Dynamics at Solid State Surfaces and Interfaces, Volume 1 -  - E-Book

Dynamics at Solid State Surfaces and Interfaces, Volume 1 E-Book

0,0
153,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

This two-volume work covers ultrafast structural and electronic dynamics of elementary processes at solid surfaces and interfaces, presenting the current status of photoinduced processes. Providing valuable introductory information for newcomers to this booming field of research, it investigates concepts and experiments, femtosecond and attosecond time-resolved methods, as well as frequency domain techniques.
The whole is rounded off by a look at future developments.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1201

Veröffentlichungsjahr: 2010

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Contents

Cover

Related Titles

Title Page

Copyright

Preface

List of Contributors

Part One: Quasiparticle Dynamics

Chapter 1: Nonlinear Terahertz Studies of Ultrafast Quasiparticle Dynamics in Semiconductors

1.1 Linear Optical Properties of Quasiparticles: The Polarization Cloud around a Charge Carrier

1.2 Femtosecond Nonlinear Terahertz and Mid-Infrared Spectroscopy

1.3 Ultrafast Quantum Kinetics of Polarons in Bulk GaAs

1.4 Coherent High-Field Transport in GaAs on Femtosecond Timescales

1.5 Conclusions and Outlook

Acknowledgments

References

Chapter 2: Higher Order Photoemission from Metal Surfaces

2.1 Introduction

2.2 Observation of Higher Order Photoemission at Cu Surfaces

2.3 Electronic Structure Mapping Using Coherent Multiphoton Resonances

2.4 Dynamical Trapping of Electrons in Quasibound States

2.5 Above-Threshold Photoemission

2.6 Spin-Polarized Multiphoton Photoemission

2.7 Summary and Outlook

Acknowledgments

References

Chapter 3: Electron Dynamics in Image Potential States at Metal Surfaces

3.1 Scattering Processes

3.2 Energies and Dispersion of Image Potential States

3.3 Inelastic Scattering

3.4 Quasielastic Scattering

3.5 Electron–Phonon Scattering

3.6 Electron Defect Scattering

3.7 Summary and Outlook

Acknowledgments

References

Chapter 4: Relaxation Dynamics in Image Potential States at Solid Interfaces

4.1 Stochastic Interpretation of IPS Decay

4.2 IPS Decay for Solvating Molecules

4.3 Conclusions

References

Chapter 5: Dynamics of Electronic States at Metal/Insulator Interfaces

5.1 Introduction

5.2 Spectroscopy by One-Photon Photoemission

5.3 Observation by Two-Photon Photoemission

5.4 Lifetimes

5.5 Momentum-Resolved Dynamics

5.6 Summary

Acknowledgments

References

Chapter 6: Spin-Dependent Relaxation of Photoexcited Electrons at Surfaces of 3d Ferromagnets

6.1 Introduction

6.2 Spin-Resolved Two-Photon Photoemission on Image Potential States

6.3 Spin-Dependent Dynamics

6.4 Image Potential States: A Sensor for Surface Magnetization

6.5 Summary

Acknowledgment

References

Chapter 7: Electron–Phonon Interaction at Interfaces

7.1 Introduction

7.2 Calculation of the Electron–Phonon Coupling Strength

7.3 Experimental Determination of the Electron–Phonon Coupling Strength

7.4 Some Examples

7.5 Conclusions

References

Part Two: Collective Excitations

Chapter 8: Low-Energy Collective Electronic Excitations at Metal Surfaces

8.1 Introduction

8.2 Analytical and Numerical Calculations

8.3 Results of Numerical Calculations

8.4 Concluding Remarks

References

Chapter 9: Low-Dimensional Plasmons in Atom Sheets and Atom Chains

9.1 Introduction

9.2 Difference between the Surface Plasmons and the Atomic Scale Plasmons

9.3 Measurement of Atomic Scale Low-Dimensional Metallic Objects

9.4 Plasmons Confined in Ag Nanolayers

9.5 Plasmon in a Two-Dimensional Monoatomic Ag Layer

9.6 Plasmons in Atomic Scale Quantum Wires

9.7 Conclusions

References

Chapter 10: Excitation and Time-Evolution of Coherent Optical Phonons

10.1 Coherent Phonons in Group V Semimetals

10.2 Ultrafast Electron–Phonon Coupling in Graphitic Materials

10.3 Quasiparticle Dynamics in Silicon

10.4 Coherent Optical Phonons in Metals

10.5 Coherent Phonon-Polaritons in Ferroelectrics

10.6 Current Developments in Other Materials

10.7 Concluding Remarks

References

Chapter 11: Photoinduced Coherent Nuclear Motion at Surfaces: Alkali Overlayers on Metals

11.1 Introduction

11.2 Impulsive Excitation

11.3 Alkali Metal Overlayers

11.4 Time-Resolved SHG Spectroscopy

11.5 Electronic and Nuclear Responses in TRSHG Signals

11.6 Excitation Mechanism

11.7 Summary and Outlook

References

Chapter 12: Coherent Excitations at Ferromagnetic Gd(0001) and Tb(0001) Surfaces

12.1 Introduction

12.2 Relaxation of the Optically Excited State

12.3 Coupled Lattice and Spin Excitations

12.4 Conclusion

Acknowledgments

References

Part Three: Heterogeneous Electron Transfer

Chapter 13: Studies on Auger Neutralization of He+ Ions in Front of Metal Surfaces

13.1 Introduction

13.2 Concept of Method

13.3 Studies on Auger Neutralization of He+ Ions

13.4 Summary and Conclusions

Acknowledgments

References

Chapter 14: Electron Transfer Investigated by X-Ray Spectroscopy

14.1 Core Hole Clock Spectroscopy

14.2 Time-Resolved Soft X-Ray Spectroscopy

14.3 Summary

Acknowledgments

References

Chapter 15: Exciton Formation and Decay at Surfaces and Interfaces

15.1 Introduction

15.2 Exciton Models

15.3 Photoelectron Spectroscopy of Excitons

15.4 Frenkel Excitons in C60

15.5 Charge Transfer Excitons at the Surface of Pentacene

15.6 Conclusions

References

Chapter 16: Electron Dynamics at Polar Molecule–Metal Interfaces: Competition between Localization, Solvation, and Transfer

16.1 Introduction

16.2 Competing Channels of Electron Relaxation in Amorphous Layers

16.3 Ultrafast Trapping and Ultraslow Stabilization of Electrons in Crystalline Solvents

16.4 Conclusion

Acknowledgments

References

Part Four: Photoinduced Modification of Materials and Femtochemistry

Chapter 17: Theory of Femtochemistry at Metal Surfaces: Associative Molecular Photodesorption as a Case Study

17.1 Introduction

17.2 Theory of Femtochemistry at Surfaces

17.3 Femtosecond-Laser Driven Desorption of H2 and D2 from Ru(0001)

17.4 Conclusions

Acknowledgment

References

Chapter 18: Time-Resolved Investigation of Electronically Induced Diffusion Processes

18.1 Introduction

18.2 Detection of Electronically Induced Diffusion

18.3 Description of Electronically Induced Motion by Electronic Friction

18.4 Results

18.5 Summary

Acknowledgments

References

Chapter 19: Laser-Induced Softening of Lattice Vibrations

19.1 Introduction

19.2 Theoretical Framework

19.3 Laser-Induced Events Involving Phonon Softening

19.4 Conclusion

References

Chapter 20: Femtosecond Time- and Angle-Resolved Photoemission as a Real-time Probe of Cooperative Effects in Correlated Electron Materials

20.1 Introduction

20.2 Hot Electron Relaxation

20.3 Photoinduced Insulator–Metal Transitions

20.4 Discussion

20.5 Conclusions and Outlook

Acknowledgments

References

Part Five: Recent Developments and Future Directions

Chapter 21: Time-Resolved Photoelectron Spectroscopy at Surfaces Using Femtosecond XUV Pulses

21.1 Introduction

21.2 Femtosecond XUV Sources

21.3 Photoelectron Spectroscopy Using XUV Pulses: Some Technical Aspects

21.4 Review of Pioneering Experiments

21.5 Conclusions and Outlook

References

Chapter 22: Attosecond Time-Resolved Spectroscopy at Surfaces

22.1 Overview

22.2 Examples for Ultrafast Dynamics on Solid Surfaces

22.3 Attosecond Experiments at Surfaces

Acknowledgments

References

Chapter 23: Simultaneous Spatial and Temporal Control of Nanooptical Fields

23.1 Introduction

23.2 Optical Near-Field Control via Polarization Pulse Shaping

23.3 Experimental Demonstration of Spatiotemporal Control

23.4 Future Prospects and Conclusions

Acknowledgments

References

Chapter 24: Coherently Controlled Electrical Currents at Surfaces

24.1 Introduction

24.2 Observation of Coherently Controlled Currents by Photoelectron Spectroscopy

24.3 Modeling of the Coherent Excitation

24.4 Time-Resolved Observation of Current Decay

24.5 Summary

Acknowledgments

References

Chapter 25: Ultrabroadband Terahertz Studies of Correlated Electrons

25.1 Introduction

25.2 Phase-Locked Few-Cycle THz Pulses: From Ultrabroadband to High Intensity

25.3 Ultrafast Insulator–Metal Transition of VO2

25.4 THz Coherent Control of Excitons

25.5 Conclusions and Perspectives

References

Colour Plates

Index

Related Titles

Kolasinski, K. W.

Surface Science

Foundations of Catalysis and Nanoscience

2008

ISBN: 978-0-470-03304-3

 

Breme, J., Kirkpatrick, C. J., Thull, R. (eds.)

Metallic Biomaterial Interfaces

2008

ISBN: 978-3-527-31860-5

 

Wetzig, K., Schneider, C. M. (eds.)

Metal Based Thin Films for Electronics

2006

ISBN: 978-3-527-40650-0

 

Lanzani, G. (ed.)

Photophysics of Molecular Materials

From Single Molecules to Single Crystals

2006

ISBN: 978-3-527-40456-8

 

Bordo, V. G., Rubahn, H.-G.

Optics and Spectroscopy at Surfaces and Interfaces

2005

ISBN: 978-3-527-40560-2

 

Butt, H.-J., Graf, K., Kappl, M.

Physics and Chemistry of Interfaces

2003

ISBN: 978-3-527-40413-1

The Editors

Prof. Dr. Uwe Bovensiepen

Faculty of Physics

University of Duisburg-Essen

Germany

[email protected]

Prof. Hrvoje Petek

Department of Physics

University of Pittsburgh

USA

[email protected]

Prof. Dr. Martin Wolf

Department of Physics

Free University Berlin

Germany

[email protected]

Cover

The cover figure depicts (i) a time-resolved experiment at an interface using time-delayed pump and probe femtosecond laser pulses (left) and the detected response (right) being either reflected light or a photoemitted electron. In addition (ii) charge transfer from an excited resonance of an alkali atom to single crystal metal substrate is shown. The false color scale represents the wave packet propagation which was calculated by A. G. Borisov including the many-body response of the metal. The figure was designed and created by A. Winkelmann.

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2010 WILEY-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

ISBN: 978-3-527-40937-2

Preface

The physical properties and functionality of solid-state materials are determined both by their geometric and electronic structures and by various elementary processes, such as electron–phonon coupling or collective excitations. A microscopic understanding of the functional properties requires a detailed insight into the dynamics of these elementary processes, which occur mostly on ultrafast (typically femtosecond) timescales. Femtosecond laser spectroscopy can directly access these timescales and has shown remarkable achievements during the past two decades with many successful applications to solid-state and surface dynamics. In particular, for solid interfaces, which play a key role in the function of solid-state materials and devices, a profound microscopic understanding has been developed through experiment and theory in recent years. This success is based on the availability and recent improvements of appropriate surface-sensitive ultrafast spectroscopy techniques, on the increasing sophistication in the preparation of well-defined model systems, and on the development of theoretical methods to describe surface and electronic structure dynamics.

This book intends to provide a comprehensive overview of the fundamental concepts, techniques, and current developments in the field of ultrafast dynamics of solid-state surfaces and interfaces. Our goal is to make these concepts and insights accessible also to nonexperts and younger researchers in this field. Volume 1 summarizes the present status of research on quasiparticle dynamics, collective excitations, heterogeneous electron transfer, photoinduced modification of materials, and applications of novel techniques to study the dynamics of solids and interfaces. Volume 2 discusses the fundamental concepts and provides introductory information on elementary processes, which should be valuable, in particular, for newcomers to the field including students and postdocs. We hope that this book will also help trigger new developments and future research on ultrafast dynamic processes of solids, their interfaces, and nanostructured materials.

Brijuni, August 2010

Uwe Bovensiepen

Hrvoje Petek

and Martin Wolf

List of Contributors

Martin Aeschlimann

University Kaiserslautern

Department of Physics and Research

Centre OPTIMAS

Erwin-Schrödinger-Str. 46

67663 Kaiserslautern

Germany

 

Johannes V. Barth

Technische Universität München

Physikdepartment E20

85748 Garching

Germany

 

Michael Bauer

Christian-Albrechts Universität zu Kiel

Institut für Experimentelle und Angewandte Physik

24118 Kiel

Germany

 

Francesco Bisio

CNR-SPIN

Corso Perrone 24

16152 Genova

Italy

 

Mischa Bonn

Philipps-Universität Marburg

Fachbereich Physik

Renthof 5

35032 Marburg

Germany

 

Uwe Bovensiepen

Universität Duisburg-Essen

Fakultät für Physik

Lotharstr. 1

47048 Duisburg

Germany

 

and

 

Freie Universität Berlin

Fachbereich Physik

Arnimallee 14

14195 Berlin

Germany

 

Adrian L. Cavalieri

Max Planck Institut für Quantenoptik

Hans-Kopfermann-Strasse 1

85748 Garching

Germany

 

Cheng-Tien Chiang

Max-Planck-Institut für Mikrostrukturphysik

Weinberg 2

06120 Halle

Germany

 

Evgueni V. Chulkov

Universidad del País Vasco

Facultad de Ciencias Químicas

Depto. de Física de Materiales and Centro de Física de Materiales

CFM-MPC, Centro Mixto CSIC-UPV/EHU

20080 San Sebastián

Basque Country

Spain

 

Markus Donath

Westfälische Wilhelms Universität

Münster

W.-Klemm-Str. 10

48149 Münster

Germany

 

Pedro M. Echenique

Universidad del País Vasco

Facultad de Ciencias Químicas

Depto. de Física de Materiales and Centro de Física de Materiales

CFM-MPC, Centro Mixto CSIC-UPV/EHU

20080 San Sebastián

Basque Country

Spain

 

Thomas Elsaesser

Max-Born-Institut für Nichtlineare

Optik und Kurzzeitspektroskopie

Max-Born-Straße 2 A

12489 Berlin

Germany

 

Ralph Ernstorfer

Max Planck Institut für Quantenoptik

Hans-Kopfermann-Strasse 1

85748 Garching

Germany

 

and

 

Technische Universität München

Physikdepartment E11

85747 Garching

Germany

 

Thomas Fauster

Universität Erlangen-Nürnberg

Lehrstuhl für Festkörperphysik

Staudtstr. 7

91058 Erlangen

Germany

 

Peter Feulner

Technische Universität München

Physikdepartment E20

85748 Garching

Germany

 

Alexander Föhlisch

Universität Hamburg

Institut für Experimentalphysik

Luruper Chaussee 149

22761 Hamburg

Germany

 

Martin E. Garcia

Universität Kassel

Fachbereich Mathematik und Naturwissenschaften

Institut für Theoretische Physik

Heinrich-Plett-Str. 40

34132 Kassel

Germany

 

Sean Garrett-Roe

University of California

Department of Chemistry

Berkeley, CA 94720-1460

USA

 

Jens Güdde

Philipps-Universität Marburg

Fachbereich Physik

Renthof 5

35032 Marburg

Germany

 

Charles B. Harris

University of California

Department of Chemistry

Berkeley, CA 94720-1460

USA

 

Muneaki Hase

University of Tsukuba

Institute of Applied Physics

1-1-1 Tennodai

Tsukuba 305-8573

Japan

 

Rigoberto Hernandez

Georgia Institute of Technology

School of Chemistry & Biochemistry

Center for Computational Molecular

Sciences & Technology

Atlanta, GA 30332-0430

USA

 

Ulrich Höfer

Philipps-Universität Marburg

Fachbereich Physik

Renthof 5

35032 Marburg

Germany

 

Philip Hofmann

University of Aarhus

Institute for Storage Ring Facilities and

Interdisciplinary Nanoscience Center

8000 Aarhus C

Denmark

 

Rupert Huber

Universität Konstanz

Fachbereich Physik

Universitätsstr. 10

78464 Konstanz

Germany

 

Kunie Ishioka

National Institute for Materials Science

Advanced Nano-characterization Center

Sengen 1-2-1

Tsukuba 305-0047

Japan

 

James E. Johns

University of California

Department of Chemistry,

Berkeley, CA 94720-1460

USA

 

Henry C. Kapteyn

University of Colorado and NIST

JILA

Boulder, CO 80309-0440

USA

 

Reinhard Kienberger

Max Planck Institut für Quantenoptik

Hans-Kopfermann-Strasse 1

85748 Garching

Germany

 

and

 

Technische Universität München

Physikdepartment E11

85747 Garching

Germany

 

Patrick S. Kirchmann

Stanford Institute for Materials & Energy Science

McCullough Building 232

476 Lomita Mall

Stanford, CA 94305-4045

USA

 

Jürgen Kirschner

Max-Planck-Institut für

Mikrostrukturphysik

Weinberg 2

06120 Halle

Germany

 

Tillmann Klamroth

Universität Potsdam

Institut für Chemie

Karl-Liebknecht-Str. 24-25

14476 Potsdam-Golm

Germany

 

Stephan W. Koch

Philipps-Universität Marburg

Fachbereich Physik

Renthof 5

35032 Marburg

Germany

 

Ferenc Krausz

Max Planck Institut für Quantenoptik

Hans-Kopfermann-Strasse 1

85748 Garching

Germany

 

Alfred Leitenstorfer

Universität Konstanz

Fachbereich Physik/LS Leitenstorfer

Fach M 696

78457 Konstanz

Germany

 

Wen-Chin Lin

Department of Physics

National Taiwan

Normal University

Taipei 11677

Taiwan

 

Stefan Mathias

University of Kaiserslautern

Department of Physics and Research

Center OPTIMAS

67663 Kaiserslautern

Germany

 

Yoshiyasu Matsumoto

Kyoto University

Graduate School of Science

Department of Chemistry

Kyoto 606-852

Japan

 

Luis Miaja-Avila

University of Colorado and NIST

JILA

Boulder, CO 80309-0440

USA

 

Torsten Meier

Philipps-Universität Marburg

Fachbereich Physik

Renthof 5

35032 Marburg

Germany

 

Alexey Melnikov

Freie Universität Berlin

Fachbereich Physik

Arnimallee 14

14195 Berlin

Germany

 

Dietrich Menzel

Technische Universität München

Physikdepartment E20

85748 Garching

Germany

 

and

 

Fritz Haber Institut der MPG

Faradayweg 4-6

14195 Berlin

Germany

 

Oleg V. Misochko

Russian Academy of Sciences

Institute of Solid State Physics

Chemogolovka

142432 Moscow Region

Russia

 

Eric Muller

University of California

Department of Chemistry,

Berkeley, CA 94720-1460

USA

 

Matthias Muntwiler

Paul Scherrer Institut

WSLA/122

5232 Villigen PSI

Switzerland

 

Margaret M. Murnane

University of Colorado and NIST

JILA

Boulder, CO 80309-0440

USA

 

Tadaaki Nagao

National Institute for Materials Science

WPI Research Center for Materials

Nanoarchitectonics

1-1 Namiki, Tsukuba-City

305-0044 Ibaraki

Japan

 

Luca Perfetti

Laboratoire des Solides Irradiés

Ecole Polytechnique

91128 Palaiseau Cedex

France

 

Hrvoje Petek

Department of Physics and Astronomy

University of Pittsburgh

G01 Allen Hall

3941 O.hara St.

Pittsburgh, PA 15213

USA

 

Walter Pfeiffer

Universität Bielefeld

Fakultät für Physik

Universitätsstr. 25

33615 Bielefeld

Germany

 

Martin Pickel

Westfälische Wilhelms-Universität

Münster

W.-Klemm-Str. 10

48149 Münster

Germany

 

and

 

Max-Born-Institut für Nichtlineare

Optik und Kurzzeitspektroskopie

Max-Born-Straße 2 A

12489 Berlin

Germany

 

M. Rohleder

Philipps-Universität Marburg

Fachbereich Physik

Renthof 5

35032 Marburg

Germany

 

Peter Saalfrank

Universität Potsdam

Institut für Chemie

Karl-Liebknecht-Str. 24-25

14476 Potsdam-Golm

Germany

 

Anke B. Schmidt

Westfälische Wilhelms-Universität

Münster

W.-Klemm-Str. 10

48149 Münster

Germany

 

and

 

Max-Born-Institut für Nichtlineare

Optik und Kurzzeitspektroskopie

Max-Born-Straße 2 A

12489 Berlin

Germany

 

Vyacheslav M. Silkin

Universidad del País Vasco

Facultad de Ciencias Químicas

Depto. de Física de Materiales

Apdo. 1072

20080 San Sebastián

Basque Country

Spain

 

and

 

IKER BASQUE

Basque Foundation for Science

48011 Bilbao

Basque Country

Spain

 

Irina Yu. Sklyadneva

Donostia Physics International Centre

(DIPC)

P. Manuel de Lardizabal 4

20018 San Sebastian

Basque Country

Spain

 

Julia Stähler

Freie Universität Berlin

Fachbereich Physik

Arnimallee 14

14195 Berlin

Germany

 

and

 

Fritz-Haber-Institut der Max-Planck-

Gesellschaft

Abteilung Physikalische Chemie

Faradayweg 4-6

14195 Berlin

Germany

 

Matthew L. Strader

University of California

Department of Chemistry

Berkeley, CA 94720-1460

USA

 

H. Ueba

Department of Electronics

Toyama University

930-8555 Toyama

Japan

 

Tijo Vazhappilly

Universität Potsdam

Institut für Chemie

Karl-Liebknecht-Str. 24-25

14476 Potsdam-Golm

Germany

 

Kazuya Watanabe

Kyoto University

Graduate School of Science

Department of Chemistry

Kyoto 606-8502

Japan

 

Martin Weinelt

Max-Born-Institut

für Nichtlineare Optik und

Kurzzeitspektroskopie

Max-Born-Straße 2 A

12489 Berlin

Germany

 

and

 

Freie Universität Berlin

Fachbereich Physik

Arnimallee 14

14195 Berlin

Germany

 

Stephan Wethekam

Humboldt Universität

Institut für Physik

Brook-Taylor-Str. 6

12489 Berlin

Germany

 

Aimo Winkelmann

Max-Planck-Institut für

Mikrostrukturphysik

Weinberg 2

06120 Halle

Germany

 

Helmut Winter

Humboldt Universität

Institut für Physik

Brook-Taylor-Str. 6

12489 Berlin

Germany

 

Michael Woerner

Max-Born-Institut für Nichtlineare

Optik und Kurzzeitspektroskopie

Max-Born-Straße 2 A

12489 Berlin

Germany

 

Martin Wolf

Freie Universität Berlin

Fachbereich Physik

Arnimallee 14

14195 Berlin

Germany

 

and

 

Fritz-Haber-Institut der Max-Planck-

Gesellschaft

Abteilung Physikalische Chemie

Faradayweg 4-6

14195 Berlin

Germany

 

Wilfried Wurth

Universität Hamburg

Institut für Experimentalphysik

Luruper Chaussee 149

22761 Hamburg

Germany

 

Xiaoyang -Y. Zhu

University of Minnesota

Department of Chemistry

Minneapolis, MN 55455

USA

 

and

 

University of Texas at Austin

1 University Station A5300

Austin, TX 78712-016

USA

 

Eeuwe S. Zijlstra

Universität Kassel

Fachbereich Mathematik und

Naturwissenschaften

Institut für Theoretische Physik

Heinrich-Plett-Str. 40

34132 Kassel

Germany

Part One

Quasiparticle Dynamics