Handbook of Green Chemistry - Green Catalysis -  - E-Book

Handbook of Green Chemistry - Green Catalysis E-Book

0,0
183,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

The shift towards being as environmentally-friendly as possible has resulted in the need for this important volume on homogeneous catalysis. Edited by the father and pioneer of Green Chemistry, Professor Paul Anastas, and by the renowned chemist, Professor Robert Crabtree, this volume covers many different aspects, from industrial applications to atom economy. It explains the fundamentals and makes use of everyday examples to elucidate this vitally important field. An essential collection for anyone wishing to gain an understanding of the world of green chemistry, as well as for chemists, environmental agencies and chemical engineers.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 676

Veröffentlichungsjahr: 2014

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



CONTENTS

Cover

Related Titles

Title Page

Copyright

About the Editors

List of Contributors

Chapter 1: Atom Economy – Principles and Some Examples

1.1 Introduction

1.2 Principle of Atom Economy

1.3 Atom Economical by Design: Examples of Reactions Relying on C–H Activation

1.4 Conclusion

References

Chapter 2: Catalysis Involving Fluorous Phases: Fundamentals and Directions for Greener Methodologies

2.1 Introduction

2.2 Directions for Greener Fluorous Methodologies

2.3 Solvents for Fluorous Chemistry

2.4 Ponytails and Partition Coefficients

2.5 Specific Examples of Catalyst Recovery that Exploit Temperature-dependent Solubilities

2.6 Specific Examples of Catalyst Recovery that Exploit Fluorous Solid Phases

2.7 Summary and Perspective

References

Chapter 3: Chemistry and Applications of Iron–TAML Catalysts in Green Oxidation Processes Based on Hydrogen Peroxide

3.1 Introduction

3.2 Properties of Fe–TAMLs and Mechanisms of Oxidation with Hydrogen Peroxide

3.3 Applications of Fe–TAMLs

3.4 Conclusion

References

Chapter 4: Microwave-Accelerated Homogeneous Catalysis in Water

4.1 Introduction

4.2 Suzuki–Miyaura Reactions

4.3 The Stille Reaction

4.4 The Hiyama Cross-Coupling Reaction

4.5 The Heck Reaction

4.6 Carbonylation Reactions

4.7 The Sonogashira Reaction

4.8 Aryl–Nitrogen Couplings

4.9 Aryl–Oxygen Couplings

4.10 Miscellaneous Transformations

4.11 Conclusion

References

Chapter 5: Ionic Liquids and Catalysis: The IFP Biphasic Difasol Process

5.1 Introduction

5.2 The Solvent in Catalytic Reactions

5.3 The Catalytic Oligomerization of Olefins

5.4 The Biphasic Difasol Process

5.5 Conclusion

References

Chapter 6: Immobilization and Compartmentalization of Homogeneous Catalysts

6.1 Introduction

6.2 Soluble Dendrimer-bound Homogeneous Catalysts

6.3 Polymer-bound Homogeneous Catalysts

6.4 Conclusion and Outlook

References

Chapter 7: Industrial Applications of Homogeneous Enantioselective Catalysts

7.1 Introduction and Scope

7.2 Critical Factors for the Technical Application of Homogeneous Enantioselective Catalysts

7.3 Industrial Processes: General Comments

7.4 Hydrogenation of C=C Bonds

7.5 Hydrogenation of C=O Bonds

7.6 Hydrogenation of C=N Bonds

7.7 Oxidation Processes

7.8 Miscellaneous Transformations (Isomerization, Addition Reactions to C=C, C=O and C=N Bonds, Opening of Oxacycles)

7.9 Conclusions and Future Developments

References

Chapter 8: Hydrogenation for C–C Bond Formation

8.1 By-product-free C–C Coupling and the Departure from Preformed Organometallic Reagents

8.2 Hydrogenative Vinylation of Carbonyl Compounds and Imines

8.3 Hydrogenative Allylation of Carbonyl Compounds

8.4 Hydrogenative Aldol and Mannich Additions

8.5 Hydrogenative Acyl Substitution (Reductive Hydroacylation)

8.6 Hydrogenative Carbocyclization

8.7 Future Directions

References

Chapter 9: Organocatalysis

9.1 Introduction

9.2 Catalysts

9.3 Reactions

9.4 Conclusion

References

Chapter 10: Palladacycles in Catalysis

10.1 Introduction

10.2 Catalyst Precursors for C–C and C–X (Heteroatom) Coupling Reactions

10.3 Other Catalytic Reactions Catalyzed by Palladacycles

10.4 Conclusion

References

Chapter 11: Homogeneous Catalyst Design for the Synthesis of Aliphatic Polycarbonates and Polyesters

11.1 Introduction

11.2 Synthesis of Aliphatic Polycarbonates from Epoxides and Carbon Dioxide

11.3 Synthesis of Aliphatic Polyesters

References

Chapter 12: The Aerobic Oxidation of p-Xylene to Terephthalic acid: A Classic Case of Green Chemistry in Action

12.1 Introduction

12.2 Methods of Making Terephthalic Acid Using Stoichiometric Reagents

12.3 Methods for Preparing Terephthalic Acid Using Cobalt Acetate and Dioxygen in Acetic Acid

12.4 Adding Bromide to Improve Terephthalic Acid Production Using Cobalt and Manganese Acetates in Acetic Acid

12.5 Potential Processes Using Water as a Solvent

12.6 Summary and Final Comments

References

Index

End User License Agreement

List of Tables

Table 1.1

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Table 5.8

Table 5.9

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Table 8.1

Table 12.1

Table 12.2

Table 12.3

Table 12.4

Table 12.5

Table 12.6

List of Illustrations

Scheme 1.1

Scheme 1.2

Scheme 1.3

Scheme 1.4

Scheme 1.5

Scheme 1.6

Scheme 1.7

Scheme 1.8

Scheme 1.9

Scheme 1.10

Scheme 1.11

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Scheme 2.1

Scheme 2.2

Scheme 2.3

Figure 2.5

Scheme 2.4

Scheme 2.5

Scheme 3.1

Scheme 3.2

Scheme 3.3

Figure 3.1

Figure 3.2

Scheme 3.4

Figure 3.3

Scheme 3.5

Scheme 3.6

Scheme 3.7

Figure 3.4

Scheme 3.8

Scheme 3.9

Figure 3.5

Figure 3.6

Scheme 3.10

Scheme 3.11

Scheme 3.12

Figure 3.7

Scheme 3.13

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Scheme 3.14

Scheme 3.15

Scheme 3.16

Scheme 3.17

Scheme 3.18

Scheme 3.19

Scheme 3.20

Figure 3.12

Scheme 3.21

Figure 3.13

Scheme 3.22

Figure 3.14

Figure 3.15

Figure 3.16

Scheme 4.1

Scheme 4.2

Scheme 4.3

Scheme 4.4

Scheme 4.5

Scheme 4.6

Scheme 4.7

Scheme 4.8

Scheme 4.9

Scheme 4.10

Scheme 4.11

Scheme 4.12

Scheme 4.13

Scheme 4.14

Scheme 4.15

Scheme 4.16

Scheme 4.17

Scheme 4.18

Scheme 4.19

Scheme 4.20

Scheme 4.21

Scheme 4.22

Scheme 4.23

Scheme 4.24

Scheme 4.25

Scheme 4.26

Scheme 4.27

Figure 5.1

Figure 5.2

Scheme 5.1

Scheme 5.2

Scheme 5.3

Figure 5.3

Figure 5.4

Scheme 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Scheme 6.1

Scheme 6.2

Scheme 6.3

Figure 6.1

Scheme 6.4

Scheme 6.5

Scheme 6.6

Scheme 6.7

Scheme 6.8

Scheme 6.9

Scheme 6.10

Scheme 6.11

Scheme 6.12

Scheme 6.13

Scheme 6.14

Scheme 6.15

Scheme 6.16

Scheme 6.17

Scheme 6.18

Scheme 6.19

Scheme 6.20

Scheme 6.21

Figure 6.2

Figure 6.3

Figure 6.4

Scheme 6.22

Scheme 6.23

Figure 6.5

Scheme 7.1

Scheme 7.2

Scheme 7.3

Scheme 7.4

Scheme 7.5

Scheme 7.6

Scheme 7.7

Scheme 7.8

Scheme 7.9

Scheme 7.10

Scheme 7.11

Scheme 7.12

Scheme 7.13

Scheme 7.14

Scheme 7.15

Scheme 7.16

Scheme 7.17

Scheme 7.18

Scheme 7.19

Scheme 7.20

Scheme 7.21

Scheme 7.22

Scheme 7.23

Scheme 7.24

Scheme 7.25

Scheme 7.26

Scheme 7.27

Scheme 7.28

Scheme 7.29

Scheme 7.30

Scheme 7.31

Scheme 7.32

Scheme 7.33

Scheme 7.34

Scheme 7.35

Scheme 7.36

Scheme 7.37

Scheme 7.38

Scheme 7.39

Scheme 7.40

Scheme 7.41

Scheme 7.42

Scheme 7.43

Scheme 7.44

Scheme 7.45

Scheme 7.46

Scheme 7.47

Scheme 7.48

Scheme 7.49

Scheme 7.50

Scheme 7.51

Scheme 7.52

Scheme 8.1

Scheme 8.2

Scheme 8.3

Scheme 8.4

Scheme 8.5

Scheme 8.6

Scheme 8.7

Scheme 8.8

Scheme 8.9

Scheme 8.10

Scheme 8.11

Scheme 8.12

Scheme 8.13

Scheme 8.14

Scheme 8.15

Scheme 8.16

Scheme 8.17

Scheme 8.18

Scheme 8.19

Scheme 8.20

Scheme 8.21

Scheme 8.22

Scheme 8.23

Scheme 8.24

Scheme 8.25

Scheme 8.26

Scheme 8.27

Scheme 8.28

Scheme 8.29

Scheme 8.30

Scheme 8.31

Scheme 8.32

Scheme 8.33

Scheme 8.34

Scheme 8.35

Scheme 8.36

Scheme 8.37

Scheme 8.38

Scheme 8.39

Scheme 8.40

Scheme 8.41

Scheme 8.42

Scheme 8.43

Scheme 9.1

Scheme 9.2

Scheme 9.3

Scheme 9.4

Scheme 9.5

Scheme 9.6

Scheme 9.7

Scheme 9.8

Scheme 9.9

Scheme 9.10

Scheme 9.11

Scheme 9.12

Scheme 9.13

Scheme 9.14

Scheme 9.15

Scheme 9.16

Scheme 9.17

Scheme 9.18

Scheme 9.19

Scheme 9.20

Scheme 9.21

Scheme 9.22

Scheme 9.23

Scheme 9.24

Scheme 9.25

Scheme 9.26

Scheme 9.27

Scheme 9.28

Scheme 9.29

Scheme 9.30

Scheme 9.31

Scheme 9.32

Scheme 9.33

Scheme 9.34

Scheme 9.35

Scheme 9.36

Scheme 9.37

Scheme 9.38

Scheme 9.39

Scheme 9.40

Scheme 9.41

Scheme 9.42

Scheme 9.43

Scheme 9.44

Scheme 9.45

Scheme 9.46

Scheme 9.47

Scheme 9.48

Scheme 9.49

Scheme 9.50

Scheme 9.51

Scheme 9.52

Scheme 9.53

Scheme 9.54

Scheme 9.55

Scheme 9.56

Scheme 9.57

Scheme 9.58

Scheme 9.59

Scheme 9.60

Scheme 9.61

Scheme 9.62

Scheme 9.63

Scheme 9.64

Scheme 9.65

Scheme 9.66

Scheme 9.67

Scheme 9.68

Scheme 9.69

Scheme 9.70

Scheme 9.71

Scheme 9.72

Scheme 9.73

Scheme 9.74

Scheme 9.75

Scheme 9.76

Scheme 9.77

Scheme 9.78

Scheme 9.79

Scheme 9.80

Scheme 9.81

Scheme 9.82

Scheme 9.83

Scheme 9.84

Scheme 9.85

Scheme 9.86

Scheme 9.87

Scheme 9.88

Scheme 9.89

Scheme 9.90

Scheme 9.91

Scheme 9.92

Scheme 9.93

Scheme 9.94

Scheme 9.95

Scheme 9.96

Scheme 9.97

Scheme 10.1

Scheme 10.2

Scheme 10.3

Scheme 10.4

Scheme 10.5

Scheme 10.6

Scheme 10.7

Scheme 10.8

Scheme 10.9

Scheme 10.10

Scheme 10.11

Scheme 10.12

Scheme 10.13

Scheme 10.14

Scheme 10.15

Scheme 10.16

Scheme 10.17

Scheme 10.18

Scheme 10.19

Scheme 10.20

Scheme 10.21

Scheme 10.22

Scheme 10.23

Scheme 10.24

Scheme 10.25

Scheme 10.26

Scheme 10.27

Scheme 10.28

Scheme 10.29

Scheme 10.30

Scheme 10.31

Scheme 10.32

Scheme 10.33

Scheme 10.34

Scheme 11.1

Scheme 11.2

Scheme 11.3

Figure 11.1

Scheme 11.4

Scheme 11.5

Scheme 11.6

Scheme 11.7

Scheme 11.8

Scheme 11.9

Scheme 11.10

Scheme 11.11

Scheme 11.12

Scheme 11.13

Scheme 11.14

Scheme 11.15

Scheme 11.16

Scheme 11.17

Scheme 11.18

Scheme 11.19

Scheme 11.20

Scheme 11.21

Scheme 11.22

Scheme 11.23

Scheme 11.24

Scheme 11.25

Scheme 11.26

Scheme 11.27

Scheme 11.28

Scheme 11.29

Scheme 11.30

Scheme 12.1

Scheme 12.2

Scheme 12.3

Scheme 12.4

Scheme 12.5

Scheme 12.6

Scheme 12.7

Scheme 12.8

Scheme 12.9

Scheme 12.10

Scheme 12.11

Figure 12.1

Figure 12.2

Guide

Cover

Table of Contents

About the Editors

Chapter 1

Pages

ii

iii

iv

xiii

xiv

xv

xvi

xvii

xviii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

Related Titles

Wasserscheid, P., Welton, T. (eds.)

Ionic Liquids in Synthesis

2nd Edition

2008

ISBN: 978-3-527-31239-9

Sheldon, R. A., Arends, I., Hanefeld, U.

Green Chemistry and Catalysis

2007

ISBN: 978-3-527-30715-9

Cornils, B., Herrmann, W. A., Muhler, M., Wong, C.-H. (eds.)

Catalysis from A - Z

A Concise Encyclopedia

3rd Edition

2007

ISBN: 978-3-527-31438-6

Loupy, A. (ed.)

Microwaves in Organic Synthesis

2nd Edition

2006

ISBN: 978-3-527-31452-2

Kappe, C. O., Stadler, A., Mannhold, R., Kubinyi, H., Folkers, G. (eds.)

Microwaves in Organic and Medicinal Chemistry

2005

ISBN: 978-3-527-31210-8

Handbook of Green Chemistry

Volume 1Homogeneous Catalysis

Volume Edited by Robert H. Crabtree

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.:

applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

ISBN: 978-3-527-32496-5

About the Editors

Series Editor

Paul T. Anastas joined Yale University as Professor and serves as the Director of the Center for Green Chemistry and Green Engineering there. From 2004–2006, Paul was the Director of the Green Chemistry Institute in Washington, D.C. Until June 2004 he served as Assistant Director for Environment at the White House Office of Science and Technology Policy where his responsibilities included a wide range of environmental science issues including furthering international public-private cooperation in areas of Science for Sustainability such as Green Chemistry. In 1991, he established the industry-government-university partnership Green Chemistry Program, which was expanded to include basic research, and the Presidential Green Chemistry Challenge Awards. He has published and edited several books in the field of Green Chemistry and developed the 12 Principles of Green Chemistry.

Volume Editor

Robert Crabtree took his first degree at Oxford, did his Ph.D. at Sussex and spent four years in Paris at the CNRS. He has been at Yale since 1977. He has chaired the Inorganic Division at ACS, and won the ACS and RSC organometallic chemistry prizes. He is the author of an organometallic textbook, and is the editor-in-chief of the Encyclopedia of Inorganic Chemistry and Comprehensive Organometallic Chemistry. He has contributed to C-H activation, H2 complexes, dihydrogen bonding, and his homogeneous tritiation and hydrogenation catalyst is in wide use. More recently, he has combined molecular recognition with CH hydroxylation to obtain high selectivity with a biomimetic strategy.

List of Contributors

Hans-Ulrich Blaser

Solvias AG

P.O. Box 4002

Basel

Switzerland

John F. Bower

University of Texas at Austin

Department of Chemistry and Biochemistry

1 University Station A5300

Austin, TX 78712

USA

Geoffrey W. Coates

Cornell University

Department of Chemistry and Chemical Biology

Ithaca, NY 14853

USA

Terrence J. Collins

Carnegie Mellon University

Institute for Green Science

4400 Fifth Avenue

Pittsburgh, PA 15213

USA

Peter I. Dalko

Université Paris Descartes

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques

UMR 8601

75270 Paris

France

Jairton Dupont

UFRGS

Institute of Chemistry

Laboratory of Molecular Catalysis

avenue Bento Goncalves

9500 Porto Alegre

France

Frédéric Favre

IFP-Lyon

Rond Point de l’échangeur de Solaize – BP 3

69360 Solaize

France

Fabricio R. Flores

UFRGS

Institute of Chemistry

Laboratory of Molecular Catalysis

avenue Bento Goncalves

9500 Porto Alegre

France

Alain Forestière

IFP-Lyon

Rond Point de l’échangeur de Solaize – BP 3

69360 Solaize

France

John A. Gladysz

Texas A&M University

Department of Chemistry

P.O. Box 30012

College Station, TX 77842-3012

USA

Garrett Hoge

Solvias AG

P.O. Box 4002

Basel

Switzerland

François Hugues

IFP-Lyon

Rond Point de l’échangeur de Solaize – BP 3

69360 Solaize

France

Ryan C. Jeske

Cornell University

Department of Chemistry and Chemical Biology

Ithaca, NY 14853

USA

Sushil K. Khetan

Carnegie Mellon University

Institute for Green Science

4400 Fifth Avenue

Pittsburgh, PA 15213

USA

Michael J. Krische

University of Texas at Austin

Department of Chemistry and Biochemistry

1 University Station A5300

Austin, TX 78712

USA

Mats Larhed

Uppsala University

Department of Medicinal Chemistry

Organic Pharmaceutical Chemistry

BMC

Box 574

75123 Uppsala

Sweden

Isabelle McCort-Tranchepain

Université Paris Descartes

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques

UMR 8601

75270 Paris

France

Audrey Moores

McGill University

Department of Chemistry

801 Sherbrooke Street West

Montreal

QC, H3A 2K6

Canada

Christian Müller

Eindhoven University of Technology

Schuit Institute of Catalysis

Laboratory of Homogeneous Catalysis

Den Dolech 2

P.O. Box 513

5600 MB Eindhoven

The Netherlands

Luke R Odell

Uppsala University

Department of Medicinal Chemistry

Organic Pharmaceutical Chemistry

BMC

Box 574

75123 Uppsala

Sweden

Hélène Olivier-Bourbigou

IFP-Lyon

Rond Point de l’échangeur de Solaize – BP 3

69360 Solaize

France

Walt Partenheimer

E.I. DuPont de Nemours & Co., Inc.

Central Research and Development

Experimental Station

Wilmington, DE 19880-0328

USA

Morgane Petit

Université Paris Descartes

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques

UMR 8601

75270 Paris

France

Martyn Poliakoff

University of Nottingham

School of Chemistry

University Park

Nottingham, NG7 2RD

UK

Benoît Pugin

Solvias AG

P.O. Box 4002

Basel

Switzerland

Alexander D. Ryabov

Carnegie Mellon University

Institute for Green Science

4400 Fifth Avenue

Pittsburgh, PA 15213

USA

Felix Spindler

Solvias AG

P.O. Box 4002

Basel

Switzerland

Dieter Vogt

Eindhoven University of Technology

Schuit Institute of Catalysis

Laboratory of Homogeneous Catalysis

Den Dolech 2

P.O. Box 513

5600 MB Eindhoven

The Netherlands

1Atom Economy – Principles and Some Examples

Audrey Moores

1.1 Introduction

As many other human activities, chemistry has seen most of its progress being triggered by a constant desire to do things better. The word ‘better’ here is a general term that can encompass concepts as varied as ‘that allows better theoretical understanding’, ‘that allows companies to make significant savings when they use the process in question’ or ‘that saves the experimentalist a lot of strenuous steps in a given synthesis’. Environmental and health-related issues have also been a major drive, in addition to the desire to reduce waste. The Leblanc process [1], one of the first industrial chemical processes, is a good example of this early concern. It provided a route to sodium carbonate, a vital chemical for the development of the textile industry in the early nineteenth century. It was phased out half a century later, due to the combined action of a legislation restricting the right to produce the wasteful hydrochloric acid and calcium sulfide provided by the process, but also to the finding of a cost-effective and less wasteful solution: the Solvay process. The history of chemistry is full of such examples where new methodologies would bring about significant improvements to existing ones. Yet, the main focus of chemists' attention has varied over time, in other words, has not always meant exactly the same thing. The constant pressure to reach new molecular targets has led to a lot of effort being put into seeking high yields. Activation of specific sites, chemo- and regioselectivity, is also a crucial quality in a process. Synthetic challenges were indeed justifying this trend. ‘Make it work’ was the motto. No doubt it was often followed by ‘make it good, too’ but only ‘if you can’. In 1991, though, Trost suggested starting to look at things with a different approach [2]. He presented a set of guidelines to assess the efficiency of a given process, by looking at the number of atoms of the reagent(s) actually ending up in the desired product(s). Atom economy was introduced. In addition to good yield and selectivity (regio-, chemo- and enantioselectivity), atom economy became the third element of the triadic goal that any synthetic chemist should seek. By analogy with the yield, which is an absolute measure, atom economy needed a quantitative criterion to allow comparison and discussion. In Section 1.2.2, some of the proposed criteria will be introduced. Although atom economy is a very simple concept, it nonetheless implied the development of a new and ambitious chemistry [3]. Making it happen involves a fresh look at molecular reactivity: activating groups should be minimized, such as stoichiometric reagents. In this chapter, the principle of atom economy is first presented. A scientific context will provide an avenue to the definition of its criteria. Impact on industry and the tool box of atom economy will also be discussed. Second, some examples using C–H activation will be described.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!