336,99 €
Fuel cells are expected to play a major role in the future power supply that will transform to renewable, decentralized and fluctuating primary energies. At the same time the share of electric power will continually increase at the expense of thermal and mechanical energy not just in transportation, but also in households. Hydrogen as a perfect fuel for fuel cells and an outstanding and efficient means of bulk storage for renewable energy will spearhead this development together with fuel cells. Moreover, small fuel cells hold great potential for portable devices such as gadgets and medical applications such as pacemakers.
This handbook will explore specific fuel cells within and beyond the mainstream development and focuses on materials and production processes for both SOFC and lowtemperature fuel cells, analytics and diagnostics for fuel cells, modeling and simulation as well as balance of plant design and components. As fuel cells are getting increasingly sophisticated and industrially developed the issues of quality assurance and methodology of development are included in this handbook. The contributions to this book come from an international panel of experts from academia, industry, institutions and government.
This handbook is oriented toward people looking for detailed information on specific fuel cell types, their materials, production processes,
modeling and analytics. Overview information on the contrary on mainstream fuel cells and applications are provided in the book
'Hydrogen and Fuel Cells', published in 2010.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 2177
Veröffentlichungsjahr: 2012
Table of Contents
Related Titles
Title Page
Copyright
Contents to Volume 1
List of Contributors
Part I: Technology
Chapter 1: Technical Advancement of Fuel-Cell Research and Development
1.1 Introduction
1.2 Representative Research Findings for SOFCs
1.3 Representative Research Findings for HT-PEFCs
1.4 Representative Research Findings for DMFCs
1.5 Application and Demonstration in Transportation
1.6 Fuel Cells for Stationary Applications
1.7 Special Markets for Fuel Cells
1.8 Marketable Development Results
1.9 Conclusion
References
Chapter 2: Single-Chamber Fuel Cells
2.1 Introduction
2.2 SC-SOFCs
2.3 SC-SOFC Systems
2.4 Applications of SC-SOFCs Systems
2.5 Conclusion
References
Chapter 3: Technology and Applications of Molten Carbonate Fuel Cells
3.1 Molten Carbonate Fuel Cells overview
3.2 Analysis of MCFC Technology
3.3 Conventional and Innovative Applications
3.4 Conclusion
References
Chapter 4: Alkaline Fuel Cells
4.1 Historical Introduction and Principle
4.2 Concepts of Alkaline Fuel-Cell Design Concepts
4.3 Electrolytes and Separators
4.4 Degradation
4.5 Carbon Dioxide Behavior
4.6 Conclusion
References
Chapter 5: Micro Fuel Cells
5.1 Introduction
5.2 Physical Principles of Polymer Electrolyte Membrane Fuel Cells (PEMFCs)
5.3 Types of Micro Fuel Cells
5.4 Materials and Manufacturing
5.5 GDL Optimization
5.6 Conclusion
References
Chapter 6: Principles and Technology of Microbial Fuel Cells
6.1 Introduction
6.2 Materials and Methods
6.3 Microbial Catalysts
6.4 Applications and Proof of Concepts
6.5 Modeling
6.6 Outlook and Conclusions
Acknowledgments
References
Chapter 7: Micro-Reactors for Fuel Processing
7.1 Introduction
7.2 Heat and Mass Transfer in Micro-Reactors
7.3 Specific Features Required from Catalyst Formulations for Microchannel Plate Heat-Exchanger Reactors
7.4 Heat Management of Microchannel Plate Heat-Exchanger Reactors
7.5 Examples of Complete Microchannel Fuel Processors
7.6 Fabrication of Microchannel Plate Heat-Exchanger Reactors
References
Chapter 8: Regenerative Fuel Cells
8.1 Introduction
8.2 Principles
8.3 History
8.4 Thermodynamics
8.5 Electrodes
8.6 Solid Oxide Electrolyte (SOE)
8.7 System Design and Components
8.8 Applications and Systems
8.9 Conclusion and Prospects
References
Part II: Materials and Production Processes
Chapter 9: Advances in Solid Oxide Fuel Cell Development Between 1995 and 2010 at Forschungszentrum Jülich GmbH, Germany
9.1 Introduction
9.2 Advances in Research, Development, and Testing of Single Cells
9.3 Conclusions
Acknowledgments
References
Chapter 10: Solid Oxide Fuel Cell Electrode Fabrication by Infiltration
10.1 Introduction
10.2 SOFC and Electrochemical Fundamentals
10.3 Current Status of Electrodes; Fabrication Methods of Electrodes
10.4 Electrode Materials
10.5 Infiltration
10.6 Conclusion
References
Chapter 11: Sealing Technology for Solid Oxide Fuel Cells
11.1 Introduction
11.2 Sealing Techniques
11.3 Conclusion
References
Chapter 12: Phosphoric Acid, an Electrolyte for Fuel Cells–Temperature and Composition Dependence of Vapor Pressure and Proton Conductivity
12.1 Introduction
12.2 Short Overview of Basic Properties and Formal Considerations
12.3 Vapor Pressure of Water as a Function of Composition and Temperature
12.4 Proton Conductivity as a Function of Composition and Temperature
12.5 Equilibria between the Polyphosphoric Acid Species and “Composition” of Concentrated Phosphoric Acid
12.6 Conclusion
References
Chapter 13: Materials and Coatings for Metallic Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells
13.1 Introduction
13.2 Metallic Bipolar Plates
13.3 Discussion and Perspective
Acknowledgments
References
Chapter 14: Nanostructured Materials for Fuel Cells
14.1 Introduction
14.2 The Fuel Cell and Its System
14.3 Triple Phase Boundary
14.4 Electrodes to Oxidize Hydrogen
14.5 Membranes to Transport Ions
14.6 Electrocatalysts to Reduce Oxygen
14.7 Catalyst Supports to Conduct Electrons
14.8 Future Directions
References
Chapter 15: Catalysis in Low-Temperature Fuel Cells–an Overview
15.1 Introduction
15.2 Electrocatalysis in Fuel Cells
15.3 Electrocatalyst Degradation
15.4 Novel Support Materials
15.5 Catalyst Development, Characterization, and In Situ Studies in Fuel Cells
15.6 Catalysis in Hydrogen Production for Fuel Cells
15.7 Perspective
References
Part III: Analytics and Diagnostics
Chapter 16: Impedance Spectroscopy for High-Temperature Fuel Cells
16.1 Introduction
16.2 Fundamentals
16.3 Experimental Examples
16.4 Conclusion
References
Chapter 17: Post-Test Characterization of Solid Oxide Fuel-Cell Stacks
17.1 Introduction
17.2 Stack Dissection
17.3 Conclusion and Outlook
Acknowledgments
References
Chapter 18: In Situ Imaging at Large-Scale Facilities
18.1 Introduction
18.2 X-Rays and Neutrons
18.3 Application of In Situ 2D Methods
18.4 Application of 3D Methods
18.5 Conclusion
References
Chapter 19: Analytics of Physical Properties of Low-Temperature Fuel Cells
19.1 Introduction
19.2 Gravimetric Properties
19.3 Caloric Properties
19.4 Structural Information: Porosity
19.5 Mechanical Properties
19.6 Conclusion
References
Chapter 20: Degradation Caused by Dynamic Operation and Starvation Conditions
20.1 Introduction
20.2 Measurement Techniques
20.3 Dynamic Operation at Standard Conditions
20.4 Starvation Conditions
20.5 Mitigation
20.6 Conclusion
References
Part IV: Quality Assurance
Chapter 21: Quality Assurance for Characterizing Low-TemperatureFuel Cells
21.1 Introduction
21.2 Test Procedures/Standardized Measurements
21.3 Standardized Test Cells
21.4 Degradation and Lifetime Investigations
21.5 Design of Experiments in the Field of Fuel-Cell Research
References
Chapter 22: Methodologies for Fuel Cell Process Engineering
22.1 Introduction
22.2 Verification Methods in Fuel Cell Process Engineering
22.3 Analysis Methods in Fuel Cell Process Engineering
22.4 Conclusion
Acknowledgments
References
Contents to Volume 2
Part V: Modeling and Simulation
Chapter 23: Messages from Analytical Modeling of Fuel Cells
23.1 Introduction
23.2 Modeling of Catalyst Layer Performance
23.3 Polarization Curve of PEMFCs and HT-PEMFCs
23.4 Conclusion
References
Chapter 24: Stochastic Modeling of Fuel-Cell Components
24.1 Multi-Layer Model for Paper-Type GDLs
24.2 Time-Series Model for Non-Woven GDLs
24.3 Stochastic Network Model for the Pore Phase
24.4 Further Results
24.5 Structural Characterization of Porous GDL
24.6 Conclusion
References
Chapter 25: Computational Fluid Dynamic Simulation Using Supercomputer Calculation Capacity
25.1 Introduction
25.2 High-Performance Computing for Fuel Cells
25.3 HPC-Based CFD Modeling for Fuel-Cell Systems
25.4 CFD-Based Design
25.5 Conclusion and Outlook
Acknowledgments
References
Chapter 26: Modeling Solid Oxide Fuel Cells from the Macroscale to the Nanoscale
26.1 Introduction
26.2 Governing Equations of Solid Oxide Fuel Cells
26.3 Macroscale SOFC Modeling
26.4 Mesoscale SOFC Modeling
26.5 Nanoscale SOFC Modeling
26.6 Conclusion
References
Chapter 27: Numerical Modeling of the Thermomechanically Induced Stress in Solid Oxide Fuel Cells
27.1 Introduction
27.2 Chronological Overview of Numerically Performed Thermomechanical Analyses in SOFCs
27.3 Mathematical Formulation of Strain and Stress Within SOFC Components
27.4 Effect of Geometric Design on the Stress Distribution in SOFCs
27.5 Conclusion
References
Chapter 28: Modeling of Molten Carbonate Fuel Cells
28.1 Introduction
28.2 Spatially Distributed MCFC Model
28.3 Electrode Models
28.4 Conclusion
References
Chapter 29: High-Temperature Polymer Electrolyte Fuel-Cell Modeling
29.1 Introduction
29.2 Cell-Level Modeling
29.3 Stack-Level Modeling
29.4 Phosphoric Acid as Electrolyte
29.5 Basic Modeling of the Polarization Curve
29.6 Conclusion and Future Perspectives
References
Chapter 30: Modeling of Polymer Electrolyte Membrane Fuel-Cell Components
30.1 Introduction
30.2 Polymer Electrolyte Membrane
30.3 Catalyst Layers
30.4 Gas Diffusion Layers and Microporous Layers
30.5 Gas Flow Channels
30.6 Gas Diffusion Layer-Gas Flow Channel Interface
30.7 Bipolar Plates
30.8 Coolant Flow
30.9 Model Validation
30.10 Conclusion
References
Chapter 31: Modeling of Polymer Electrolyte Membrane Fuel Cells and Stacks
31.1 Introduction
31.2 Cell-Level Modeling and Simulation
31.3 Stack-Level Modeling and Simulation
31.4 Conclusion
References
Part VI: Balance of Plant Design and Components
Chapter 32: Principles of Systems Engineering
32.1 Introduction
32.2 Basic Engineering
32.3 Detailed Engineering
32.4 Procurement
32.5 Construction
32.6 Conclusion
References
Chapter 33: System Technology for Solid Oxide Fuel Cells
33.1 Solid Oxide Fuel Cells for Power Generation
33.2 Overview of SOFC Power Systems
33.3 Subsystem Design for SOFC Power Systems
33.4 SOFC Power Systems
Acknowledgments
References
Chapter 34: Desulfurization for Fuel-Cell Systems
34.1 Introduction and Motivation
34.2 Sulfur-Containing Molecules in Crude Oil
34.3 Desulfurization in the Gas Phase
34.4 Desulfurization in the Liquid Phase
34.5 Application in Fuel-Cell Systems
34.6 Conclusion
Acknowledgments
References
Chapter 35: Design Criteria and Components for Fuel Cell Powertrains
35.1 Introduction
35.2 Vehicle Requirements
35.3 Potentials and Challenges of Vehicle Powertrains
35.4 Components of Fuel Cell Powertrains
35.5 Conclusion
Acknowledgment
References
Chapter 36: Hybridization for Fuel Cells
36.1 Introduction
36.2 The Fuel-Cell Hybrid
36.3 Components of a Fuel-Cell Hybrid
36.4 Hybridization Concepts
36.5 Technical Overview
36.6 Systems Analysis
36.7 Conclusion
References
Part VII: Systems Verification and Market Introduction
Chapter 37: Off-Grid Power Supply and Premium Power Generation
37.1 Introduction
37.2 Premium Power Market Overview
37.3 Off-Grid
37.4 Portable Applications
37.5 Discussion
References
Chapter 38: Demonstration Projects and Market Introduction
38.1 Introduction
38.2 Why Demonstration?
38.3 Transportation Demonstrations
38.4 Stationary Power and Early Market Applications
References
Further Reading
Part VIII: Knowledge Distribution and Public Awareness
Chapter 39: A Sustainable Framework for International Collaboration: the IEA HIA and Its Strategic Plan for 2009–2015
39.1 Introduction
39.2 The IEA HIA Strategic Framework: Overview
39.3 The Work Program: Issues and Approaches
39.4 IEA HIA: the Past as Prolog
39.5 The 2009–2015 IEA HIA Work Program Timeline
39.6 Conclusion and Final Remarks
References
Further Reading
Chapter 40: Overview of Fuel Cell and Hydrogen Organizations and Initiatives Worldwide
40.1 Introduction
40.2 International Level
40.3 European Level
40.4 National Level
40.5 Regional Level
40.6 Partnerships, Initiatives, and Networks with a Specific Agenda
40.7 Conclusion
References
Chapter 41: Contributions for Education and Public Awareness
41.1 Introduction
41.2 Information for Interested Laypeople
41.3 Education for School Students and University Students
41.4 Electrolyzers and Fuel Cells in Education and Training
41.5 Training and Qualification for Trade and Industry
41.6 Education and Training in the Scientific Arena
41.7 Clarification Assistance in the Political Arena
41.8 Analysis of Public Awareness
41.9 Conclusion
References
Index
Related Titles
Li, X.
Polymer Electrolyte Membrane Fuel Cells
ISBN: 978-0-470-87110-2
Stolten, D., Scherer, V. (eds.)
Efficient Carbon Capture for Coal Power Plants
2011
ISBN: 978-3-527-33002-7
Stolten, D. (ed.)
Hydrogen and Fuel Cells
Fundamentals, Technologies and Applications
2010
ISBN: 978-3-527-32711-9
Hirscher, M. (ed.)
Handbook of Hydrogen Storage
New Materials for Future Energy Storage
2010
ISBN: 978-3-527-32273-2
Barbaro, P., Bianchini, C. (eds.)
Catalysis for Sustainable Energy Production
2009
ISBN: 978-3-527-32095-0
Mitsos, A., Barton, P. I. (eds.)
Microfabricated Power Generation Devices
Design and Technology
2009
ISBN: 978-3-527-32081-3
Vielstich, W.
Handbook of Fuel Cells
6 Volume Set
2009
ISBN: 978-0-470-74151-1
The Editors
Prof. Detlef Stolten
Forschungszentrum Jülich GmbH
IEF-3: Fuel Cells
Leo-Brandt-Straße
52425 Jülich
Germany
Dr. Bernd Emonts
Forschungszentrum Jülich GmbH
IEF-3: Fuel Cells
Leo-Brandt-Straße
52425 Jülich
Germany
We would like to thank the following institutions for providing us with the photographic material used in the cover illustration: IdaTech Fuel Cells GmbH, EnergieAgentur.NRW, and Forschungszentrum Jülich GmbH.
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
© 2012 Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form — by photoprinting, microfilm, or any other means — nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-33012-6
ePDF ISBN: 978-3-527-65027-9
ePub ISBN: 978-3-527-65026-2
mobi ISBN: 978-3-527-65025-5
oBook ISBN: 978-3-527-65024-8
Contents to Volume 1
List of Contributors
Part I
Technology
Chapter 1
Technical Advancement of Fuel-Cell Research and Development
Bernd Emonts, Ludger Blum, Thomas Grube, Werner Lehnert, Jürgen Mergel, Martin Müller, and Ralf Peters
For more than two decades, throughout the world, fuel cells have been undergoing a process of intensive development by both industrial companies and research institutions, which have a long-term perspective. These efforts aim to make energy provision more efficient and sustainable by replacing conventional energy systems. To this end, basic research is conducted on different types of fuel cells in order to boost performance and long-term stability and also to reduce the amount of material required. Making fuel cells ready for potential applications in the mobile, stationary, and portable sectors is another priority. To date, a few applications have already achieved this goal. This chapter provides an overview of current findings from research and development, in both industry laboratories and research institutions. It focuses on progress in research on solid oxide fuel cells, high-temperature polymer electrolyte fuel cells, and direct methanol fuel cells, potential cases for application and demonstration and also development results already on the market.
The world energy demand is growing at a rate of 1.8% per year. As a consequence of increasing industrialization, it has now shifted to today's developing countries. Since the higher demand is largely met with the fossil fuel reserves that are also responsible for emissions of greenhouse gases (GHGs) and other pollutants, emissions from developing countries may account for more than half of the global CO emissions by 2030. The industrialized countries should therefore take the challenge to lead the way towards the development of new energy systems. This requires a comprehensive energy strategy that takes into account the entire cycle from development to supply, distribution, and storage in addition to conversion. It also includes considering the impact on the producers and users of energy systems. Short- and long-term goals to be addressed are greater energy efficiency and better integration of renewable energy sources. On this path characterized by technical developments, as an efficient and clean technology, fuel cells can make a substantial contribution. In the long term, alongside electricity, hydrogen will be a major energy vector.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!