345,99 €
A comprehensive overview of functional nanosystems based on organic and polymeric materials and their impact on current and future research and technology in the highly interdisciplinary field of materials science. As such, this handbook covers synthesis and fabrication methods, as well as properties and characterization of supramolecular architectures. Much of the contents are devoted to existing and emerging applications, such as organic solar cells, transistors, diodes, nanowires and molecular switches. The result is an indispensable resource for materials scientists, organic chemists, molecular physicists and electrochemists looking for a reliable reference on this hot topic.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1922
Veröffentlichungsjahr: 2014
Cover
Series Page
Title Page
Copyright
Dedication
Preface
List of Contributors
Volume 1
Part One: Modeling and Theory
Chapter 1: Charge Transport in Organic Semiconductors: A Multiscale Modeling
1.1 Introduction
1.2 Organic Single Crystals
1.3 Tetrathiafulvalene Derivatives
1.4 Polythiophene Derivatives
1.5 Phthalocyanine Stacks
1.6 Polymer Dielectrics
1.7 Outlook
References
Chapter 2: Monte Carlo Studies of Phase Transitions and Cooperative Motion in Langmuir Monolayers with Internal Dipoles
2.1 Introduction
2.2 Computational Details
2.3 Results and Discussion
2.4 Summary
References
Chapter 3: Molecules on Gold Surfaces: What They Do and How They Go Around to Do It
3.1 Introduction
3.2 A Simple Description of the Geometrical Structure of Metals
3.3 A Simple Description of the Geometrical Structure of Molecules
3.4 Electronegativity Governs Chemical Interactions: Charge Equilibration, QEq, Models
3.5 A Simple Description of the Interaction between Metal Surfaces and Molecules
3.6 Presence of an External Electric Potential or Field
3.7 Generality of the Model and Its Transferability
3.8 Thiolates on Gold
3.9 Adsorption of a Large Molecule: C60
3.10 Simple Packing Problems
3.11 The Presence of an Electrostatic Potential
3.12 Challenges and Conclusion
References
Part Two: Supramolecular Synthetic Chemistry
Chapter 4: Conjugated Polymer Sensors: Design, Principles, and Biological Applications
4.1 Introduction
4.2 Water Solubility
4.3 Protein Detection
4.4 DNA Detection
4.5 Bacteria Detection
4.6 Electron-Deficient Polymers
4.7 Aggregation-Based Detection
4.8 Temperature-Responsive Fluorescent Polymers
4.9 Nonhomogeneous Detection Schemes
4.10 Mechanism of Energy Transfer
4.11 Conclusions and Future Directions
References
Chapter 5: Chromophoric Polyisocyanide Materials
5.1 Introduction
5.2 Polyisocyanide Materials
5.3 Perylene Polyisocyanides in Devices
5.4 TFT Devices
5.5 Morphology Control in Perylene/Crystal Systems
5.6 Postmodification of Polyisocyanopeptides
5.7 Toward Larger Length Scales: Polyisocyanopeptide Brushes
5.8 Summary and Outlook
References
Chapter 6: Functional Polyphenylenes for Supramolecular Ordering and Application in Organic Electronics
6.1 Introduction
6.2 Conjugated Polymers
6.3 Graphene Molecules and their Alignment
6.4 Rylenes Dyes
6.5 Dendritic Polyphenylenes: The Three-Dimensional Case
6.6 Conclusion and Outlook
References
Chapter 7: Molecular Tectonics: Design of Hybrid Networks and Crystals Based on Charge-Assisted Hydrogen Bonds
7.1 Introduction
7.2 Examples of Robust Charge-Assisted H-Bonded (CAHB) Networks
7.4 Charge-Assisted H-Bonded Networks Based on Amidinium Tectons
7.4 Charge-Assisted H-Bonded Networks Based on Amidinium and Polycyanometallate Tectons
7.5 Properties of Charge-Assisted H-Bonded Networks Based on Amidinium Tectons
7.6 Design of Crystals Based on CAHB Networks
7.7 Conclusion
References
Chapter 8: Synthesis and Design of π-Conjugated Organic Architectures Doped with Heteroatoms
8.1 Introduction
8.2 Boron
8.3.1 Sulfur, Selenium, and Tellurium
8.4 Miscellaneous
8.5 Conclusions
References
Part Three: Nanopatterning and Processing
Chapter 9: Functionalization and Assembling of Inorganic Nanocontainers for Optical and Biomedical Applications
9.1 Introduction
9.2 Zeolite L as Inorganic Nanocontainers
9.3 Functionalization of Zeolites: Host–Guest Chemistry and Surface and Channel Functionalizations
9.4 Photoinduced Processes in Zeolites
9.5 Self-Assembly in Solution and on Surfaces
9.6 Possible Optical and Biomedical Applications of Nanocontainers
References
Chapter 10: Soft Lithography for Patterning Self-Assembling Systems
10.1 Introduction
10.2 Self-Assembling Systems
10.3 Soft Lithography
10.4 Contact Printing of SAMs with High Resolution
10.5 Soft Lithography to Pattern Assemblies of Nanoparticles
10.6 Soft Lithography Pattern Supramolecular Assembly
10.7 Concluding Remarks
References
Chapter 11: Colloidal Self-Assembly of Semiconducting Polymer Nanospheres: A Novel Route to Functional Architectures for Organic Electronic Devices
11.1 Introduction
11.2 Formation of Semiconducting Polymer Nanospheres
11.3 Driving Forces behind Nanoparticle Self-Assembly Processes
11.4 Deposition Methods for Aqueous Dispersions of Semiconducting Polymer Nanospheres
11.5 Organic Electronic Devices from Semiconducting Polymer Nanospheres
11.6 Conclusions
Acknowledgment
References
Chapter 12: Photolithographic Patterning of Organic Electronic Materials
12.1 Introduction
12.2 Photolithographic Methods for Patterning Organic Materials
12.3 Conclusions and General Considerations
References
Part Four: Scanning Probe Microscopies
Chapter 13: Toward Supramolecular Engineering of Functional Nanomaterials: Preprogramming Multicomponent 2D Self-Assembly at Solid–Liquid Interfaces
13.1 Introduction
13.2 van der Waals Interactions
13.3 Hydrogen–Bonding Interactions
13.4 Metal–Ligand Interactions
13.5 Conclusions and Outlook
References
Chapter 14: STM Characterization of Supramolecular Materials with Potential for Organic Electronics and Nanotechnology
14.1 Introduction
14.2 Characterization Using STM and Related Technologies
14.3 Molecular Systems with Applications in Electronics
14.4 Optically Active Molecules
14.5 Magnetic Systems
14.6 STM Characterization and Biological Surface Science
14.7 Using the STM to Initiate Chemical Reactions
14.8 Conclusions and Perspective
List of Acronyms
References
Chapter 15: Scanning Probe Microscopy Insights into Supramolecular π-Conjugated Nanostructures for Optoelectronic Devices
15.1 Introduction: SPM Techniques for the Nanoscale Characterization of Organic Thin Films
15.2 Controlling the Supramolecular Assembly and Nanoscale Morphology of π-Conjugated (Macro)Molecules
15.3 Effect of the Nanoscale Morphology on the Optoelectronic Properties and Device Performances
15.4 Conclusions and Perspectives
References
Chapter 16: Single-Molecule Organic Electronics: Toward Functional Structures
16.1 Introduction
16.2 Techniques
16.3 Summary and Outlook
References
Volume 2
Part Five: Electronic and Optical Properties
Chapter 17: Charge Transfer Excitons in Supramolecular Semiconductor Nanostructures
17.1 Introduction
17.2 Experimental Methodologies
17.3 Delayed PL Decay Dynamics: Evidence of Charge Transfer Exciton Recombination in T6
17.4 Distribution of Charge Transfer Exciton Radii
17.5 Conclusions
References
Chapter 18: Optical Properties and Electronic States in Anisotropic Conjugated Polymers: Intra- and Interchain Effects
18.1 Introduction
18.2 Polymer Properties and Orientation
18.3 Intrachain Effects
18.4 Interchain Effects
18.5 Conclusions
References
Chapter 19: Nanoscale Shape of Conjugated Polymer Chains Revealed by Single-Molecule Spectroscopy
19.1 Introduction
19.2 The Single-Molecule Approach
19.3 Chain Shape
19.4 Conclusions
References
Chapter 20: Electronic Structure Engineering Through Intramolecular Polar Bonds
20.1 Introduction
20.2 Electrostatic Considerations
20.3 Introducing Energy Levels
20.4 Intrinsic Intramolecular Surface Dipoles
20.5 Implications for Materials and Devices
20.6 Conclusions
References
Part Six: Field-Effect Transistors
Chapter 21: Crystal Structure Performance Relationship in OFETs
21.1 Introduction
21.2 Single-Crystal OFETs
21.3 Crystal Packing Motifs
21.4 Polymorphism
21.5 Summary
References
Chapter 22: Bioactive Supramolecular Architectures in Electronic Sensing Devices
22.1 Introduction
22.2 Supramolecular Architectures for Organic Thin-Film Field-Effect Sensing Transistors
22.3 Bioactive Sensing Layer
22.4 Sensing Devices with Polyelectrolyte Multilayer Architectures
22.5 Electronic Sensing Devices with Phospholipid Layer Architectures
22.6 Conclusions and Perspectives
References
Chapter 23: Field-Effect Devices Based on Organic Semiconductor Heterojunctions
23.1 Introduction
23.2 Field-Effect Devices
23.3 Conclusions
References
Chapter 24: Functional Semiconducting Blends
24.1 Introduction
24.2 Processing Aids
24.3 Mechanically Tough Semiconducting Blends
24.4 Ferroelectric Semiconducting Blends
24.5 Photovoltaic Blends
24.6 Conclusions
References
Part Seven: Solar Cells
Chapter 25: Hybrid Organic–Inorganic Photovoltaic Diodes: Photoaction at the Heterojunction and Charge Collection Through Mesostructured Composites
25.1 Introduction
25.2 Basic Operating Principles of Hybrid Solar Cells
25.3 Photoaction at the Heterojunction: Light Harvesting, Charge Generation, and Recombination
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!