Fuel Cell Science and Engineering -  - E-Book

Fuel Cell Science and Engineering E-Book

0,0
336,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Fuel cells are expected to play a major role in the future power supply that will transform to renewable, decentralized and fluctuating primary energies. At the same time the share of electric power will continually increase at the expense of thermal and mechanical energy not just in transportation, but also in households. Hydrogen as a perfect fuel for fuel cells and an outstanding and efficient means of bulk storage for renewable energy will spearhead this development together with fuel cells. Moreover, small fuel cells hold great potential for portable devices such as gadgets and medical applications such as pacemakers.

This handbook will explore specific fuel cells within and beyond the mainstream development and focuses on materials and production processes for both SOFC and lowtemperature fuel cells, analytics and diagnostics for fuel cells, modeling and simulation as well as balance of plant design and components. As fuel cells are getting increasingly sophisticated and industrially developed the issues of quality assurance and methodology of development are included in this handbook. The contributions to this book come from an international panel of experts from academia, industry, institutions and government.

This handbook is oriented toward people looking for detailed information on specific fuel cell types, their materials, production processes,
modeling and analytics. Overview information on the contrary on mainstream fuel cells and applications are provided in the book
'Hydrogen and Fuel Cells', published in 2010.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 2177

Veröffentlichungsjahr: 2012

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Related Titles

Title Page

Copyright

Contents to Volume 1

List of Contributors

Part I: Technology

Chapter 1: Technical Advancement of Fuel-Cell Research and Development

1.1 Introduction

1.2 Representative Research Findings for SOFCs

1.3 Representative Research Findings for HT-PEFCs

1.4 Representative Research Findings for DMFCs

1.5 Application and Demonstration in Transportation

1.6 Fuel Cells for Stationary Applications

1.7 Special Markets for Fuel Cells

1.8 Marketable Development Results

1.9 Conclusion

References

Chapter 2: Single-Chamber Fuel Cells

2.1 Introduction

2.2 SC-SOFCs

2.3 SC-SOFC Systems

2.4 Applications of SC-SOFCs Systems

2.5 Conclusion

References

Chapter 3: Technology and Applications of Molten Carbonate Fuel Cells

3.1 Molten Carbonate Fuel Cells overview

3.2 Analysis of MCFC Technology

3.3 Conventional and Innovative Applications

3.4 Conclusion

References

Chapter 4: Alkaline Fuel Cells

4.1 Historical Introduction and Principle

4.2 Concepts of Alkaline Fuel-Cell Design Concepts

4.3 Electrolytes and Separators

4.4 Degradation

4.5 Carbon Dioxide Behavior

4.6 Conclusion

References

Chapter 5: Micro Fuel Cells

5.1 Introduction

5.2 Physical Principles of Polymer Electrolyte Membrane Fuel Cells (PEMFCs)

5.3 Types of Micro Fuel Cells

5.4 Materials and Manufacturing

5.5 GDL Optimization

5.6 Conclusion

References

Chapter 6: Principles and Technology of Microbial Fuel Cells

6.1 Introduction

6.2 Materials and Methods

6.3 Microbial Catalysts

6.4 Applications and Proof of Concepts

6.5 Modeling

6.6 Outlook and Conclusions

Acknowledgments

References

Chapter 7: Micro-Reactors for Fuel Processing

7.1 Introduction

7.2 Heat and Mass Transfer in Micro-Reactors

7.3 Specific Features Required from Catalyst Formulations for Microchannel Plate Heat-Exchanger Reactors

7.4 Heat Management of Microchannel Plate Heat-Exchanger Reactors

7.5 Examples of Complete Microchannel Fuel Processors

7.6 Fabrication of Microchannel Plate Heat-Exchanger Reactors

References

Chapter 8: Regenerative Fuel Cells

8.1 Introduction

8.2 Principles

8.3 History

8.4 Thermodynamics

8.5 Electrodes

8.6 Solid Oxide Electrolyte (SOE)

8.7 System Design and Components

8.8 Applications and Systems

8.9 Conclusion and Prospects

References

Part II: Materials and Production Processes

Chapter 9: Advances in Solid Oxide Fuel Cell Development Between 1995 and 2010 at Forschungszentrum Jülich GmbH, Germany

9.1 Introduction

9.2 Advances in Research, Development, and Testing of Single Cells

9.3 Conclusions

Acknowledgments

References

Chapter 10: Solid Oxide Fuel Cell Electrode Fabrication by Infiltration

10.1 Introduction

10.2 SOFC and Electrochemical Fundamentals

10.3 Current Status of Electrodes; Fabrication Methods of Electrodes

10.4 Electrode Materials

10.5 Infiltration

10.6 Conclusion

References

Chapter 11: Sealing Technology for Solid Oxide Fuel Cells

11.1 Introduction

11.2 Sealing Techniques

11.3 Conclusion

References

Chapter 12: Phosphoric Acid, an Electrolyte for Fuel Cells–Temperature and Composition Dependence of Vapor Pressure and Proton Conductivity

12.1 Introduction

12.2 Short Overview of Basic Properties and Formal Considerations

12.3 Vapor Pressure of Water as a Function of Composition and Temperature

12.4 Proton Conductivity as a Function of Composition and Temperature

12.5 Equilibria between the Polyphosphoric Acid Species and “Composition” of Concentrated Phosphoric Acid

12.6 Conclusion

References

Chapter 13: Materials and Coatings for Metallic Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells

13.1 Introduction

13.2 Metallic Bipolar Plates

13.3 Discussion and Perspective

Acknowledgments

References

Chapter 14: Nanostructured Materials for Fuel Cells

14.1 Introduction

14.2 The Fuel Cell and Its System

14.3 Triple Phase Boundary

14.4 Electrodes to Oxidize Hydrogen

14.5 Membranes to Transport Ions

14.6 Electrocatalysts to Reduce Oxygen

14.7 Catalyst Supports to Conduct Electrons

14.8 Future Directions

References

Chapter 15: Catalysis in Low-Temperature Fuel Cells–an Overview

15.1 Introduction

15.2 Electrocatalysis in Fuel Cells

15.3 Electrocatalyst Degradation

15.4 Novel Support Materials

15.5 Catalyst Development, Characterization, and In Situ Studies in Fuel Cells

15.6 Catalysis in Hydrogen Production for Fuel Cells

15.7 Perspective

References

Part III: Analytics and Diagnostics

Chapter 16: Impedance Spectroscopy for High-Temperature Fuel Cells

16.1 Introduction

16.2 Fundamentals

16.3 Experimental Examples

16.4 Conclusion

References

Chapter 17: Post-Test Characterization of Solid Oxide Fuel-Cell Stacks

17.1 Introduction

17.2 Stack Dissection

17.3 Conclusion and Outlook

Acknowledgments

References

Chapter 18: In Situ Imaging at Large-Scale Facilities

18.1 Introduction

18.2 X-Rays and Neutrons

18.3 Application of In Situ 2D Methods

18.4 Application of 3D Methods

18.5 Conclusion

References

Chapter 19: Analytics of Physical Properties of Low-Temperature Fuel Cells

19.1 Introduction

19.2 Gravimetric Properties

19.3 Caloric Properties

19.4 Structural Information: Porosity

19.5 Mechanical Properties

19.6 Conclusion

References

Chapter 20: Degradation Caused by Dynamic Operation and Starvation Conditions

20.1 Introduction

20.2 Measurement Techniques

20.3 Dynamic Operation at Standard Conditions

20.4 Starvation Conditions

20.5 Mitigation

20.6 Conclusion

References

Part IV: Quality Assurance

Chapter 21: Quality Assurance for Characterizing Low-TemperatureFuel Cells

21.1 Introduction

21.2 Test Procedures/Standardized Measurements

21.3 Standardized Test Cells

21.4 Degradation and Lifetime Investigations

21.5 Design of Experiments in the Field of Fuel-Cell Research

References

Chapter 22: Methodologies for Fuel Cell Process Engineering

22.1 Introduction

22.2 Verification Methods in Fuel Cell Process Engineering

22.3 Analysis Methods in Fuel Cell Process Engineering

22.4 Conclusion

Acknowledgments

References

Contents to Volume 2

Part V: Modeling and Simulation

Chapter 23: Messages from Analytical Modeling of Fuel Cells

23.1 Introduction

23.2 Modeling of Catalyst Layer Performance

23.3 Polarization Curve of PEMFCs and HT-PEMFCs

23.4 Conclusion

References

Chapter 24: Stochastic Modeling of Fuel-Cell Components

24.1 Multi-Layer Model for Paper-Type GDLs

24.2 Time-Series Model for Non-Woven GDLs

24.3 Stochastic Network Model for the Pore Phase

24.4 Further Results

24.5 Structural Characterization of Porous GDL

24.6 Conclusion

References

Chapter 25: Computational Fluid Dynamic Simulation Using Supercomputer Calculation Capacity

25.1 Introduction

25.2 High-Performance Computing for Fuel Cells

25.3 HPC-Based CFD Modeling for Fuel-Cell Systems

25.4 CFD-Based Design

25.5 Conclusion and Outlook

Acknowledgments

References

Chapter 26: Modeling Solid Oxide Fuel Cells from the Macroscale to the Nanoscale

26.1 Introduction

26.2 Governing Equations of Solid Oxide Fuel Cells

26.3 Macroscale SOFC Modeling

26.4 Mesoscale SOFC Modeling

26.5 Nanoscale SOFC Modeling

26.6 Conclusion

References

Chapter 27: Numerical Modeling of the Thermomechanically Induced Stress in Solid Oxide Fuel Cells

27.1 Introduction

27.2 Chronological Overview of Numerically Performed Thermomechanical Analyses in SOFCs

27.3 Mathematical Formulation of Strain and Stress Within SOFC Components

27.4 Effect of Geometric Design on the Stress Distribution in SOFCs

27.5 Conclusion

References

Chapter 28: Modeling of Molten Carbonate Fuel Cells

28.1 Introduction

28.2 Spatially Distributed MCFC Model

28.3 Electrode Models

28.4 Conclusion

References

Chapter 29: High-Temperature Polymer Electrolyte Fuel-Cell Modeling

29.1 Introduction

29.2 Cell-Level Modeling

29.3 Stack-Level Modeling

29.4 Phosphoric Acid as Electrolyte

29.5 Basic Modeling of the Polarization Curve

29.6 Conclusion and Future Perspectives

References

Chapter 30: Modeling of Polymer Electrolyte Membrane Fuel-Cell Components

30.1 Introduction

30.2 Polymer Electrolyte Membrane

30.3 Catalyst Layers

30.4 Gas Diffusion Layers and Microporous Layers

30.5 Gas Flow Channels

30.6 Gas Diffusion Layer-Gas Flow Channel Interface

30.7 Bipolar Plates

30.8 Coolant Flow

30.9 Model Validation

30.10 Conclusion

References

Chapter 31: Modeling of Polymer Electrolyte Membrane Fuel Cells and Stacks

31.1 Introduction

31.2 Cell-Level Modeling and Simulation

31.3 Stack-Level Modeling and Simulation

31.4 Conclusion

References

Part VI: Balance of Plant Design and Components

Chapter 32: Principles of Systems Engineering

32.1 Introduction

32.2 Basic Engineering

32.3 Detailed Engineering

32.4 Procurement

32.5 Construction

32.6 Conclusion

References

Chapter 33: System Technology for Solid Oxide Fuel Cells

33.1 Solid Oxide Fuel Cells for Power Generation

33.2 Overview of SOFC Power Systems

33.3 Subsystem Design for SOFC Power Systems

33.4 SOFC Power Systems

Acknowledgments

References

Chapter 34: Desulfurization for Fuel-Cell Systems

34.1 Introduction and Motivation

34.2 Sulfur-Containing Molecules in Crude Oil

34.3 Desulfurization in the Gas Phase

34.4 Desulfurization in the Liquid Phase

34.5 Application in Fuel-Cell Systems

34.6 Conclusion

Acknowledgments

References

Chapter 35: Design Criteria and Components for Fuel Cell Powertrains

35.1 Introduction

35.2 Vehicle Requirements

35.3 Potentials and Challenges of Vehicle Powertrains

35.4 Components of Fuel Cell Powertrains

35.5 Conclusion

Acknowledgment

References

Chapter 36: Hybridization for Fuel Cells

36.1 Introduction

36.2 The Fuel-Cell Hybrid

36.3 Components of a Fuel-Cell Hybrid

36.4 Hybridization Concepts

36.5 Technical Overview

36.6 Systems Analysis

36.7 Conclusion

References

Part VII: Systems Verification and Market Introduction

Chapter 37: Off-Grid Power Supply and Premium Power Generation

37.1 Introduction

37.2 Premium Power Market Overview

37.3 Off-Grid

37.4 Portable Applications

37.5 Discussion

References

Chapter 38: Demonstration Projects and Market Introduction

38.1 Introduction

38.2 Why Demonstration?

38.3 Transportation Demonstrations

38.4 Stationary Power and Early Market Applications

References

Further Reading

Part VIII: Knowledge Distribution and Public Awareness

Chapter 39: A Sustainable Framework for International Collaboration: the IEA HIA and Its Strategic Plan for 2009–2015

39.1 Introduction

39.2 The IEA HIA Strategic Framework: Overview

39.3 The Work Program: Issues and Approaches

39.4 IEA HIA: the Past as Prolog

39.5 The 2009–2015 IEA HIA Work Program Timeline

39.6 Conclusion and Final Remarks

References

Further Reading

Chapter 40: Overview of Fuel Cell and Hydrogen Organizations and Initiatives Worldwide

40.1 Introduction

40.2 International Level

40.3 European Level

40.4 National Level

40.5 Regional Level

40.6 Partnerships, Initiatives, and Networks with a Specific Agenda

40.7 Conclusion

References

Chapter 41: Contributions for Education and Public Awareness

41.1 Introduction

41.2 Information for Interested Laypeople

41.3 Education for School Students and University Students

41.4 Electrolyzers and Fuel Cells in Education and Training

41.5 Training and Qualification for Trade and Industry

41.6 Education and Training in the Scientific Arena

41.7 Clarification Assistance in the Political Arena

41.8 Analysis of Public Awareness

41.9 Conclusion

References

Index

Related Titles

Li, X.

Polymer Electrolyte Membrane Fuel Cells

ISBN: 978-0-470-87110-2

Stolten, D., Scherer, V. (eds.)

Efficient Carbon Capture for Coal Power Plants

2011

ISBN: 978-3-527-33002-7

Stolten, D. (ed.)

Hydrogen and Fuel Cells

Fundamentals, Technologies and Applications

2010

ISBN: 978-3-527-32711-9

Hirscher, M. (ed.)

Handbook of Hydrogen Storage

New Materials for Future Energy Storage

2010

ISBN: 978-3-527-32273-2

Barbaro, P., Bianchini, C. (eds.)

Catalysis for Sustainable Energy Production

2009

ISBN: 978-3-527-32095-0

Mitsos, A., Barton, P. I. (eds.)

Microfabricated Power Generation Devices

Design and Technology

2009

ISBN: 978-3-527-32081-3

Vielstich, W.

Handbook of Fuel Cells

6 Volume Set

2009

ISBN: 978-0-470-74151-1

The Editors

Prof. Detlef Stolten

Forschungszentrum Jülich GmbH

IEF-3: Fuel Cells

Leo-Brandt-Straße

52425 Jülich

Germany

Dr. Bernd Emonts

Forschungszentrum Jülich GmbH

IEF-3: Fuel Cells

Leo-Brandt-Straße

52425 Jülich

Germany

We would like to thank the following institutions for providing us with the photographic material used in the cover illustration: IdaTech Fuel Cells GmbH, EnergieAgentur.NRW, and Forschungszentrum Jülich GmbH.

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2012 Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form — by photoprinting, microfilm, or any other means — nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33012-6

ePDF ISBN: 978-3-527-65027-9

ePub ISBN: 978-3-527-65026-2

mobi ISBN: 978-3-527-65025-5

oBook ISBN: 978-3-527-65024-8

Contents to Volume 1

List of Contributors

Kerry-Ann Adamson
Pike Research – Cleantech Market Intelligence
180–186 Kings Cross Road
London WC1X 9DE
UK
Elisabetta Arato
University of Genoa
PERT, Process Engineering Research Team
Via Opera Pia 15
16145 Genoa
Italy
Jan B.A. Arends
Ghent University
Faculty of Bioscience Engineering
Laboratory of Microbial Ecology and Technology (LabMET)
Coupure Links 653
9000 Ghent
Belgium
Peter Batfalsky
Forschungszentrum Jülich GmbH
ZAT
Leo-Brandt-Straße
52425 Jülich
Germany
Ludger Blum
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Barbara Bosio
University of Genoa
PERT, Process Engineering Research Team
Via Opera Pia 15
16145 Genoa
Italy
Michael Bron
Martin-Luther-Universität Halle-Wittenberg
Naturwissenschaftliche Fakultät II – Chemie, Physik, und Mathematik
Institut für Chemie – Technische Chemie I
von-Danckelmann-Platz 4
06120 Halle
Germany
Ken S. Chen
Sandia National Laboratories
7011 East Avenue
MS9154, Livermore
CA 94550
USA
Kristin Deason
NOW GmbH
Nationale Organisation Wasserstoff- und Brennstoffzellentechnologie
Fasanenstraße 5
10623 Berlin
Germany
Joachim Desloover
Ghent University
Faculty of Bioscience Engineering
Laboratory of Microbial Ecology and Technology (LabMET)
Coupure Links 653
9000 Ghent
Belgium
Mary-Rose de Valladares
International Energy Agency Hydrogen Implementing Agreement (IEA HIA)
9650 Rockville Pike
Bethesda
MD 20814
USA
Lutz Eckstein
RWTH Aachen University
Institut für Kraftfahrzeuge (IKA)
Steinbachstraße 7
52074 Aachen
Germany
John F. Elter
Sustainable Systems LLC, 874 Old Albany Shaker Road, Latham
NY 12110
USA
and
University of Albany, State University of New York
College of Nanoscale Science and Engineering
NanoFab 300 East, 257 Fuller Road, Albany
NY 12222
USA
Bernd Emonts
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Gerd Gaiselmann
Universität Ulm
Institut für Stochastik
HelmholtzStraße 18
89069 Ulm
Germany
Dietmar Gerteisen
Fraunhofer Institute for Solar Energy Systems ISE
Department of Fuel Cell Systems
Heidenhofstraße 2
79110 Freiburg
Germany
Bruno Gnörich
RWTH Aachen
Institut für Kraftfahrzeuge (IKA)
SteinbachStraße 7
52074 Aachen
Germany
Paolo Greppi
University of Genoa
PERT, Process Engineering Research Team
Via Opera Pia 15
16145 Genoa
Italy
Ulf Groos
Fraunhofer Institute for Solar Energy Systems ISE
Department of Fuel Cell Systems
Heidenhofstrasse 2
79110 Freiburg
Germany
Thomas Grube
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Erich Gülzow
Deutsches Zentrum für Luft- und Raumfahrt eV (DLR)
Institut für Technische Thermodynamik
Pfaffenwaldring 38–40
70569 Stuttgart
Germany
Evren Gunen
TUBITAK Marmara Research Center
Energy Institute
Dr. Zeki Acar Cad.
Baris mah. No: 1
Gebze
Kocaeli 41470
Turkey
Vincent Haanappel
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Viktor Hacker
Graz University of Technology
Institute of Chemical Engineering and Environmental Technology
Inffeldgasse 25/C/II
8010 Graz
Austria
Peter Heidebrecht
Max Planck Institut
Dynamics of Complex Technical Systems
Sandtorstraße 1
39106 Magdeburg
Germany
Ellen Ivers-Tiffée
Karlsruher Institut für Technologie (KIT)
Institut für Werkstoffe der Elektrotechnik (IWE)
Adenauerring 20b
Gebäude 50.40
76131 Karlsruhe
Germany
Mohammad A. Khaleel
Boston University
Department of Mechanical Engineering
110 Cummington Street
Boston
MA 02215
USA
Gunther Kolb
Institut für Mikrotechnik Mainz GmbH
Energietechnik und Katalyse
Carl-Zeiss-Straße 18–20
55129 Mainz
Germany
Carsten Korte
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Melanie Kuhn
Massachusetts Institute of Technology
Department of Materials Science and Engineering
77 Massachusetts Avenue
Cambridge
MA 02139
USA
Andrei Kulikovsky
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Werner Lehnert
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Werner Lehnert
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
André Leonide
Karlsruher Institut für Technologie (KIT)
Institut für Werkstoffe der Elektrotechnik (IWE)
Adenauerring 20b
Gebäude 50.40
76131 Karlsruhe
Germany
Sebastian Maass
Robert Bosch GmbH
Corporate Sector Research and Advance Engineering
CR/ARC1 – Energy Storage and Conversion
Robert-Bosch-Platz 1
70839 Gerlingen-Schillerhöhe
Germany
Thomas Malkow
European Commission
Directorate-General Joint Research Centre
Institute for Energy and Transport
Westerduinweg 3
1755 LE Petten
The Netherlands
Ingo Manke
Helmholtz-Zentrum Berlin
Hahn-Meitner-Platz 1
D-14109 Berlin
Germany
Norbert H. Menzler
Forschungszentrum Jülich GmbH, IEK-1
Leo-Brandt-Straße
52425 Jülich
Germany
Jürgen Mergel
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Nguyen Q. Minh
University of California,
San Diego
Center for Energy Research
9500 Gilman Drive
La Jolla
CA 92093-0417
USA
Martin Müller
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Tko W. Napporn
Université de Poitiers
Electrocatalysis Group (e-lyse),
IC2MP UMR 7285 CNRS
4 rue Michel Brunet
86022, Poitiers
France
Jan Hendrik Ohs
Robert Bosch GmbH
Corporate Sector Research and Advance Engineering
CR/ARC1 – Energy Storage and Conversion
Robert-Bosch-Platz 1
70839 Gerlingen-Schillerhöhe
Germany
Joachim Pasel
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Murat Peksen
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Ralf Peters
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Silvia Piewek
Max Planck Institute
Dynamics of Complex Technical Systems
Sandtorstraße 1
39106 Magdeburg
Germany
Sebasti´ Puig
University of Girona
Faculty of Sciences
Institute of the Environment
Laboratory of Chemical and Environmental Engineering (LEQUIA-UdG)
Campus Montilivi s/n
17071 Girona
Spain
Uwe Reimer
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Emily M. Ryan
Boston University
Department of Mechanical Engineering
110 Cummington Street
Boston
MA 02215
USA
and
Pacific Northwest National Laboratory
902 Battelle Boulevard
Richland
WA 99352
USA
Remzi Can Samsun
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Ulrich S. Sauter
Robert Bosch GmbH
Corporate Sector Research and Advance Engineering
CR/ARC1 – Energy Storage and Conversion
Robert-Bosch-Platz 1
70839 Gerlingen-Schillerhöhe
Germany
Florian Scharf
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Helge Schichlein
Karlsruher Institut für Technologie (KIT)
Institut für Werkstoffe der Elektrotechnik (IWE)
Adenauerring 20b
Gebäude 50.40
76131 Karlsruhe
Germany
Sabine Schimpf
Martin-Luther-Universität Halle-Wittenberg
Naturwissenschaftliche Fakultät II – Chemie, Physik, und Mathematik
Institut für Chemie – Technische Chemie I
von-Danckelmann-Platz 4
06120 Halle
Germany
Volker Schmidt
Universität Ulm
Institut für Stochastik
HelmholtzStraße 18
89069 Ulm
Germany
Thorsteinn I. Sigfusson
University of Iceland
Sæmundargötu 2
101 Reykjavík and Innovation Centre Iceland
Keldnaholt
112 Reykjavik
Iceland
Volker Sonn
Karlsruher Institut für Technologie (KIT)
Institut für Werkstoffe der Elektrotechnik (IWE)
Adenauerring 20b
Gebäude 50.40
76131 Karlsruhe
Germany
Kai Sundmacher
Max Planck Institute
Dynamics of Complex Technical Systems
Sandtorstraße 1
39106 Magdeburg
Germany
Ralf Thiedmann
Universität Ulm
Institut für Stochastik
HelmholtzStraße 18
89069 Ulm
Germany
Christian Tötzke
Technische Universität Berlin
StraBe des 17. Juni 135
D-10623 Berlin
Germany
and
Helmholtz-Zentrum Berlin
Hahn-Meitner-Platz 1
D-14109 Berlin
Germany
Georgios Tsotridis
European Commission
Directorate-General Joint Research Centre
Institute for Energy and Transport
Westerduinweg 3
1755 LE Petten
The Netherlands
John A. Turner
National Renewable Energy Laboratory
1617 Cole Boulevard
Golden
CO 80401
USA
Willy Verstraete
Ghent University
Faculty of Bioscience Engineering
Laboratory of Microbial Ecology and Technology (LabMET)
Coupure Links 653
9000 Ghent
Belgium
Jürgen Wackerl
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany
Eva Wallnöfer-Ogris
Graz University of Technology
Institute of Chemical Engineering and Environmental Technology
Inffeldgasse 25/C/II
8010 Graz
Austria
Heli Wang
National Renewable Energy Laboratory
1617 Cole Boulevard
Golden
CO 80401
USA
Yun Wang
University of California
Department of Mechanical and Aerospace Engineering
4231 Engineering Gateway
Irvine
CA 92697
USA
André Weber
Karlsruher Institut für Technologie (KIT)
Institut für Werkstoffe der Elektrotechnik (IWE)
Adenauerring 20b
Gebäude 50.40
76131 Karlsruhe
Germany
K. Scott Weil
Pacific Northwest National Laboratory
902 Battelle Boulevard
Richland
WA 99352
USA
Jörg Wilhelm
Forschungszentrum Jülich GmbH, IEK-3
Leo-Brandt-Straße
52425 Jülich
Germany

Part I

Technology

Chapter 1

Technical Advancement of Fuel-Cell Research and Development

Bernd Emonts, Ludger Blum, Thomas Grube, Werner Lehnert, Jürgen Mergel, Martin Müller, and Ralf Peters

For more than two decades, throughout the world, fuel cells have been undergoing a process of intensive development by both industrial companies and research institutions, which have a long-term perspective. These efforts aim to make energy provision more efficient and sustainable by replacing conventional energy systems. To this end, basic research is conducted on different types of fuel cells in order to boost performance and long-term stability and also to reduce the amount of material required. Making fuel cells ready for potential applications in the mobile, stationary, and portable sectors is another priority. To date, a few applications have already achieved this goal. This chapter provides an overview of current findings from research and development, in both industry laboratories and research institutions. It focuses on progress in research on solid oxide fuel cells, high-temperature polymer electrolyte fuel cells, and direct methanol fuel cells, potential cases for application and demonstration and also development results already on the market.

1.1 Introduction

The world energy demand is growing at a rate of 1.8% per year. As a consequence of increasing industrialization, it has now shifted to today's developing countries. Since the higher demand is largely met with the fossil fuel reserves that are also responsible for emissions of greenhouse gases (GHGs) and other pollutants, emissions from developing countries may account for more than half of the global CO emissions by 2030. The industrialized countries should therefore take the challenge to lead the way towards the development of new energy systems. This requires a comprehensive energy strategy that takes into account the entire cycle from development to supply, distribution, and storage in addition to conversion. It also includes considering the impact on the producers and users of energy systems. Short- and long-term goals to be addressed are greater energy efficiency and better integration of renewable energy sources. On this path characterized by technical developments, as an efficient and clean technology, fuel cells can make a substantial contribution. In the long term, alongside electricity, hydrogen will be a major energy vector.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!