Handbook of Mechanical Nanostructuring -  - E-Book

Handbook of Mechanical Nanostructuring E-Book

0,0
345,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Providing in-depth information on how to obtain high-performance materials by controlling their nanostructures, this ready reference covers both the bottom-up and the top-down approaches to the synthesis and processing of nanostructured materials.
The focus is on advanced methods of mechanical nanostructuring such as severe plastic deformation, including high pressure torsion, equal channel angular processing, cyclic extrusion compression, accumulative roll bonding, and surface mechanical attrition treatment. As such, the contents are inherently application-oriented, with the methods presented able to be easily integrated into existing production processes. In addition, the structure-property relationships and ways of influencing the nanostructure in order to exhibit a desired functionality are reviewed in detail. The whole is rounded off by a look at future directions, followed by an overview of applications in various fields of structural and mechanical engineering.
With its solutions for successful processing of complex-shaped workpieces and large-scale specimens with desired properties, this is an indispensable tool for purposeful materials design.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1383

Veröffentlichungsjahr: 2016

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Related Titles

Title page

Copyright

Dedication

List of Contributors

Preface

Volume 1

Part I: Mechanical Properties of Nanostructured Materials

Chapter 1: Mechanical Properties of Nanocrystalline Materials

1.1 Introduction

1.2 Static Properties

1.3 Wear Properties

1.4 Fatigue Properties

1.5 Crack Behavior

1.6 Conclusions

References

Chapter 2: Superior Mechanical Properties of Nanostructured Light Metallic Materials and Their Innovation Potential

2.1 Introduction

2.2 Nanostructuring of Light Metallic Materials Using SPD Methods

2.3 Superior Mechanical Strength of NS Light Metals and Alloys

2.4 Fatigue Behavior of NS Light Metals

2.5 Innovation Potential and Application of the NS Light Metals and Alloys

2.6 Conclusions

Acknowledgments

References

Chapter 3: Understanding the Mechanical Properties of Nanostructured Bainite

3.1 Introduction

3.2 NANOBAIN: Significant Extension of the Bainite Transformation Theory

3.5 Summary

Acknowledgments

References

Chapter 4: Inherent Strength of Nano-Polycrystalline Materials

4.1 Introduction

4.2 High-field Tensile Testing

4.3 Tensile Strength of Nanosized Monocrystals

4.4 Inherent Strength of Bicrystals

4.5 Conclusions

References

Chapter 5: State-of-the-Art Optical Microscopy and AFM-Based Property Measurement of Nanostructure Materials

5.1 Introduction

5.2 Applications of Optical Microscopy and AFM

5.3 New Developments of Optical Microscopy and AFM Techniques

5.4 Conclusion

References

Chapter 6: Strength and Electrical Conductivity of Bulk Nanostructured Cu and Cu-Based Alloys Produced by SPD

6.1 Introduction

6.2 Microstructure, Strength and Electrical Conductivity of Bulk Nanostructured Cu Produced by SPD

6.3 Bulk Nanostructured Precipitation-Hardenable Cu–Cr Alloys from SPD

6.4 Bulk Nanostructured Cu–Cr

In Situ

Fibrous Composites Produced by SPD

6.5 Perspectives for Industrial Applications of SPD to Produce Bulk Nanostructured Cu and Cu-Based Alloys with High Strength and High Electrical Conductivity

6.6 Conclusion

Acknowledgements

References

Chapter 7: Mechanical Properties and Dislocation Boundary Mechanisms during Equal-Channel Angular Pressing (ECAP)

7.1 Introduction

7.2 Strength Contributions to Yield Stress

7.3 Model Validation: Case Study

7.4 General Remarks and Prospects

References

Chapter 8: Mechanical Properties of Nanoparticles: Characterization by In situ Nanoindentation Inside a Transmission Electron Microscope

8.1 Introduction

8.2

In situ

TEM Nanoindentation Developments

8.6 Conclusion

References

Chapter 9: Improved Mechanical Properties by Nanostructuring – Specific Considerations under Dynamic Load Conditions

9.1 Introduction

9.2 General Considerations for Nanostructured Bulk Materials

9.3 Nanoparticle-Strengthened Nanometal–Matrix Composites

9.4 Improved Mechanical Properties by Nanostructured Coatings

9.5 Conclusion

References

Chapter 10: Mechanical Properties of Bio-Nanostructured Materials

10.1 Introduction

10.2 Types of Nanostructured Composites

10.3 Surface Effects

10.4 Biopolymer Nanocrystals and the Benefits of Hydrogen Bonding

10.5 Nanointerlocking Mechanisms

10.6 Methods for Determining the Nanomechanical Properties of Materials

10.7 Conclusions

References

Part II: Mechanical Nanostructuring Methods

Chapter 11: SPD Processes – Methods for Mechanical Nanostructuring

11.1 Introduction

11.2 Classification of SPD Methods

11.3 HPT (High-Pressure Torsion)

11.4 ECAP (Equal-Channel Angular Pressing)

11.5 Development of the ECAP Technique

11.6 HPT Development

11.7 ECAP Development

11.8 FEM Simulation of SPD Processes

11.9 Materials for SPD Techniques

11.10 Conclusion

Acknowledgments

References

Chapter 12: Mechanical Alloying/Milling

12.1 Introduction

12.2 History and Development

12.3 Milling Process

12.4 Mechanism of Mechanical Alloying/Milling

12.5 Process Variables

12.6 Summary

References

Chapter 13: Equal-Channel Angular Pressing (ECAP)

13.1 Introduction

13.2 Die Design and Modifications

13.3 Influence of External and Internal Parameters

13.4 ECAP of Aluminum and Its Alloys

13.5 ECAP of Copper

13.6 ECAP of Titanium

13.7 ECAP of Magnesium and Steels

13.8 ECAP for Consolidation of Powders

13.9 Suitability for Large-Scale Production

13.10 Summary

References

Chapter 14: Severe Shot Peening to Obtain Nanostructured Surfaces: Process and Properties of the Treated Surfaces

14.1 Introduction

14.2 Surface Characterization of Materials Treated by Severe Shot Peening

14.3 Mechanical Properties of Materials Treated by Severe Shot Peening

14.4 Potential Biomedical Applications of SSP

14.5 Conclusions

References

Chapter 15: Nanocrystallization by Surface Mechanical Attrition Treatment

15.1 Introduction

15.2 Classification of Nanocrystalline Materials

15.3 Techniques for Synthesis of Nanocrystalline Materials

15.4 Surface Nanocrystallization Mechanisms

15.5 Conclusions

References

Chapter 16: Fabrication of Nanostructured Materials by Mechanical Milling

16.1 Introduction

16.2 Preamble

16.3 Historical Background of Mechanical Alloying

16.4 Reaction Milling/Mechanochemical Process

16.5 Formation Mechanism of Nanostructures by Milling

16.6 Milling Equipment

16.7 Processing Variables in Milling

16.8 Wet versus Dry Milling

16.9 Synthesis of Nanostructured Materials by Milling

16.10 Scope and Mechanism of Nanostructured Materials Synthesized by Milling

16.11 Densification of Nanocrystalline Powders

16.12 Defects in Mechanically Alloyed Powders

16.13 Conclusions

Acknowledgments

References

Volume 2

Chapter 17: Ultrasonic Impact Treatment – An Effective Method for Nanostructuring the Surface Layers in Metallic Materials

17.1 Introduction

17.2 Historical Survey

17.3 Schemes of Load and Fundamental Parameters in UIT

17.4 Grain Refinement Mechanisms in Materials with Different Crystalline Lattices

17.5 Summary

References

Chapter 18: Metal Nanostructuring through Cryodeformation under All-Round Compression

18.1 Introduction

18.2 Deformation in a Traditional Setting

18.3 Cryodeformation (Deformation at Cryogenic Temperatures)

18.4 Barodeformation (Deformation under All-Round Compression)

18.5 Barocryodeformation (Deformation at Cryogenic Temperatures under All-Round Compression)

18.6 Conclusion

References

Chapter 19: Application of Milling in Synthesizing Nanostructured Metal Matrix Composite Powder

19.1 Introduction

19.2 Metal Matrix Composite Fabrication Methods

19.3 Attritor

19.4 Nanostructured MMC Synthesized by Milling

19.5 Summary

References

Chapter 20: Synthesis and Properties of Nanostructured Powders by Milling Process

20.1 Introduction

20.2 Synthesis of Nanostructured Materials: Ball Milling

20.3 Nanostructure Formation during Milling Process

20.4 Structure and Microstructure of Milled Powders

20.5 Mechanism of Grain Size Reduction

20.6 Physical Properties of Milled Powders

20.7 Conclusion

References

Chapter 21: Nanostructures from Reactive High-Energy Ball Milling

21.1 Introduction: Reactive High-Energy Ball Milling (RHEBM)

21.2 Nanostructures Obtained by Solid–Solid RHEBM

21.3 Nanostructures Obtained by Solid–Gas RHEBM

21.4 Nanostructures Obtained by Solid–Liquid RHEBM

21.5 Conclusions

Acknowledgment

References

Part III: Application and Development ofMechanical Nanostructuring

Chapter 22: The Mechanochemical Route to Nanoscale

22.1 Introduction

22.2 Mechanochemical Processes

22.3 Processes and Transformations on the Microscopic Scale

22.4 Processes and Transformations on the Mesoscopic and Macroscopic Scales

22.5 Kinetics of Mechanically Activated Processes and Transformations

22.6 Nanostructured Phases

22.7 Mechanochemistry and Nanomaterials

22.8 Conclusions

References

Chapter 23: Cavitation Disintegration of Powder Microparticles

23.1 Introduction

23.2 Cavitation Dynamics

23.3 Cavitation Sources and Technical Microdisintegrators

23.4 Examples of Cavitation Disintegration

23.5 Concluding Remarks

References

Chapter 24: Unique Properties of Metal Nanomaterials for Gems and Jewelry Applications

24.1 Introduction

24.2 Gold Nanoparticles

24.3 Silver Nanoparticles

24.4 Copper Nanoparticles

24.5 Other Metal and Alloy Nanomaterials

24.6 Nanocrystalline Diamonds

24.7 Conclusions

References

Chapter 25: Hybrid Processing of Electroceramic Composites Involving High-Energy Ball Milling

25.1 Introduction

25.2 Characteristics of the New Hybrid Processing Route

25.3 Techniques for Materials Processing

25.4 Mechanisms of Fritsch Pulverisette 5 Type Planetary High Energy Ball Milling

25.5 Concluding Remarks

Acknowledgments

References

Chapter 26: Development and Application of Equal Channel Angular Pressing Technique for Grain Refinement of Nanocrystalline Materials

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!