183,99 €
The shift towards being as environmentally-friendly as possible has resulted in the need for this important volume on the topic of reactions in water. Edited by one of the leaders in the field, Professor C.-J. Li, this is an essential resource for anyone wishing to gain an understanding of the world of green chemistry, as well as for chemists, environmental agencies and chemical engineers.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 768
Veröffentlichungsjahr: 2014
Cover
Related Titles
Title Page
Copyright
About the Editors
List of Contributors
Chapter 1: The Principles of and Reasons for Using Water as a Solvent for Green Chemistry
1.1 Introduction
1.2 Binding of Two Species Together Driven by the Hydrophobic Effect in Water
1.3 Aromatic Chlorination
1.4 Acylation of Cyclodextrins by a Bound Ester
1.5 Mimics of Metalloenzymes Using the Hydrophobic Effect in Water
1.6 Mimics of the Enzyme Ribonuclease
1.7 Mimics of Enzymes that Use Pyridoxamine Phosphate and Pyridoxal Phosphate as Coenzymes
1.8 Artificial Enzymes Carrying Mimics of Thiamine Pyrophosphate
1.9 Enolizations and Aldol Condensations
1.10 Hydrophobic Acceleration of Diels–Alder Reactions
1.11 Selectivities in Water Induced by the Hydrophobic Effect – Carbonyl Reductions
1.12 Selectivities in Water Induced by the Hydrophobic Effect – Oxidations
1.13 Using Hydrophobic Effects in Water to Determine the Geometries of Transition States for Some Important Reactions
1.14 Conclusion
References
Chapter 2: Green Acid Catalysis in Water
2.1 Introduction
2.2 Lewis Acids in Water
2.3 Chiral Lewis Acid-catalyzed Asymmetric Reactions in Water
2.4 Brønsted Acid Catalysis in Pure Water
2.5 Conclusion and Perspective
References
Chapter 3: Green Bases in Water
3.1 Introduction
3.2 Types of Bases and Their Use from a Green Point of View
3.3 Liquid–Liquid Processes
3.4 Solid–Liquid Processes
References
Chapter 4: Green Oxidation in Water
4.1 Introduction
4.2 Water-soluble Ligands
4.3 Oxidations Catalyzed by Metalloporphyrins and Metallophthalocyanines
4.4 Epoxidation and Dihydroxylation of Olefins in Aqueous Media
4.5 Alcohol Oxidations in Aqueous Media
4.6 Aldehyde and Ketone Oxidations in Water
4.7 Sulfoxidations in Water
4.8 Conclusion
References
Chapter 5: Green Reduction in Water
5.1 Introduction
5.2 Water-soluble Ligands
5.3 Hydrogenation in Water
5.4 Transfer Hydrogenation in Water
5.5 Role of Water
5.6 Conclusion
References
Chapter 6: Coupling Reactions in Water
6.1 Introduction
6.2 Reaction of Carbonyl Compounds and Derivatives
6.3 Reaction of Alkenes and Alkynes
6.4 Reaction of Organic Halides and Derivatives
6.5 Conclusion
References
Chapter 7: “On Water” for Green Chemistry
7.1 Introduction
7.2 Pericyclic Reactions
7.3 Addition of Heteronucleophiles to Unsaturated Carbonyl Compounds
7.4 Enantioselective Direct Aldol Reactions
7.5 Coupling Reactions
7.6 Oxidation
7.7 Bromination Reactions
7.8 Miscellaneous Reactions
7.9 Theoretical Studies
7.10 Conclusion
References
Chapter 8: Pericyclic Reactions in Water. Towards Green Chemistry
8.1 Introduction
8.2 Pericyclic Reactions in Aqueous Media
8.3 Conclusion
References
Chapter 9: Non-conventional Energy Sources for Green Synthesis in Water (Microwave, Ultrasound, and Photo)
9.1 Introduction
9.2 MW-assisted Organic Transformations in Aqueous Media
9.3 Sonochemical Organic Transformations in Aqueous Media
9.4 Photochemical Transformations in Aqueous Media
9.5 Conclusion
References
Chapter 10: Functionalization of Carbohydrates in Water
10.1 Introduction
10.2 C–C Bond Formation Reactions
10.3 C–N Bond Formation Reactions
10.4 Functionalization of Hydroxy Groups
10.5 Glyco-organic Substrates and Reactions in Aqueous Sugar Solutions
10.6 Conclusion
References
Chapter 11: Water Under Extreme Conditions for Green Chemistry
11.1 Introduction
11.2 Background
11.3 Recent Progress in HTW Synthesis
References
Chapter 12: Water as a Green Solvent for Pharmaceutical Applications
12.1 Introduction – Is Water a Green Solvent?
12.2 Water-based Enzymatic Processes
12.3 Processes in Which the Product is Isolated by pH Adjustment to the Isoelectric Point
12.4 Carbon–Carbon Bond-forming Cross-coupling Reactions in Water
12.5 Pharmaceutical Processes Using Mixed Aqueous Solvents
12.6 Conclusion
References
Chapter 13: Water as a Green Solvent for Bulk Chemicals
13.1 Introduction
13.2 Hydroformylation – an Overview
13.3 Water as Solvent for Hydroformylation
13.4 Water as Solvent in the Production of 2,7-Octadien–1-ol (Kuraray Process)
13.5 Conclusion
References
Index
End User License Agreement
Table 2.1
Table 5.1
Table 5.2
Table 5.3
Table 6.1
Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table 7.5
Table 7.6
Table 7.7
Table 7.8
Table 7.9
Table 8.1
Table 10.1
Table 10.2
Table 10.3
Table 10.4
Table 10.5
Table 10.6
Table 10.7
Table 10.8
Table 10.9
Table 10.10
Table 11.1
Table 11.2
Table 12.1
Table 12.2
Table 13.1
Table 13.2
Scheme 1.1
Scheme 1.2
Scheme 1.3
Scheme 1.4
Scheme 1.5
Scheme 1.6
Scheme 1.7
Scheme 1.8
Scheme 1.9
Scheme 1.10
Scheme 1.11
Figure 1.1
Scheme 1.12
Scheme 1.13
Scheme 2.1
Scheme 2.2
Scheme 2.3
Scheme 2.4
Scheme 2.5
Scheme 2.6
Scheme 2.7
Scheme 2.8
Scheme 2.9
Scheme 2.10
Scheme 2.11
Scheme 2.12
Scheme 2.13
Scheme 2.14
Scheme 2.15
Scheme 2.16
Scheme 2.17
Figure 2.1
Scheme 2.18
Scheme 2.19
Scheme 2.20
Scheme 2.21
Figure 2.2
Scheme 2.22
Scheme 2.23
Scheme 2.24
Scheme 2.25
Scheme 2.26
Scheme 2.27
Scheme 2.28
Scheme 2.29
Scheme 2.30
Scheme 2.31
Scheme 2.32
Scheme 2.33
Scheme 2.34
Scheme 2.35
Scheme 2.36
Scheme 2.37
Scheme 2.38
Scheme 2.39
Scheme 3.1
Scheme 3.2
Scheme 3.3
Scheme 3.4
Scheme 3.5
Scheme 3.6
Scheme 3.7
Scheme 3.8
Scheme 3.9
Scheme 3.10
Scheme 3.11
Scheme 3.12
Scheme 3.13
Scheme 3.14
Scheme 3.15
Scheme 3.16
Scheme 3.17
Scheme 3.18
Scheme 3.19
Scheme 3.20
Scheme 3.21
Scheme 3.22
Scheme 4.1
Scheme 4.2
Scheme 4.3
Scheme 4.4
Scheme 4.5
Scheme 4.6
Scheme 4.7
Scheme 4.8
Scheme 4.9
Scheme 4.10
Scheme 4.11
Scheme 4.12
Scheme 4.13
Scheme 4.14
Scheme 4.15
Scheme 4.16
Scheme 4.17
Scheme 4.18
Scheme 4.19
Scheme 4.20
Scheme 4.21
Scheme 4.22
Scheme 4.23
Scheme 4.24
Scheme 5.1
Scheme 5.2
Scheme 5.3
Scheme 5.4
Scheme 5.5
Scheme 5.6
Scheme 5.7
Scheme 5.8
Scheme 5.9
Scheme 5.10
Scheme 5.11
Scheme 5.12
Scheme 5.13
Scheme 5.14
Scheme 5.15
Scheme 5.16
Scheme 5.17
Scheme 5.18
Scheme 5.19
Scheme 5.20
Scheme 5.21
Scheme 5.22
Scheme 5.23
Scheme 5.24
Scheme 5.25
Scheme 5.26
Scheme 5.27
Scheme 5.28
Scheme 5.29
Scheme 5.30
Scheme 5.31
Scheme 5.32
Scheme 5.33
Scheme 6.1
Scheme 6.2
Scheme 6.3
Scheme 6.4
Scheme 6.5
Scheme 6.6
Scheme 6.7
Scheme 6.8
Scheme 6.9
Scheme 6.10
Scheme 6.11
Scheme 6.12
Scheme 6.13
Scheme 6.14
Scheme 6.15
Scheme 6.16
Scheme 6.17
Scheme 6.18
Scheme 6.19
Scheme 6.20
Scheme 6.21
Scheme 6.22
Scheme 6.23
Scheme 6.24
Scheme 6.25
Scheme 6.26
Scheme 6.27
Scheme 6.28
Scheme 6.29
Scheme 6.30
Scheme 6.31
Scheme 6.32
Scheme 6.33
Scheme 6.34
Scheme 6.35
Scheme 6.36
Scheme 6.37
Scheme 6.38
Scheme 6.39
Scheme 6.40
Scheme 6.41
Scheme 6.42
Scheme 6.43
Scheme 6.44
Scheme 6.45
Scheme 6.46
Scheme 6.47
Scheme 6.48
Scheme 6.49
Scheme 6.50
Scheme 6.51
Scheme 6.52
Scheme 6.53
Scheme 6.54
Scheme 6.55
Scheme 6.56
Scheme 6.57
Scheme 6.58
Scheme 6.59
Scheme 6.60
Scheme 6.61
Scheme 6.62
Scheme 6.63
Scheme 6.64
Scheme 6.65
Scheme 6.66
Scheme 6.67
Scheme 6.68
Scheme 6.69
Scheme 6.70
Scheme 6.71
Scheme 6.72
Scheme 6.73
Scheme 6.74
Scheme 6.75
Scheme 6.76
Scheme 6.77
Scheme 6.78
Scheme 6.79
Scheme 6.80
Scheme 6.81
Figure 7.1
Scheme 7.1
Scheme 7.2
Scheme 7.3
Scheme 7.4
Scheme 7.5
Scheme 7.6
Scheme 7.7
Scheme 7.8
Scheme 7.9
Scheme 7.10
Scheme 7.11
Scheme 7.12
Scheme 7.13
Scheme 7.14
Scheme 7.15
Scheme 7.16
Scheme 7.17
Scheme 7.18
Scheme 7.19
Scheme 7.20
Scheme 7.21
Scheme 7.22
Figure 7.2
Scheme 8.1
Scheme 8.2
Scheme 8.3
Scheme 8.4
Scheme 8.5
Scheme 8.6
Figure 8.1
Scheme 8.7
Figure 8.2
Figure 8.3
Scheme 8.8
Scheme 8.9
Scheme 8.10
Scheme 8.11
Scheme 8.12
Scheme 8.13
Figure 8.4
Scheme 8.14
Scheme 8.15
Scheme 8.16
Scheme 8.17
Scheme 8.18
Scheme 8.19
Scheme 8.20
Scheme 8.21
Scheme 8.22
Scheme 8.23
Scheme 8.24
Scheme 8.25
Scheme 8.26
Scheme 8.27
Scheme 8.28
Scheme 8.29
Scheme 8.30
Scheme 8.31
Scheme 8.32
Scheme 8.33
Scheme 8.34
Figure 8.5
Scheme 8.35
Scheme 8.36
Scheme 8.37
Scheme 8.38
Scheme 8.39
Scheme 8.40
Scheme 9.1
Scheme 9.2
Scheme 9.3
Scheme 9.4
Scheme 9.5
Scheme 9.6
Scheme 9.7
Scheme 9.8
Scheme 9.9
Scheme 9.10
Scheme 9.11
Scheme 9.12
Scheme 9.13
Scheme 9.14
Scheme 9.15
Scheme 9.16
Scheme 9.17
Scheme 9.18
Scheme 9.19
Scheme 9.20
Scheme 9.21
Scheme 9.22
Scheme 9.23
Scheme 9.24
Scheme 9.25
Scheme 9.26
Scheme 9.27
Scheme 9.28
Scheme 9.29
Scheme 9.30
Scheme 9.31
Scheme 9.32
Scheme 10.1
Scheme 10.2
Scheme 10.3
Scheme 10.4
Scheme 10.5
Scheme 10.6
Scheme 10.7
Scheme 10.8
Scheme 10.9
Scheme 10.10
Scheme 10.11
Scheme 10.12
Scheme 10.13
Scheme 10.14
Scheme 10.15
Scheme 10.16
Scheme 10.17
Scheme 10.18
Scheme 10.19
Scheme 10.20
Scheme 10.21
Scheme 10.22
Scheme 10.23
Scheme 10.24
Scheme 10.25
Scheme 10.26
Scheme 10.27
Scheme 10.28
Scheme 10.29
Scheme 10.30
Scheme 10.31
Scheme 10.32
Scheme 10.33
Scheme 10.34
Scheme 10.35
Scheme 10.36
Scheme 10.37
Scheme 10.38
Scheme 10.39
Scheme 10.40
Scheme 10.41
Scheme 10.42
Scheme 10.43
Scheme 10.44
Scheme 10.45
Scheme 10.46
Scheme 10.47
Scheme 10.48
Scheme 10.49
Scheme 10.50
Scheme 10.51
Figure 11.1
Figure 11.2
Figure 11.3
Scheme 11.1
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Scheme 11.2
Scheme 11.3
Scheme 11.4
Scheme 11.5
Scheme 11.6
Scheme 12.1
Scheme 12.2
Scheme 12.3
Scheme 12.4
Scheme 12.5
Scheme 12.6
Scheme 12.7
Scheme 12.8
Scheme 12.9
Scheme 12.10
Scheme 12.11
Scheme 12.12
Scheme 12.13
Scheme 12.14
Scheme 12.15
Scheme 12.16
Scheme 12.17
Scheme 12.18
Figure 12.1
Scheme 13.1
Scheme 13.2
Figure 13.1
Scheme 13.3
Scheme 13.4
Figure 13.2
Figure 13.3
Scheme 13.5
Scheme 13.6
Figure 13.4
Cover
Table of Contents
About the Editors
Chapter 1
ii
iii
iv
xiii
xiv
xv
xvi
xvii
xviii
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
Tanaka, K.
Solvent-free Organic Synthesis
Second, Completely Revised and Updated Edition
2009
ISBN: 978-3-527-32264-0
Lefler, J.
Principles and Applications of Supercritical Fluid Chromatography
2009
ISBN: 978-0-470-25884-2
Wasserscheid, P., Welton, T. (eds.)
Ionic Liquids in Synthesis
Second, Completely Revised and Enlarged Edition
2008
ISBN: 978-3-527-31239-9
Sheldon, R. A., Arends, I., Hanefeld, U.
Green Chemistry and Catalysis
2007
ISBN: 978-3-527-30715-9
Li, C.-J., Chan, T.-H.
Comprehensive Organic Reactions in Aqueous Media
Second Edition
2007
ISBN: 978-0-471-76129-7
Lindstrom, U. M. (ed.)
Organic Reactions in Water
Principles, Strategies and Applications
2008
ISBN: 978-1-4501-3890-1
Volume 5Reactions in Water
Edited by
Chao-Jun Li
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.:
applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.
© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
ISBN: 978-3-527-31591-7
Paul T. Anastas joined Yale University as Professor and serves as the Director of the Center for Green Chemistry and Green Engineering there. From 2004–2006, Paul was the Director of the Green Chemistry Institute in Washington, D.C. Until June 2004 he served as Assistant Director for Environment at the White House Office of Science and Technology Policy where his responsibilities included a wide range of environmental science issues including furthering international public-private cooperation in areas of Science for Sustainability such as Green Chemistry. In 1991, he established the industry-government-university partnership Green Chemistry Program, which was expanded to include basic research, and the Presidential Green Chemistry Challenge Awards. He has published and edited several books in the field of Green Chemistry and developed the 12 Principles of Green Chemistry.
Chao-Jun Li (FRSC, UK) received his PhD at McGill University (1992) and was an NSERC Postdoctoral fellow at Stanford University (1992–1994). He was an Assistant Professor (1994), Associate Professor (1998) and Full Professor (2000–2003) at Tulane University, where he received a NSF CAREER Award (1998) in organic synthesis and the 2001 US Presidential Green Chemistry Challenge Award (Academic). In 2003, he became a Canada Research Chair (Tier I) in Organic/Green Chemistry and a Professor of Chemistry at McGill University in Canada. He serves as the Co-Chair of the Canadian Green Chemistry and Engineering Network, the Director of CFI Infrastructure for Green Chemistry and Green Chemicals, and Co-Director the FQRNT Center for Green Chemistry and Catalysis (Quebec). He is the current Associate Editor for Americas for the journal of Green Chemistry (published by the Royal Society of Chemistry). He has been widely recognized as the leader in Green Chemistry for Organic Synthesis in developing innovative and fundamentally new organic reactions that defy conventional reactivities and have high synthetic efficiency.
Ronald Breslow
Columbia University
Department of Chemistry
3000 Broadway
New York, NY 10027
USA
Peter Dunn
Pfizer UK
Pfizer Green Chemistry Lead
Ramsgate Road
Sandwich
Kent CT13 9NJ
UK
Jan B.F.N. Engberts
University of Groningen
Stratingh Institute
Nijenborgh 4
9747 AG Groningen
The Netherlands
José M. Fraile
Universidad de Zaragoza-CSIC
Instituto de Ciencia de Materiales de Aragón
Facultad de Ciencias
Departamento de Química Orgánica
50009 Zaragoza
Spain
Jean-Pierre Genêt
ENSCP
UMR 7573
Laboratoire de Synthèse Sélective Organique et Produits Naturels
11 rue P. et M. Curie
72231 Paris Cedex 05
France
Clara I. Herrerías
Universidad de Zaragoza-CSIC
Instituto de Ciencia de Materiales de Aragón
Facultad de Ciencias
Departamento de Química Orgánica
50009 Zaragoza
Spain
Ferenc Joó
Hungarian Academy of Sciences
Research Group of Homogeneous Catalysis
and
University of Debrecen
Institute of Physical Chemistry
1 Egyetem tér
4010 Debrecen
Hungary
Ágnes Kathó
University of Debrecen
Institute of Physical Chemistry
1 Egyetem tér
4010 Debrecen
Hungary
Jaap E. Klijn
University of Groningen
Stratingh Institute
Nijenborgh 4
9747 AG Groningen
The Netherlands
Sh Kobayashi
The University of Tokyo
School of Science and Graduate School of Pharmaceutical Sciences
Department of Chemistry
Hongo
Bunkyo-ku
Tokyo 113-0033
Japan
Lucie Leseurre
ENSCP
UMR 7573
Laboratoire de Synthèse Sélective Organique et Produits Naturels
11 rue P. et M. Curie
72231 Paris Cedex 05
France
Li Liu
Chinese Academy of Sciences
Institute of Chemistry
Center for Chemical Biology
Beijing National Laboratory for Molecular Science (BNLMS)
Beijing 100080
China
André Lubineau
Université Paris-Sud 11
Institut de Chimie Moléculaire et des Matériaux d'Orsay
CNRS UMR 8182
Laboratoire de Chimie Organique Multifonctionnelle, Bâtiment 420
15 rue Georges Clémenceau
91405 Orsay
France
José A. Mayoral
Universidad de Zaragoza-CSIC
Instituto de Ciencia de Materiales de Aragón
Facultad de Ciencias
Departamento de Química Orgánica
50009 Zaragoza
Spain
Véronique Michelet
ENSCP
UMR 7573
Laboratoire de Synthèse Sélective Organique et Produits Naturels
11 rue P. et M. Curie
72231 Paris Cedex 05
France
Chikako Ogawa
The University of Tokyo
School of Science and Graduate School of Pharmaceutical Sciences
Department of Chemistry
Hongo
Bunkyo-ku
Tokyo 113-0033
Japan
Present address:
Eisai Research Institute
Lead Identification
4 Corporate Drive
Andover, MA 01810
USA
Vivek Polshettiwar
US Environmental Protection Agency
National Risk Management Research Laboratory
Sustainable Technology Division
26 W. Martin Luther King Drive
Cincinnati, OH 45268
USA
Yves Queneau
INSA-Lyon
Laboratoire de Chimie Organique
Bâtiment J. Verne
20 avenue A. Einstein
69621 Villeurbanne
France
and
Université Lyon 1
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
INSA-Lyon
CNRS, UMR 5246
CPE-Lyon
Bâtiment CPE
43 boulevard du 11 novembre 1918
69622 Villeurbanne
France
Natalie A. Rebacz
University of Michigan
Chemical Engineering Department
2300 Hayward
Ann Arbor, MI 48109
USA
Phillip E. Savage
University of Michigan
Chemical Engineering Department
2300 Hayward
Ann Arbor, MI 48109
USA
Marie-Christine Scherrmann
Université Paris-Sud 11
Institut de Chimie Moléculaire et des Matériaux d'Orsay
CNRS UMR 8182
Laboratoire de Procédés et Substances Naturelles
Bâtiment 410
15 rue Georges Clémenceau
91405 Orsay
France
Roger A. Sheldon
Delft University of Technology
Department of Biotechnology
Julianalaan 136
2628 BL Delft
The Netherlands
Rajender S. Varma
US Environmental Protection Agency
National Risk Management Research Laboratory
Sustainable Technology Division
26 W. Martin Luther King Drive
Cincinnati, OH 45268
USA
Dong Wang
Chinese Academy of Sciences
Institute of Chemistry
Center for Chemical Biology
Beijing National Laboratory for Molecular Science (BNLMS)
Beijing 100080
China
Xiaofeng Wu
University of Liverpool
Liverpool Centre for Materials and Catalysis
Department of Chemistry
Liverpool L69 7ZD
UK
Jianliang Xiao
University of Liverpool
Liverpool Centre for Materials and Catalysis
Department of Chemistry
Liverpool L69 7ZD
UK
Ronald Breslow
Chemical reactions used to manufacture important compounds such as medicinals are essentially always carried out in solution, and this is also true of the research work that is used to invent the new compounds and to develop appropriate ways to manufacture them. In the past, continuing into the present, the solvents used are normally volatile organic compounds (VOCs), and these pose an environmental problem. Their vapors can contribute to the greenhouse effect that causes global warming, and in some cases the solvent vapors can catalyze the destruction of the ozone layer that protects the Earth and its living inhabitants from short-wavelength ultraviolet solar radiation. The vapors may also be toxic to humans, plants, or animals, or they may cause diseases.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!