345,99 €
Providing in-depth information on how to obtain high-performance materials by controlling their nanostructures, this ready reference covers both the bottom-up and the top-down approaches to the synthesis and processing of nanostructured materials.
The focus is on advanced methods of mechanical nanostructuring such as severe plastic deformation, including high pressure torsion, equal channel angular processing, cyclic extrusion compression, accumulative roll bonding, and surface mechanical attrition treatment. As such, the contents are inherently application-oriented, with the methods presented able to be easily integrated into existing production processes. In addition, the structure-property relationships and ways of influencing the nanostructure in order to exhibit a desired functionality are reviewed in detail. The whole is rounded off by a look at future directions, followed by an overview of applications in various fields of structural and mechanical engineering.
With its solutions for successful processing of complex-shaped workpieces and large-scale specimens with desired properties, this is an indispensable tool for purposeful materials design.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1383
Veröffentlichungsjahr: 2016
Cover
Related Titles
Title page
Copyright
Dedication
List of Contributors
Preface
Volume 1
Part I: Mechanical Properties of Nanostructured Materials
Chapter 1: Mechanical Properties of Nanocrystalline Materials
1.1 Introduction
1.2 Static Properties
1.3 Wear Properties
1.4 Fatigue Properties
1.5 Crack Behavior
1.6 Conclusions
References
Chapter 2: Superior Mechanical Properties of Nanostructured Light Metallic Materials and Their Innovation Potential
2.1 Introduction
2.2 Nanostructuring of Light Metallic Materials Using SPD Methods
2.3 Superior Mechanical Strength of NS Light Metals and Alloys
2.4 Fatigue Behavior of NS Light Metals
2.5 Innovation Potential and Application of the NS Light Metals and Alloys
2.6 Conclusions
Acknowledgments
References
Chapter 3: Understanding the Mechanical Properties of Nanostructured Bainite
3.1 Introduction
3.2 NANOBAIN: Significant Extension of the Bainite Transformation Theory
3.5 Summary
Acknowledgments
References
Chapter 4: Inherent Strength of Nano-Polycrystalline Materials
4.1 Introduction
4.2 High-field Tensile Testing
4.3 Tensile Strength of Nanosized Monocrystals
4.4 Inherent Strength of Bicrystals
4.5 Conclusions
References
Chapter 5: State-of-the-Art Optical Microscopy and AFM-Based Property Measurement of Nanostructure Materials
5.1 Introduction
5.2 Applications of Optical Microscopy and AFM
5.3 New Developments of Optical Microscopy and AFM Techniques
5.4 Conclusion
References
Chapter 6: Strength and Electrical Conductivity of Bulk Nanostructured Cu and Cu-Based Alloys Produced by SPD
6.1 Introduction
6.2 Microstructure, Strength and Electrical Conductivity of Bulk Nanostructured Cu Produced by SPD
6.3 Bulk Nanostructured Precipitation-Hardenable Cu–Cr Alloys from SPD
6.4 Bulk Nanostructured Cu–Cr
In Situ
Fibrous Composites Produced by SPD
6.5 Perspectives for Industrial Applications of SPD to Produce Bulk Nanostructured Cu and Cu-Based Alloys with High Strength and High Electrical Conductivity
6.6 Conclusion
Acknowledgements
References
Chapter 7: Mechanical Properties and Dislocation Boundary Mechanisms during Equal-Channel Angular Pressing (ECAP)
7.1 Introduction
7.2 Strength Contributions to Yield Stress
7.3 Model Validation: Case Study
7.4 General Remarks and Prospects
References
Chapter 8: Mechanical Properties of Nanoparticles: Characterization by In situ Nanoindentation Inside a Transmission Electron Microscope
8.1 Introduction
8.2
In situ
TEM Nanoindentation Developments
8.6 Conclusion
References
Chapter 9: Improved Mechanical Properties by Nanostructuring – Specific Considerations under Dynamic Load Conditions
9.1 Introduction
9.2 General Considerations for Nanostructured Bulk Materials
9.3 Nanoparticle-Strengthened Nanometal–Matrix Composites
9.4 Improved Mechanical Properties by Nanostructured Coatings
9.5 Conclusion
References
Chapter 10: Mechanical Properties of Bio-Nanostructured Materials
10.1 Introduction
10.2 Types of Nanostructured Composites
10.3 Surface Effects
10.4 Biopolymer Nanocrystals and the Benefits of Hydrogen Bonding
10.5 Nanointerlocking Mechanisms
10.6 Methods for Determining the Nanomechanical Properties of Materials
10.7 Conclusions
References
Part II: Mechanical Nanostructuring Methods
Chapter 11: SPD Processes – Methods for Mechanical Nanostructuring
11.1 Introduction
11.2 Classification of SPD Methods
11.3 HPT (High-Pressure Torsion)
11.4 ECAP (Equal-Channel Angular Pressing)
11.5 Development of the ECAP Technique
11.6 HPT Development
11.7 ECAP Development
11.8 FEM Simulation of SPD Processes
11.9 Materials for SPD Techniques
11.10 Conclusion
Acknowledgments
References
Chapter 12: Mechanical Alloying/Milling
12.1 Introduction
12.2 History and Development
12.3 Milling Process
12.4 Mechanism of Mechanical Alloying/Milling
12.5 Process Variables
12.6 Summary
References
Chapter 13: Equal-Channel Angular Pressing (ECAP)
13.1 Introduction
13.2 Die Design and Modifications
13.3 Influence of External and Internal Parameters
13.4 ECAP of Aluminum and Its Alloys
13.5 ECAP of Copper
13.6 ECAP of Titanium
13.7 ECAP of Magnesium and Steels
13.8 ECAP for Consolidation of Powders
13.9 Suitability for Large-Scale Production
13.10 Summary
References
Chapter 14: Severe Shot Peening to Obtain Nanostructured Surfaces: Process and Properties of the Treated Surfaces
14.1 Introduction
14.2 Surface Characterization of Materials Treated by Severe Shot Peening
14.3 Mechanical Properties of Materials Treated by Severe Shot Peening
14.4 Potential Biomedical Applications of SSP
14.5 Conclusions
References
Chapter 15: Nanocrystallization by Surface Mechanical Attrition Treatment
15.1 Introduction
15.2 Classification of Nanocrystalline Materials
15.3 Techniques for Synthesis of Nanocrystalline Materials
15.4 Surface Nanocrystallization Mechanisms
15.5 Conclusions
References
Chapter 16: Fabrication of Nanostructured Materials by Mechanical Milling
16.1 Introduction
16.2 Preamble
16.3 Historical Background of Mechanical Alloying
16.4 Reaction Milling/Mechanochemical Process
16.5 Formation Mechanism of Nanostructures by Milling
16.6 Milling Equipment
16.7 Processing Variables in Milling
16.8 Wet versus Dry Milling
16.9 Synthesis of Nanostructured Materials by Milling
16.10 Scope and Mechanism of Nanostructured Materials Synthesized by Milling
16.11 Densification of Nanocrystalline Powders
16.12 Defects in Mechanically Alloyed Powders
16.13 Conclusions
Acknowledgments
References
Volume 2
Chapter 17: Ultrasonic Impact Treatment – An Effective Method for Nanostructuring the Surface Layers in Metallic Materials
17.1 Introduction
17.2 Historical Survey
17.3 Schemes of Load and Fundamental Parameters in UIT
17.4 Grain Refinement Mechanisms in Materials with Different Crystalline Lattices
17.5 Summary
References
Chapter 18: Metal Nanostructuring through Cryodeformation under All-Round Compression
18.1 Introduction
18.2 Deformation in a Traditional Setting
18.3 Cryodeformation (Deformation at Cryogenic Temperatures)
18.4 Barodeformation (Deformation under All-Round Compression)
18.5 Barocryodeformation (Deformation at Cryogenic Temperatures under All-Round Compression)
18.6 Conclusion
References
Chapter 19: Application of Milling in Synthesizing Nanostructured Metal Matrix Composite Powder
19.1 Introduction
19.2 Metal Matrix Composite Fabrication Methods
19.3 Attritor
19.4 Nanostructured MMC Synthesized by Milling
19.5 Summary
References
Chapter 20: Synthesis and Properties of Nanostructured Powders by Milling Process
20.1 Introduction
20.2 Synthesis of Nanostructured Materials: Ball Milling
20.3 Nanostructure Formation during Milling Process
20.4 Structure and Microstructure of Milled Powders
20.5 Mechanism of Grain Size Reduction
20.6 Physical Properties of Milled Powders
20.7 Conclusion
References
Chapter 21: Nanostructures from Reactive High-Energy Ball Milling
21.1 Introduction: Reactive High-Energy Ball Milling (RHEBM)
21.2 Nanostructures Obtained by Solid–Solid RHEBM
21.3 Nanostructures Obtained by Solid–Gas RHEBM
21.4 Nanostructures Obtained by Solid–Liquid RHEBM
21.5 Conclusions
Acknowledgment
References
Part III: Application and Development ofMechanical Nanostructuring
Chapter 22: The Mechanochemical Route to Nanoscale
22.1 Introduction
22.2 Mechanochemical Processes
22.3 Processes and Transformations on the Microscopic Scale
22.4 Processes and Transformations on the Mesoscopic and Macroscopic Scales
22.5 Kinetics of Mechanically Activated Processes and Transformations
22.6 Nanostructured Phases
22.7 Mechanochemistry and Nanomaterials
22.8 Conclusions
References
Chapter 23: Cavitation Disintegration of Powder Microparticles
23.1 Introduction
23.2 Cavitation Dynamics
23.3 Cavitation Sources and Technical Microdisintegrators
23.4 Examples of Cavitation Disintegration
23.5 Concluding Remarks
References
Chapter 24: Unique Properties of Metal Nanomaterials for Gems and Jewelry Applications
24.1 Introduction
24.2 Gold Nanoparticles
24.3 Silver Nanoparticles
24.4 Copper Nanoparticles
24.5 Other Metal and Alloy Nanomaterials
24.6 Nanocrystalline Diamonds
24.7 Conclusions
References
Chapter 25: Hybrid Processing of Electroceramic Composites Involving High-Energy Ball Milling
25.1 Introduction
25.2 Characteristics of the New Hybrid Processing Route
25.3 Techniques for Materials Processing
25.4 Mechanisms of Fritsch Pulverisette 5 Type Planetary High Energy Ball Milling
25.5 Concluding Remarks
Acknowledgments
References
Chapter 26: Development and Application of Equal Channel Angular Pressing Technique for Grain Refinement of Nanocrystalline Materials
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!