Green Catalysis, Volume 3 -  - E-Book

Green Catalysis, Volume 3 E-Book

0,0
183,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

The shift towards being as environmentally-friendly as possible has resulted in the need for this important volume on the topic of biocatalysis. Edited by the father and pioneer of Green Chemistry, Professor Paul Anastas, and by the renowned chemist, Professor Robert Crabtree, this volume covers many different aspects, from industrial applications to the latest research straight from the laboratory. It explains the fundamentals and makes use of everyday examples to elucidate this vitally important field.

An essential collection for anyone wishing to gain an understanding of the world of green chemistry, as well as for chemists, environmental agencies and chemical engineers.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 524

Veröffentlichungsjahr: 2014

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



CONTENTS

Cover

Related Titles

Title Page

Copyright

About the Editors

List of Contributors

Chapter 1: Catalysis with Cytochrome P450 Monooxygenases

1.1 Properties of Cytochrome P450 Monooxygenases

1.2 Biotechnological Applications of P450 Monooxygenases

1.3 Optimization of P450 Monooxygenase-Based Catalytic Systems

1.4 Outlook

References

Chapter 2: Biocatalytic Hydrolysis of Nitriles

2.1 The Problem with Nitrile Hydrolysis

2.2 Biocatalysis as a Green Solution

2.3 Nitrile Biocatalysts

2.4 Synthetic Utility

2.5 Commercial Examples

2.6 Challenges

2.7 Conclusion

References

Chapter 3: Biocatalytic Processes Using Ionic Liquids and Supercritical Carbon Dioxide

3.1 Introduction

3.2 Biocatalytic Processes in Ionic Liquids

3.3 Biocatalytic Processes in Supercritical Carbon Dioxide

3.4 Biocatalysis in IL–scCO2 Biphasic Systems

3.5 Future Trends

References

Chapter 4: Thiamine-Based Enzymes for Biotransformations

4.1 Introduction

4.2 Carboligation: Chemo- and Stereoselectivity

4.3 Selected Enzymes

4.4 Enzymes for Special Products

4.5 Investigation of Structure–Function Relationships

References

Chapter 5: Baeyer–Villiger Monooxygenases in Organic Synthesis

5.1 Introduction

5.2 General Aspects of the Baeyer–Villiger Oxidation

5.3 Biochemistry of Baeyer–Villiger Monooxygenases

5.4 Application of Baeyer–Villiger Monooxygenases in Organic Chemistry

5.5 Protein Engineering

5.6 Conclusions and Perspectives

References

Chapter 6: Bioreduction by Microorganisms

6.1 Introduction

6.2 Enzymes and Coenzymes

6.3 Methodologies

6.4 Conclusion

References

Chapter 7: Biotransformations and the Pharma Industry

7.1 Introduction

7.2 Small-Molecule Pharmaceuticals

7.3 The Concept of Green Chemistry

7.4 The Organic Chemistry Toolbox

7.5 The Enzyme Toolbox (a Selective Analysis)

7.6 Outlook and Conclusions

References

Chapter 8: Hydrogenases and Alternative Energy Strategies

8.1 Introduction: The Future Hydrogen Economy

8.2 Chemistry of Hydrogenase Catalytic Sites

8.3 Experimental Approaches

8.4 Catalytic Mechanisms of Hydrogenases

8.5 Progress So Far with Biological Hydrogen Production Systems

8.6 Conclusion and Future Directions

Abbreviations

References

Chapter 9: PAH Bioremediation by Microbial Communities and Enzymatic Activities

9.1 Introduction

9.2 Fate of PAHs in the Environment

9.3 Population of PAH-Polluted Environments

9.4 Microbial Degradation of PAHs

9.5 Dioxygenases as Key Enzymes in the Aerobic Degradation of PAHs and Markers of Bacterial Degradation

9.6 PAH Transformation by Extracellular Fungal Enzymes

9.7

In Situ

Strategies to Remediate Polluted Soils

References

Index

End User License Agreement

List of Tables

Table 2.1

Table 3.1

Table 3.2

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Table 5.8

Table 5.9

Table 5.10

Table 5.11

Table 5.12

Table 5.13

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Table 7.5

Table 7.6

Table 7.7

Table 7.8

Table 7.9

Table 7.10

Table 7.11

Table 7.12

Table 9.1

List of Illustrations

Figure 1.1

Scheme 1.1

Scheme 1.2

Scheme 1.3

Scheme 1.4

Scheme 1.5

Scheme 1.6

Scheme 1.7

Figure 1.2

Scheme 2.1

Scheme 2.2

Scheme 2.3

Figure 2.1

Scheme 2.4

Scheme 2.5

Scheme 2.6

Scheme 2.7

Scheme 2.8

Scheme 2.9

Scheme 2.10

Scheme 2.11

Scheme 2.12

Scheme 2.13

Scheme 2.14

Scheme 2.15

Figure 3.1

Scheme 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Scheme 4.1

Scheme 4.2

Scheme 4.3

Scheme 4.4

Figure 4.1

Figure 4.2

Scheme 4.5

Figure 4.3

Figure 4.4

Scheme 5.1

Figure 5.1

Scheme 5.2

Scheme 5.3

Scheme 5.4

Figure 5.2

Scheme 5.5

Scheme 5.6

Scheme 5.7

Scheme 5.8

Scheme 5.9

Scheme 5.10

Scheme 5.11

Scheme 5.12

Scheme 5.13

Scheme 5.14

Scheme 5.15

Scheme 5.16

Scheme 5.17

Scheme 5.18

Scheme 5.19

Scheme 5.20

Scheme 5.21

Scheme 5.22

Scheme 5.23

Scheme 5.24

Scheme 5.25

Scheme 5.26

Scheme 6.1

Scheme 6.2

Scheme 6.3

Scheme 6.4

Scheme 6.5

Scheme 6.6

Scheme 6.7

Scheme 6.8

Scheme 6.9

Scheme 6.10

Scheme 6.11

Scheme 6.12

Scheme 6.13

Scheme 6.14

Scheme 6.15

Scheme 6.16

Scheme 6.17

Scheme 6.18

Scheme 6.19

Scheme 6.20

Scheme 6.21

Scheme 6.22

Scheme 6.23

Scheme 6.24

Scheme 6.25

Scheme 6.26

Scheme 6.27

Scheme 6.28

Figure 7.1

Scheme 7.1

Scheme 7.2

Scheme 7.3

Scheme 7.4

Scheme 7.5

Scheme 7.6

Scheme 7.7

Scheme 7.8

Scheme 7.9

Scheme 7.10

Scheme 7.11

Scheme 7.12

Scheme 7.13

Scheme 7.14

Scheme 7.15

Scheme 7.16

Figure 8.1

Figure 8.2

Figure 8.3

Scheme 8.1

Scheme 8.2

Scheme 8.3

Scheme 8.4

Figure 8.8

Figure 8.9

Figure 9.1

Scheme 9.1

Figure 9.2

Guide

Cover

Table of Contents

Chapter 1

Pages

ii

iii

iv

xi

xii

xiii

xiv

xv

xvi

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

Related Titles

Wasserscheid, P., Welton, T. (eds.)

Ionic Liquids in Synthesis

2nd Edition

2008

ISBN: 978-3-527-31239-9

Sheldon, R. A., Arends, I., Hanefeld, U.

Green Chemistry and Catalysis

2007

ISBN: 978-3-527-30715-9

Cornils, B., Herrmann, W. A., Muhler, M., Wong, C.-H. (eds.)

Catalysis from A - Z

A Concise Encyclopedia

3rd Edition

2007

ISBN: 978-3-527-31438-6

Loupy, A. (ed.)

Microwaves in Organic Synthesis

2nd Edition

2006

ISBN: 978-3-527-31452-2

Kappe, C. O., Stadler, A., Mannhold, R., Kubinyi, H., Folkers, G. (eds.)

Microwaves in Organic and Medicinal Chemistry

2005

ISBN: 978-3-527-31210-8

Handbook of Green Chemistry

Volume 3Homogeneous Catalysis

Volume Edited by Robert H. Crabtree

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.:

applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

ISBN: 978-3-527-32498-9

About the Editors

Series Editor

Paul T. Anastas joined Yale University as Professor and serves as the Director of the Center for Green Chemistry and Green Engineering there. From 2004–2006, Paul was the Director ofthe Green Chemistry Institute in Washington, D.C. Until June 2004 he served as Assistant Director for Environment at the White House Office of Science and Technology Policy where his responsibilities included a wide range of environmental science issues including furthering international public-private cooperation in areas of Science for Sustainability such as Green Chemistry. In 1991, he established the industry-governmentuniversity partnership Green Chemistry Program, which was expanded to include basic research, and the Presidential Green Chemistry Challenge Awards. He has published and edited several books in the field of Green Chemistry and developed the 12 Principles of Green Chemistry.

Volume Editor

Robert Crabtree took his first degree at Oxford, did his Ph.D. at Sussex and spent four years in Paris at the CNRS. He has been at Yale since 1977.He has chaired the Inorganic Division at ACS, and won the ACS and RSC organometallic chemistry prizes. He is the author of an organometallic textbook, and is the editor-in-chief of the Encyclopedia of Inorganic Chemistry and Comprehensive Organometallic Chemistry. He has contributed to C-H activation, H2 complexes, dihydrogen bonding, and his homogeneous tritiation and hydrogenation catalyst is in wide use. More recently, he has combined molecular recognition with CH hydroxylation to obtain high selectivity with a biomimetic strategy.

List of Contributors

Vincenza Andreoni

Università degli Studi di Milano

Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche

Via Celoria 2

20133 Milan

Italy

Uwe T. Bornscheuer

University of Greifswald

Institute of Biochemistry

Department of Biotechnology and Enzyme Catalysis

Felix-Hausdorff-Strasse 4

17487 Greifswald

Germany

Dean Brady

CSIR Biosciences

Ardeer Road

1645 Modderfontein

South Africa

Richard Cammack

King’s College London

Department of Biochemistry

150 Stamford Street

London SE1 9NH

UK

Teresa De Diego

Universidad de Murcia

Facultad de Química

Departamento de Bioquímica y Biología Molecular ‘B’ e Inmunología

P.O. Box 4021

30100 Murcia

Spain

António L. De Lacey

CSIC

Instituto de Catálisis

C/ Marie Curie 2

28049 Madrid

Spain

Victor M. Fernández

CSIC

Instituto de Catálisis

C/ Marie Curie 2

28049 Madrid

Spain

Oreste Ghisalba

Novartis Pharma AG

4002 Basel

Switzerland

Liliana Gianfreda

Università degli Studi di Napoli Federico II

Dipartimento di Scienze del Suolo, della Pianta e dell’Ambiente

Via Università 100

80055 Portici (NA)

Italy

Dörte Gocke

Heinrich-Heine-Universität Düsseldorf

Institut für Molekulare Enzymtechnologie

52426 Jülich

Germany

Leandro Helgueira Andrade

University of São Paulo

Institute of Chemistry

Caixa Postal 26077

CEP 055139-970

São Paulo, SP

Brazil

José L. Iborra

Universidad de Murcia

Facultad de Química

Departamento de Bioquímica y Biología Molecular ‘B’ e Inmunología

P.O. Box 4021

30100 Murcia

Spain

Anett Kirschner

University of Groningen

Groningen Biomolecular Science and Biotechnology Institute

Department of Biochemistry

Nijenborgh 4

9747 AG Groningen

The Netherlands

James E. Leresche

Lonza Braine SA

Chaussée de Tubize 297

1420 Braine-l’Alleud

Belgium

Pedro Lozano

Universidad de Murcia

Facultad de Química

Departamento de Bioquímica y Biología Molecular ‘B’ e Inmunología

P.O. Box 4021

30100 Murcia

Spain

Hans-Peter Meyer

Lonza Ltd

Rottenstrasse

3930 Visp

Switzerland

Michael Müller

Albert-Ludwigs-Universität Freiburg

Institut für Pharmazeutische Wissenschaften

Stefan-Meier-Strasse 19

79194 Freiburg

Germany

Kaoru Nakamura

Kyoto University

Institute for Chemical Research

Uji

Kyoto 611-0011

Japan

Martina Pohl

Heinrich-Heine-Universität Düsseldorf

Institut für Molekulare Enzymtechnologie

52426 Jülich

Germany

Olaf Rüdiger

CSIC

Instituto de Catálisis

C/ Marie Curie 2

28049 Madrid

Spain

Vlada B. Urlacher

University of Stuttgart

Institute of Technical Biochemistry

Allmandring 31

70569 Stuttgart

Germany

1Catalysis with Cytochrome P450 Monooxygenases

Vlada B. Urlacher

1.1 Properties of Cytochrome P450 Monooxygenases

1.1.1 General Aspects

Biocatalytic oxyfunctionalization of non-activated hydrocarbons is considered as ‘potentially the most useful of all biotransformations’ [1]. Since biooxidation-based applications using cytochrome P450 monooxygenases often yield compounds that are difficult to synthesize using traditional synthetic chemistry, they have attracted considerable attention from chemists, biochemists and biotechnologists. Cytochrome P450 monooxygenases (P450s or CYPs) are heme-containing monooxygenases, which were recognized and defined as a distinct class of hemoproteins about 50 years ago [2, 3]. These enzymes got their name from their unusual properties to form reduced (ferrous) iron–carbon monoxide complexes in which the heme absorption Soret band shifts from 420 to ~450 nm [4, 5]. Essential for this spectral characteristic is the axial coordination of the heme iron by a cysteine thiolate, which is common to all P450 monooxygenases [6, 7]. The phylogenetically conserved cysteinate is the proximal ligand to the heme iron, with the distal ligand generally assumed to be a weakly bound water molecule [8].

In terms of nomenclature, the root symbol CYP, denoting cytochrome P450, is followed by an Arabic number representing the particular families (generally groups of proteins with more than 40% amino acid sequence identity), a letter for the respective subfamilies (greater than 55% identity) and a number determining the specific gene; for example, CYP102A1, which represents the cytochrome P450 BM-3 from Bacillus megaterium. An exception is the CYP51 family, where sterol Δ22-desaturases are grouped together based on their identical function and not on sequence similarity [9].

Since their discovery, the P450s have been studied in enormous detail due to their involvement in a plethora of crucial cellular roles – from carbon source assimilation, through biosynthesis of hormones to carcinogenesis, drug activation and degradation of xenobiotics.

Cytochrome P450 monooxygenases build one of the largest gene families, with currently more than 7700 gene sequences found in all domains of life [10]. Despite less than 20% sequence identity across the gene superfamily, P450 enzymes appear to take on a similar structural fold [11] ().

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!