of Electrons in Crystalline Solvents
16.4 Conclusion
Acknowledgments
References
Part Four: Photoinduced Modification of Materials and Femtochemistry
Chapter 17: Theory of Femtochemistry at Metal Surfaces: Associative Molecular Photodesorption as a Case Study
17.1 Introduction
17.2 Theory of Femtochemistry at Surfaces
17.3 Femtosecond-Laser Driven Desorption of H2 and D2 from Ru(0001)
17.4 Conclusions
Acknowledgment
References
Chapter 18: Time-Resolved Investigation of Electronically Induced Diffusion Processes
18.1 Introduction
18.2 Detection of Electronically Induced Diffusion
18.3 Description of Electronically Induced Motion by Electronic Friction
18.4 Results
18.5 Summary
Acknowledgments
References
Chapter 19: Laser-Induced Softening of Lattice Vibrations
19.1 Introduction
19.2 Theoretical Framework
19.3 Laser-Induced Events Involving Phonon Softening
19.4 Conclusion
References
Chapter 20: Femtosecond Time- and Angle-Resolved Photoemission as a Real-time Probe of Cooperative Effects in Correlated Electron Materials
20.1 Introduction
20.2 Hot Electron Relaxation
20.3 Photoinduced Insulator–Metal Transitions
20.4 Discussion
20.5 Conclusions and Outlook
Acknowledgments
References
Part Five: Recent Developments and Future Directions
Chapter 21: Time-Resolved Photoelectron Spectroscopy at Surfaces Using Femtosecond XUV Pulses
21.1 Introduction
21.2 Femtosecond XUV Sources
21.3 Photoelectron Spectroscopy Using XUV Pulses: Some Technical Aspects
21.4 Review of Pioneering Experiments
21.5 Conclusions and Outlook
References
Chapter 22: Attosecond Time-Resolved Spectroscopy at Surfaces
22.1 Overview
22.2 Examples for Ultrafast Dynamics on Solid Surfaces
22.3 Attosecond Experiments at Surfaces
Acknowledgments
References
Chapter 23: Simultaneous Spatial and Temporal Control of Nanooptical Fields
23.1 Introduction
23.2 Optical Near-Field Control via Polarization Pulse Shaping
23.3 Experimental Demonstration of Spatiotemporal Control
23.4 Future Prospects and Conclusions
Acknowledgments
References
Chapter 24: Coherently Controlled Electrical Currents at Surfaces
24.1 Introduction
24.2 Observation of Coherently Controlled Currents by Photoelectron Spectroscopy
24.3 Modeling of the Coherent Excitation
24.4 Time-Resolved Observation of Current Decay
24.5 Summary
Acknowledgments
References
Chapter 25: Ultrabroadband Terahertz Studies of Correlated Electrons
25.1 Introduction
25.2 Phase-Locked Few-Cycle THz Pulses: From Ultrabroadband to High Intensity
25.3 Ultrafast Insulator–Metal Transition of VO2
25.4 THz Coherent Control of Excitons
25.5 Conclusions and Perspectives
References
Colour Plates
Index
Related Titles
Kolasinski, K. W.
Surface Science
Foundations of Catalysis and Nanoscience
2008
ISBN: 978-0-470-03304-3
Breme, J., Kirkpatrick, C. J., Thull, R. (eds.)
Metallic Biomaterial Interfaces
2008
ISBN: 978-3-527-31860-5
Wetzig, K., Schneider, C. M. (eds.)
Metal Based Thin Films for Electronics
2006
ISBN: 978-3-527-40650-0
Lanzani, G. (ed.)
Photophysics of Molecular Materials
From Single Molecules to Single Crystals
2006
ISBN: 978-3-527-40456-8
Bordo, V. G., Rubahn, H.-G.
Optics and Spectroscopy at Surfaces and Interfaces
2005
ISBN: 978-3-527-40560-2
Butt, H.-J., Graf, K., Kappl, M.
Physics and Chemistry of Interfaces
2003
ISBN: 978-3-527-40413-1
The Editors
Prof. Dr. Uwe Bovensiepen
Faculty of Physics
University of Duisburg-Essen
Germany
Prof. Hrvoje Petek
Department of Physics
University of Pittsburgh
USA
Prof. Dr. Martin Wolf
Department of Physics
Free University Berlin
Germany
Cover
The cover figure depicts (i) a time-resolved experiment at an interface using time-delayed pump and probe femtosecond laser pulses (left) and the detected response (right) being either reflected light or a photoemitted electron. In addition (ii) charge transfer from an excited resonance of an alkali atom to single crystal metal substrate is shown. The false color scale represents the wave packet propagation which was calculated by A. G. Borisov including the many-body response of the metal. The figure was designed and created by A. Winkelmann.
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.
© 2010 WILEY-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
ISBN: 978-3-527-40937-2
Preface
The physical properties and functionality of solid-state materials are determined both by their geometric and electronic structures and by various elementary processes, such as electron–phonon coupling or collective excitations. A microscopic understanding of the functional properties requires a detailed insight into the dynamics of these elementary processes, which occur mostly on ultrafast (typically femtosecond) timescales. Femtosecond laser spectroscopy can directly access these timescales and has shown remarkable achievements during the past two decades with many successful applications to solid-state and surface dynamics. In particular, for solid interfaces, which play a key role in the function of solid-state materials and devices, a profound microscopic understanding has been developed through experiment and theory in recent years. This success is based on the availability and recent improvements of appropriate surface-sensitive ultrafast spectroscopy techniques, on the increasing sophistication in the preparation of well-defined model systems, and on the development of theoretical methods to describe surface and electronic structure dynamics.
This book intends to provide a comprehensive overview of the fundamental concepts, techniques, and current developments in the field of ultrafast dynamics of solid-state surfaces and interfaces. Our goal is to make these concepts and insights accessible also to nonexperts and younger researchers in this field. Volume 1 summarizes the present status of research on quasiparticle dynamics, collective excitations, heterogeneous electron transfer, photoinduced modification of materials, and applications of novel techniques to study the dynamics of solids and interfaces. Volume 2 discusses the fundamental concepts and provides introductory information on elementary processes, which should be valuable, in particular, for newcomers to the field including students and postdocs. We hope that this book will also help trigger new developments and future research on ultrafast dynamic processes of solids, their interfaces, and nanostructured materials.
Brijuni, August 2010
Uwe Bovensiepen
Hrvoje Petek
and Martin Wolf
List of Contributors
Martin Aeschlimann
University Kaiserslautern
Department of Physics and Research
Centre OPTIMAS
Erwin-Schrödinger-Str. 46
67663 Kaiserslautern
Germany
Johannes V. Barth
Technische Universität München
Physikdepartment E20
85748 Garching
Germany
Michael Bauer
Christian-Albrechts Universität zu Kiel
Institut für Experimentelle und Angewandte Physik
24118 Kiel
Germany
Francesco Bisio
CNR-SPIN
Corso Perrone 24
16152 Genova
Italy
Mischa Bonn
Philipps-Universität Marburg
Fachbereich Physik
Renthof 5
35032 Marburg
Germany
Uwe Bovensiepen
Universität Duisburg-Essen
Fakultät für Physik
Lotharstr. 1
47048 Duisburg
Germany
and
Freie Universität Berlin
Fachbereich Physik
Arnimallee 14
14195 Berlin
Germany
Adrian L. Cavalieri
Max Planck Institut für Quantenoptik
Hans-Kopfermann-Strasse 1
85748 Garching
Germany
Cheng-Tien Chiang
Max-Planck-Institut für Mikrostrukturphysik
Weinberg 2
06120 Halle
Germany
Evgueni V. Chulkov
Universidad del País Vasco
Facultad de Ciencias Químicas
Depto. de Física de Materiales and Centro de Física de Materiales
CFM-MPC, Centro Mixto CSIC-UPV/EHU
20080 San Sebastián
Basque Country
Spain
Markus Donath
Westfälische Wilhelms Universität
Münster
W.-Klemm-Str. 10
48149 Münster
Germany
Pedro M. Echenique
Universidad del País Vasco
Facultad de Ciencias Químicas
Depto. de Física de Materiales and Centro de Física de Materiales
CFM-MPC, Centro Mixto CSIC-UPV/EHU
20080 San Sebastián
Basque Country
Spain
Thomas Elsaesser
Max-Born-Institut für Nichtlineare
Optik und Kurzzeitspektroskopie
Max-Born-Straße 2 A
12489 Berlin
Germany
Ralph Ernstorfer
Max Planck Institut für Quantenoptik
Hans-Kopfermann-Strasse 1
85748 Garching
Germany
and
Technische Universität München
Physikdepartment E11
85747 Garching
Germany
Thomas Fauster
Universität Erlangen-Nürnberg
Lehrstuhl für Festkörperphysik
Staudtstr. 7
91058 Erlangen
Germany
Peter Feulner
Technische Universität München
Physikdepartment E20
85748 Garching
Germany
Alexander Föhlisch
Universität Hamburg
Institut für Experimentalphysik
Luruper Chaussee 149
22761 Hamburg
Germany
Martin E. Garcia
Universität Kassel
Fachbereich Mathematik und Naturwissenschaften
Institut für Theoretische Physik
Heinrich-Plett-Str. 40
34132 Kassel
Germany
Sean Garrett-Roe
University of California
Department of Chemistry
Berkeley, CA 94720-1460
USA
Jens Güdde
Philipps-Universität Marburg
Fachbereich Physik
Renthof 5
35032 Marburg
Germany
Charles B. Harris
University of California
Department of Chemistry
Berkeley, CA 94720-1460
USA
Muneaki Hase
University of Tsukuba
Institute of Applied Physics
1-1-1 Tennodai
Tsukuba 305-8573
Japan
Rigoberto Hernandez
Georgia Institute of Technology
School of Chemistry & Biochemistry
Center for Computational Molecular
Sciences & Technology
Atlanta, GA 30332-0430
USA
Ulrich Höfer
Philipps-Universität Marburg
Fachbereich Physik
Renthof 5
35032 Marburg
Germany
Philip Hofmann
University of Aarhus
Institute for Storage Ring Facilities and
Interdisciplinary Nanoscience Center
8000 Aarhus C
Denmark
Rupert Huber
Universität Konstanz
Fachbereich Physik
Universitätsstr. 10
78464 Konstanz
Germany
Kunie Ishioka
National Institute for Materials Science
Advanced Nano-characterization Center
Sengen 1-2-1
Tsukuba 305-0047
Japan
James E. Johns
University of California
Department of Chemistry,
Berkeley, CA 94720-1460
USA
Henry C. Kapteyn
University of Colorado and NIST
JILA
Boulder, CO 80309-0440
USA
Reinhard Kienberger
Max Planck Institut für Quantenoptik
Hans-Kopfermann-Strasse 1
85748 Garching
Germany
and
Technische Universität München
Physikdepartment E11
85747 Garching
Germany
Patrick S. Kirchmann
Stanford Institute for Materials & Energy Science
McCullough Building 232
476 Lomita Mall
Stanford, CA 94305-4045
USA
Jürgen Kirschner
Max-Planck-Institut für
Mikrostrukturphysik
Weinberg 2
06120 Halle
Germany
Tillmann Klamroth
Universität Potsdam
Institut für Chemie
Karl-Liebknecht-Str. 24-25
14476 Potsdam-Golm
Germany
Stephan W. Koch
Philipps-Universität Marburg
Fachbereich Physik
Renthof 5
35032 Marburg
Germany
Ferenc Krausz
Max Planck Institut für Quantenoptik
Hans-Kopfermann-Strasse 1
85748 Garching
Germany
Alfred Leitenstorfer
Universität Konstanz
Fachbereich Physik/LS Leitenstorfer
Fach M 696
78457 Konstanz
Germany
Wen-Chin Lin
Department of Physics
National Taiwan
Normal University
Taipei 11677
Taiwan
Stefan Mathias
University of Kaiserslautern
Department of Physics and Research
Center OPTIMAS
67663 Kaiserslautern
Germany
Yoshiyasu Matsumoto
Kyoto University
Graduate School of Science
Department of Chemistry
Kyoto 606-852
Japan
Luis Miaja-Avila
University of Colorado and NIST
JILA
Boulder, CO 80309-0440
USA
Torsten Meier
Philipps-Universität Marburg
Fachbereich Physik
Renthof 5
35032 Marburg
Germany
Alexey Melnikov
Freie Universität Berlin
Fachbereich Physik
Arnimallee 14
14195 Berlin
Germany
Dietrich Menzel
Technische Universität München
Physikdepartment E20
85748 Garching
Germany
and
Fritz Haber Institut der MPG
Faradayweg 4-6
14195 Berlin
Germany
Oleg V. Misochko
Russian Academy of Sciences
Institute of Solid State Physics
Chemogolovka
142432 Moscow Region
Russia
Eric Muller
University of California
Department of Chemistry,
Berkeley, CA 94720-1460
USA
Matthias Muntwiler
Paul Scherrer Institut
WSLA/122
5232 Villigen PSI
Switzerland
Margaret M. Murnane
University of Colorado and NIST
JILA
Boulder, CO 80309-0440
USA
Tadaaki Nagao
National Institute for Materials Science
WPI Research Center for Materials
Nanoarchitectonics
1-1 Namiki, Tsukuba-City
305-0044 Ibaraki
Japan
Luca Perfetti
Laboratoire des Solides Irradiés
Ecole Polytechnique
91128 Palaiseau Cedex
France
Hrvoje Petek
Department of Physics and Astronomy
University of Pittsburgh
G01 Allen Hall
3941 O.hara St.
Pittsburgh, PA 15213
USA
Walter Pfeiffer
Universität Bielefeld
Fakultät für Physik
Universitätsstr. 25
33615 Bielefeld
Germany
Martin Pickel
Westfälische Wilhelms-Universität
Münster
W.-Klemm-Str. 10
48149 Münster
Germany
and
Max-Born-Institut für Nichtlineare
Optik und Kurzzeitspektroskopie
Max-Born-Straße 2 A
12489 Berlin
Germany
M. Rohleder
Philipps-Universität Marburg
Fachbereich Physik
Renthof 5
35032 Marburg
Germany
Peter Saalfrank
Universität Potsdam
Institut für Chemie
Karl-Liebknecht-Str. 24-25
14476 Potsdam-Golm
Germany
Anke B. Schmidt
Westfälische Wilhelms-Universität
Münster
W.-Klemm-Str. 10
48149 Münster
Germany
and
Max-Born-Institut für Nichtlineare
Optik und Kurzzeitspektroskopie
Max-Born-Straße 2 A
12489 Berlin
Germany
Vyacheslav M. Silkin
Universidad del País Vasco
Facultad de Ciencias Químicas
Depto. de Física de Materiales
Apdo. 1072
20080 San Sebastián
Basque Country
Spain
and
IKER BASQUE
Basque Foundation for Science
48011 Bilbao
Basque Country
Spain
Irina Yu. Sklyadneva
Donostia Physics International Centre
(DIPC)
P. Manuel de Lardizabal 4
20018 San Sebastian
Basque Country
Spain
Julia Stähler
Freie Universität Berlin
Fachbereich Physik
Arnimallee 14
14195 Berlin
Germany
and
Fritz-Haber-Institut der Max-Planck-
Gesellschaft
Abteilung Physikalische Chemie
Faradayweg 4-6
14195 Berlin
Germany
Matthew L. Strader
University of California
Department of Chemistry
Berkeley, CA 94720-1460
USA
H. Ueba
Department of Electronics
Toyama University
930-8555 Toyama
Japan
Tijo Vazhappilly
Universität Potsdam
Institut für Chemie
Karl-Liebknecht-Str. 24-25
14476 Potsdam-Golm
Germany
Kazuya Watanabe
Kyoto University
Graduate School of Science
Department of Chemistry
Kyoto 606-8502
Japan
Martin Weinelt
Max-Born-Institut
für Nichtlineare Optik und
Kurzzeitspektroskopie
Max-Born-Straße 2 A
12489 Berlin
Germany
and
Freie Universität Berlin
Fachbereich Physik
Arnimallee 14
14195 Berlin
Germany
Stephan Wethekam
Humboldt Universität
Institut für Physik
Brook-Taylor-Str. 6
12489 Berlin
Germany
Aimo Winkelmann
Max-Planck-Institut für
Mikrostrukturphysik
Weinberg 2
06120 Halle
Germany
Helmut Winter
Humboldt Universität
Institut für Physik
Brook-Taylor-Str. 6
12489 Berlin
Germany
Michael Woerner
Max-Born-Institut für Nichtlineare
Optik und Kurzzeitspektroskopie
Max-Born-Straße 2 A
12489 Berlin
Germany
Martin Wolf
Freie Universität Berlin
Fachbereich Physik
Arnimallee 14
14195 Berlin
Germany
and
Fritz-Haber-Institut der Max-Planck-
Gesellschaft
Abteilung Physikalische Chemie
Faradayweg 4-6
14195 Berlin
Germany
Wilfried Wurth
Universität Hamburg
Institut für Experimentalphysik
Luruper Chaussee 149
22761 Hamburg
Germany
Xiaoyang -Y. Zhu
University of Minnesota
Department of Chemistry
Minneapolis, MN 55455
USA
and
University of Texas at Austin
1 University Station A5300
Austin, TX 78712-016
USA
Eeuwe S. Zijlstra
Universität Kassel
Fachbereich Mathematik und
Naturwissenschaften
Institut für Theoretische Physik
Heinrich-Plett-Str. 40
34132 Kassel
Germany
Part One
Quasiparticle Dynamics