Équilibres en solution - Encyclopaedia Universalis - E-Book

Équilibres en solution E-Book

Encyclopaedia Universalis

0,0

Beschreibung

Dans de nombreux domaines de la chimie, les réactions ont lieu en solution. Citons les grandes préparations de la chimie inorganique, l'hydrométallurgie où l'on met en œuvre l'attaque des minerais par des solutions acides ou basiques, la biochimie, le nucléaire avec le retraitement des combustibles...

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern
Kindle™-E-Readern
(für ausgewählte Pakete)

Seitenzahl: 50

Veröffentlichungsjahr: 2016

Das E-Book (TTS) können Sie hören im Abo „Legimi Premium” in Legimi-Apps auf:

Android
iOS
Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Universalis, une gamme complète de resssources numériques pour la recherche documentaire et l’enseignement.

ISBN : 9782341004749

© Encyclopædia Universalis France, 2019. Tous droits réservés.

Photo de couverture : © D. Kucharski-K. Kucharska/Shutterstock

Retrouvez notre catalogue sur www.boutique.universalis.fr

Pour tout problème relatif aux ebooks Universalis, merci de nous contacter directement sur notre site internet :http://www.universalis.fr/assistance/espace-contact/contact

Bienvenue dans ce Grand Article publié par Encyclopædia Universalis.

La collection des Grands Articles rassemble, dans tous les domaines du savoir, des articles :   ·  écrits par des spécialistes reconnus ;   ·  édités selon les critères professionnels les plus exigeants.

Afin de consulter dans les meilleures conditions cet ouvrage, nous vous conseillons d'utiliser, parmi les polices de caractères que propose votre tablette ou votre liseuse, une fonte adaptée aux ouvrages de référence. À défaut, vous risquez de voir certains caractères spéciaux remplacés par des carrés vides (□).

Équilibres en solution

Introduction

Dans de nombreux domaines de la chimie, les réactions ont lieu en solution. Citons les grandes préparations de la chimie inorganique, l’hydrométallurgie où l’on met en œuvre l’attaque des minerais par des solutions acides ou basiques, la biochimie, le nucléaire avec le retraitement des combustibles, l’analyse chimique avec les titrages volumétriques et coulométriques. On peut y adjoindre certaines réactions de la chimie organique.

La notion d’équilibre chimique tient une large place en chimie des solutions. Les réactions mises en jeu sont régies par les règles classiques découlant de la loi d’action de masses, pour autant qu’elles soient rapides. C’est en général le cas si on excepte bon nombre de réactions d’oxydoréduction et certaines réactions hétérogènes où il faut tenir compte de la vitesse de formation et d’évolution des précipités.

L’état d’une solution est en principe parfaitement défini par la connaissance des quantités introduites (les bilans-matière) et du modèle qui régissent l’ensemble des équilibres mis en jeu, chacun de ces équilibres se traduisant par une constante d’équilibre. Moyennant diverses simplifications, on peut obtenir des solutions approchées qui sont suffisantes pour certaines applications ; on peut maintenant, à l’aide des moyens de calcul modernes, résoudre tout problème de chimie des solutions de manière complète et rigoureuse.

L’introduction d’un soluté au sein d’un solvant implique l’existence d’interactions variées très énergétiques. L’interaction la plus simple tient son origine dans le caractère polaire des molécules de la plupart des solvants usuels – eau, alcools, amides... (interactions ion-dipôle ou dipôle-dipôle). Pendant la dissolution, le solvant exerce une action de solvatation (hydratation dans le cas de l’eau) au cours de laquelle chaque espèce dissoute (ion ou molécule) s’entoure d’un cortège de molécules de solvant. Il peut également exercer une action de solvolyse au cours de laquelle certaines liaisons sont rompues avec apparition d’espèces nouvelles. Le solvant constitue, en outre, un milieu diélectrique où les forces d’attraction s’exerçant entre ions de signes contraires sont affaiblies.

L’eau manifeste ces aptitudes de manière très marquée. Elle dissout un grand nombre de composés. Pour certains, les ions préexistant à l’état solide sont hydratés (cas du chlorure de sodium) ; pour d’autres, les liaisons sont ionisées (cas du chlorure d’hydrogène). La constante diélectrique très élevée (ε = 80) permet la séparation des ions hydratés (dissociation ionique), au point qu’ils peuvent être considérés comme indépendants.

Ces deux caractéristiques (pouvoir ionisant et pouvoir dissociant) de chaque solvant expliquent son rôle spécifique vis-à-vis des propriétés chimiques des espèces en solution.

Toutes les réactions en solution homogène se ramènent à trois types principaux : les réactions d’oxydoréduction, les réactions acide-base, les réactions de formation de complexes. Lorsqu’un composé a une solubilité limitée, il convient d’y ajouter les réactions de précipitation. Ces quatre types de réactions sont souvent mêlés. Des analogies entre les trois types de réactions en phase homogène apparaissent et, de ce fait, en adoptant la notion de couple donneur-accepteur d’une particule, un seul mode de raisonnement permet de les expliquer.

1. Réactions acide-base (transfert de protons)

• Définitions

Acides et bases

Selon les concepts introduits par J. N. Brönsted, les acides sont des composés susceptibles de céder des protons : ce sont des donneurs de cette particule. Dans le même temps, les bases, composés à même d’en fixer, en sont des accepteurs. À tout acide correspond une base conjuguée et inversement ; par suite, un couple acide-base est défini par la relation :

Par exemple, l’anion F− est la base conjuguée de l’acide HF :

de même, l’ion ammonium NH+4 est l’acide conjugué de la base ammoniac :

De nombreux composés organiques dont la molécule contient des atomes d’azote, d’oxygène ou de soufre, porteurs de doublets libres (≡−N, =−−O, =−−S), sont des bases ; c’est le cas de l’aniline :

De nombreux cations métalliques se comportent comme des acides en solution aqueuse, par suite de la formation de complexes hydroxyde :

Ce phénomène est connu sous le nom d’hydrolyse.

Certaines espèces, comme HCO-3, peuvent jouer le rôle d’acide dans un premier système, de base dans un autre système :

On les appelle des ampholytes. Ce sont des formes intermédiaires entre des polyacides, qui peuvent céder successivement plusieurs protons, et des polybases (dans l’exemple précédent CO2, H2O est un diacide, CO32- une dibase).

Les molécules des solvants peuvent elles-mêmes jouer le rôle d’acides et de bases ; ainsi, l’eau joue le rôle de base dans le couple :

et d’acide dans le couple :

Un solvant pouvant jouer aussi bien le rôle de base (solvant protophile) que d’acide (solvant protogène), comme l’eau dans les deux couples précédents, est dit amphiprotique.

Réactions acide-base

Le proton n’existant – pratiquement – pas à l’état libre en solution, un acide ne peut jouer son rôle de donneur de cette particule que s’il se trouve en présence d’une base appartenant à un autre couple, à même de la fixer. Entre deux couples acide-base notés 1 et 2 :

on observera une réaction de la forme :

Chaque réaction acide-base apparaît donc comme une réaction d’échange de protons, par exemple :

• Prévision des réactions

Force des acides et des bases

Pour chaque réaction acide-base, l’important est d’en connaître le sens prédominant.

Si l’équilibre (1) est déplacé dans le sens 1 (réaction de Ac1 sur B2), l’acide 1 est dit plus fort que l’acide 2. Ainsi, plus un acide est fort, plus sa base conjuguée est faible et réciproquement.