421,99 €
This completely revised successor to the Handbook of Microscopy supplies in-depth coverage of all imaging technologies from the optical
to the electron and scanning techniques. Adopting a twofold approach, the book firstly presents the various technologies as such, before going
on to cover the materials class by class, analyzing how the different imaging methods can be successfully applied. It covers the latest developments in techniques, such as in-situ TEM, 3D imaging in TEM and SEM, as well as a broad range of material types, including metals,
alloys, ceramics, polymers, semiconductors, minerals, quasicrystals, amorphous solids, among others. The volumes are divided between
methods and applications, making this both a reliable reference and handbook for chemists, physicists, biologists, materials scientists and
engineers, as well as graduate students and their lecturers.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 2527
Veröffentlichungsjahr: 2012
Table of Contents
Further Reading
Title Page
Copyright
Contents to Volume 1
Preface
List of Contributors
The Past, the Present, and the Future of Nanoscopy
The Past
The Present and the Future
Acknowledgments
References
Part I: Methods
Chapter 1: Transmission Electron Microscopy
1.1 Introduction
1.2 The Instrument
1.3 Imaging and Diffraction Modes
1.4 Dynamical Diffraction Theory
References
Chapter 2: Atomic Resolution Electron Microscopy
2.1 Introduction
2.2 Principles of Linear Image Formation
2.3 Imaging in the Electron Microscope
2.4 Experimental HREM
2.5 Quantitative HREM
2.6 Appendix 2.A: Interaction of the Electron with a Thin Object
2.7 Appendix 2.B: Multislice Method
2.8 Appendix 2.C: Quantum Mechanical Approach
References
Chapter 3: Ultrahigh-Resolution Transmission Electron Microscopy at Negative Spherical Aberration
3.1 Introduction
3.2 The Principles of Atomic-Resolution Imaging
3.3 Inversion of the Imaging Process
3.4 Case Study: SrTiO3
3.5 Practical Examples of Application of NCSI Imaging
References
Chapter 4: Z-Contrast Imaging
4.1 Recent Progress
4.2 Introduction to the Instrument
4.3 Imaging in the STEM
4.4 Future Outlook
Acknowledgments
References
Chapter 5: Electron Holography
5.1 General Idea
5.2 Image-Plane Off-Axis Holography Using the Electron Biprism
5.3 Properties of the Reconstructed Wave
5.4 Holographic Investigations
5.5 Special Techniques
5.6 Summary
Acknowledgments
References
Books
Articles
Basics
Method
Interpretation
Inverse Problem
Applications
Electric Potentials
Semiconductors
Li-Ion Batteries
Holographic Tomography
Magnetic
Atomic Resolution
Chapter 6: Lorentz Microscopy and Electron Holography of Magnetic Materials
6.1 Introduction
6.2 Lorentz Microscopy
6.3 Off-Axis Electron Holography
6.4 Discussion and Conclusions
Acknowledgments
References
Chapter 7: Electron Tomography
7.1 History and Background
7.2 Theory of Tomography
7.3 Electron Tomography, Missing Wedge, and Imaging Modes
7.4 STEM Tomography and Applications
7.5 Hollow-Cone DF Tomography
7.6 Diffraction Contrast Tomography
7.7 Electron Holographic Tomography
7.8 Inelastic Electron Tomography
7.9 Advanced Reconstruction Techniques
7.10 Quantification and Atomic Resolution Tomography
Acknowledgments
References
Chapter 8: Statistical Parameter Estimation Theory – A Tool for Quantitative Electron Microscopy
8.1 Introduction
8.2 Methodology
8.3 Electron Microscopy Applications
8.4 Conclusions
Acknowledgments
References
Chapter 9: Dynamic Transmission Electron Microscopy
9.1 Introduction
9.2 Time-Resolved Studies Using Electrons
9.3 Building a DTEM
9.4 Applications of DTEM
9.5 Future Developments for DTEM
9.6 Conclusions
Acknowledgments
References
Chapter 10: Transmission Electron Microscopy as Nanolab
10.1 TEM and Measuring the Electrical Properties
10.2 TEM with MEMS-Based Heaters
10.3 TEM with Gas Nanoreactors
10.4 TEM with Liquid Nanoreactors
10.5 TEM and Measuring Optical Properties
10.6 Sample Preparation for Nanolab Experiments
References
Chapter 11: Atomic-Resolution Environmental Transmission Electron Microscopy
11.1 Introduction
11.2 Atomic-Resolution ETEM
11.3 Development of Atomic-Resolution ETEM
11.4 Experimental Procedures
11.5 Applications with Examples
11.6 Nanoparticles and Catalytic Materials
11.7 Oxides
11.8 In situ Atomic Scale Twinning Transformations in Metal Carbides
11.9 Dynamic Electron Energy Loss Spectroscopy
11.10 Technological Benefits of Atomic-Resolution ETEM
11.11 Other Advances
11.12 Reactions in the Liquid Phase
11.13 In situ Studies with Aberration Correction
11.14 Examples and Discussion
11.15 Applications to Biofuels
11.16 Conclusions
Acknowledgments
References
Chapter 12: Speckles in Images and Diffraction Patterns
12.1 Introduction
12.2 What Is Speckle?
12.3 What Causes Speckle?
12.4 Diffuse Scattering
12.5 From Bragg Reflections to Speckle
12.6 Coherence
12.7 Fluctuation Electron Microscopy
12.8 Variance versus Mean
12.9 Speckle Statistics
12.10 Possible Future Directions for Electron Speckle Analysis
References
Chapter 13: Coherent Electron Diffractive Imaging
13.1 Introduction
13.2 Coherent Nanoarea Electron Diffraction
13.3 The Noncrystallographic Phase Problem
13.4 Coherent Diffractive Imaging of Finite Objects
13.5 Phasing Experimental Diffraction Pattern
13.6 Conclusions
Acknowledgments
References
Chapter 14: Sample Preparation Techniques for Transmission Electron Microscopy
14.1 Introduction
14.2 Indirect Preparation Methods
14.3 Direct Preparation Methods
14.4 Summary
Acknowledgments
References
Chapter 15: Scanning Probe Microscopy – History, Background, and State of the Art
15.1 Introduction
15.2 Detecting Evanescent Waves by Near-Field Microscopy: Scanning Tunneling Microscopy
15.3 Interaction of Tip–Sample Electrons Detected by Scanning Near-Field Optical Microscopy and Atomic Force Microscopy
15.4 Methods for the Detection of Electric/Electronic Sample Properties
15.5 Methods for the Detection of Electromechanical and Thermoelastic Quantities
15.6 Advanced SFM/SEM Microscopy
Acknowledgments
References
Chapter 16: Scanning Probe Microscopy – Forces and Currents in the Nanoscale World
16.1 Introduction
16.2 Scanning Probe Microscopy – the Science of Localized Probes
16.3 Scanning Tunneling Microscopy and Related Techniques
16.4 Force-Based SPM Measurements
16.5 Voltage Modulation SPMs
16.6 Current Measurements in SPM
16.7 Emergent SPM Methods
16.8 Manipulation of Matter by SPM
16.9 Perspectives
Acknowledgments
References
Chapter 17: Scanning Beam Methods
17.1 Scanning Microscopy
17.2 Conclusions
References
Chapter 18: Fundamentals of the Focused Ion Beam System
18.1 Focused Ion Beam Principles
18.2 FIB Techniques
Acknowledgments
References
Further Reading
Contents to Volume 2
Chapter 19: Low-Energy Electron Microscopy
19.1 Introduction
19.2 Theoretical Foundations
19.3 Instrumentation
19.4 Areas of Application
19.5 Discussion
19.6 Concluding Remarks
References
Chapter 20: Spin-Polarized Low-Energy Electron Microscopy
20.1 Introduction
20.2 Theoretical Foundations
20.3 Instrumentation
20.4 Areas of Application
20.5 Discussion
20.6 Concluding Remarks
References
Chapter 21: Imaging Secondary Ion Mass Spectroscopy
21.1 Fundamentals
21.2 SIMS Techniques
21.3 Biological SIMS
21.4 Conclusions
References
Chapter 22: Soft X-Ray Imaging and Spectromicroscopy
22.1 Introduction
22.2 Experimental Techniques
22.3 Data Analysis Methods
22.4 Selected Applications
22.5 Future Outlook and Summary
Acknowledgments
References
Chapter 23: Atom Probe Tomography: Principle and Applications
23.1 Introduction
23.2 Basic Principles
23.3 Field Ion Microscopy
23.4 Atom Probe Tomography
23.5 Conclusion
References
Chapter 24: Signal and Noise Maximum Likelihood Estimation in MRI
24.1 Probability Density Functions in MRI
24.2 Signal Amplitude Estimation
24.3 Noise Variance Estimation
24.4 Conclusions
References
Chapter 25: 3-D Surface Reconstruction from StereoScanning Electron Microscopy Images
25.1 Introduction
25.2 Matching Stereo Images
25.3 Conclusions
Acknowledgments
References
Further Reading
Part II: Applications
Chapter 26: Nanoparticles
26.1 Introduction
26.2 Imaging Nanoparticles
26.3 Electron Tomography of Nanoparticles
26.4 Nanoanalytical Characterization of Nanoparticles
26.5 In situ TEM Characterization of Nanoparticles
References
Chapter 27: Nanowires and Nanotubes
27.1 Introduction
27.2 Structures of Nanowires and Nanotubes
27.3 Defects in Nanowires
27.4 In situ Observation of the Growth Process of Nanowires and Nanotubes
27.5 In situ Mechanical Properties of Nanotubes and Nanowires
27.6 In situ Electric Transport Property of Carbon Nanotubes
27.7 In situ TEM Investigation of Electrochemical Properties of Nanowires
27.8 Summary
References
Chapter 28: Carbon Nanoforms
28.1 Imaging Carbon Nanoforms Using Conventional Electron Microscopy
28.2 Analysis of Carbon Nanoforms Using Aberration-Corrected Electron Microscopes
28.3 Ultrafast Electron Microscopy
28.4 Scanning Tunneling Microscopy (STM)
28.5 Scanning Photocurrent Microscopy (SPCM)
28.6 X-Ray Electrostatic Force Microscopy (X-EFM)
28.7 Atomic Force Microscopy
28.8 Scanning Near-Field Optical Microscope
28.9 Tip-Enhanced Raman and Confocal Microscopy
28.10 Tip-Enhanced Photoluminescence Microscopy
28.11 Fluorescence Quenching Microscopy
28.12 Fluorescence Microscopy
28.13 Single-Shot Extreme Ultraviolet Laser Imaging
28.14 Nanoscale Soft X-Ray Imaging
28.15 Scanning Photoelectron Microscopy
Acknowledgments
References
Chapter 29: Metals and Alloys
29.1 Formation of Nanoscale Deformation Twins by Shockley Partial Dislocation Passage
29.2 Minimal Strain at Austenite–Martensite Interface in Ti-Ni-Pd
29.3 Atomic Structure of Ni4Ti3 Precipitates in Ni-Ti
29.4 Ni-Ti Matrix Deformation and Concentration Gradients in the Vicinity of Ni4Ti3 Precipitates
29.5 Elastic Constant Measurements of Ni4Ti3 Precipitates
29.6 New APB-Like Defect in Ti-Pd Martensite Determined by HRSTEM
29.7 Strain Effects in Metallic Nanobeams
29.8 Adiabatic Shear Bands in Ti6Al4V
29.9 Electron Tomography
29.10 The Ultimate Resolution
Acknowledgments
References
Chapter 30:In situ Transmission Electron Microscopy on Metals
30.1 Introduction
30.2 In situ TEM Experiments
30.3 Grain Boundary Dislocation Dynamics Metals
30.4 In situ TEM Tensile Experiments
30.5 In situ TEM Compression Experiments
30.6 Conclusions
Acknowledgments
References
Chapter 31: Semiconductors and Semiconducting Devices
31.1 Introduction
31.2 Nanoscopic Applications on Silicon-Based Semiconductor Devices
31.3 Conclusions
Acknowledgments
References
Chapter 32: Complex Oxide Materials
32.1 Introduction
32.2 Aberration-Corrected Spectrum Imaging in the STEM
32.3 Imaging of Oxygen Lattice Distortions in Perovskites and Oxide Thin Films and Interfaces
32.4 Atomic-Resolution Effects in the Fine Structure–Further Insights into Oxide Interface Properties
32.5 Applications of Ionic Conductors: Studies of Colossal Ionic Conductivity in Oxide Superlattices
32.6 Applications of Cobaltites: Spin-State Mapping with Atomic Resolution
32.7 Summary
Acknowledgments
References
Chapter 33: Application of Transmission Electron Microscopy in the Research of Inorganic Photovoltaic Materials
33.1 Introduction
33.2 Experimental
33.3 Atomic Structure and Electronic Properties of c-Si/a-Si:H Heterointerfaces
33.4 Interfaces and Defects in CdTe Solar Cells
33.5 Influences of Oxygen on Interdiffusion at CdS/CdTe Heterojunctions
33.6 Microstructure Evolution of Cu(In,Ga)Se2 Films from Cu Rich to In Rich
33.7 Microstructure of Surface Layers in Cu(In,Ga)Se2 Thin Films
33.8 Chemical Fluctuation-Induced Nanodomains in Cu(In,Ga)Se2 Films
33.9 Conclusions and Future Directions
Acknowledgment
References
Chapter 34: Polymers
34.1 Foreword
34.2 A Brief Introduction on Printable Solar Cells
34.3 Morphology Requirements of Photoactive Layers in PSCs
34.4 Our Characterization Toolbox
34.5 How It All Started: First Morphology Studies
34.6 Contrast Creation in Purely Carbon-Based BHJ Photoactive Layers
34.7 Nanoscale Volume Information: Electron Tomography of PSCs
34.8 One Example of Electron Tomographic Investigation: P3HT/PCBM
34.9 Quantification of Volume Data
34.10 Outlook and Concluding Remarks
Acknowledgment
References
Chapter 35: Ferroic and Multiferroic Materials
35.1 Multiferroicity
35.2 Ferroic Domain Patterns and Their Microscopical Observation
35.3 The Internal Structure of Domain Walls
35.4 Domain Structures Related to Amorphization
35.5 Dynamical Properties of Domain Boundaries
35.6 Conclusion
References
Chapter 36: Three-Dimensional Imaging of Biomaterials with Electron Tomography
36.1 Introduction
36.2 Biological Tomographic Techniques
36.3 Examples of Electron Tomography Biomaterials
36.4 Outlook
References
Chapter 37: Small Organic Molecules and Higher Homologs
37.1 Introduction
37.2 Optical Microscopy
37.3 Scanning Electron Microscopy–SEM
37.4 Atomic Force and Scanning Tunneling Microscopy (AFM and STM)
37.5 Transmission Electron Microscopy (TEM)
37.6 Summary
References
Index
Further Reading
Ohser, J. Schladitz, K.
3D Images of Materials Structures
Processing and Analysis
2009
Hardcover
ISBN: 978-3-527-31203-0
Codd, S. L., Seymour, J. D. (eds.)
Magnetic Resonance Microscopy
Spatially Resolved NMR Techniques and Applications
2009
Hardcover
ISBN: 978-3-527-32008-0
Maev, R. G.
Acoustic Microscopy
Fundamentals and Applications
2008
Hardcover
ISBN: 978-3-527-40744-6
Fukumura, H., Irie, M., Iwasawa, Y., Masuhara, H., Uosaki, K. (eds.)
Molecular Nano Dynamics
Vol. I: Spectroscopic Methods and Nanostructures/Vol. II: Active Surfaces, Single Crystals and Single Biocells
2009
Hardcover
ISBN: 978-3-527-32017-2
Roters, F., Eisenlohr, P. Bieler, T. R., Raabe, D.
Crystal Plasticity Finite Element Methods
in Materials Science and Engineering
2010
Hardcover
ISBN: 978-3-527-32447-7
Guo, J. (ed.)
X-Rays in Nanoscience
Spectroscopy, Spectromicroscopy, and Scattering Techniques
2010
Hardcover
ISBN: 978-3-527-32288-6
Tsukruk, V., Singamaneni, S.
Scanning Probe Interrogation of Soft Matter
2012
Hardcover
ISBN: 978-3-527-32743-0
The Editors
Prof. Gustaaf Van Tendeloo
Univ. of Antwerp (RUCA)
EMAT
Groenenborgerlaan 171
2020 Antwerpe
Belgium
Prof. Dirk Van Dyck
Univ. of Antwerp (RUCA)
EMAT
Groenenborgerlaan 171
2020 Antwerp
Belgium
Prof. Dr. Stephen J. Pennycook
Oak Ridge National Lab.
Condensed Matter Science Div.
Oak Ridge, TN 37831-6030
USA
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
© 2012 Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form — by photoprinting, microfilm, or any other means — nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-31706-6
ePDF ISBN: 978-3-527-64188-8
oBook ISBN: 978-3-527-64186-4
ePub ISBN: 978-3-527-64187-1
mobi ISBN: 978-3-527-64189-5
Contents to Volume 1
Preface
Since the edition of the previous “Handbook of Microscopy” in 1997 the world of microscopy has gone through a significant transition.
In electron microscopy the introduction of aberration correctors has pushed the resolution down to the sub-Angstrom regime, detectors are able to detect single electrons, spectrometers are able to record spectra from single atoms. Moreover the object space is increased which allows to integrate these techniques in the same instrument under full computer support without compromising on the performance. Thus apart from the increased resolution from microscopy to nanoscopy, even towards picoscopy, the EM is gradually transforming from an imaging device into a true nanoscale laboratory that delivers reliable quantitative data on the nanoscale close to the physical and technical limits. In parallel, scanning probe methods have undergone a similar evolution towards increased functionality, flexibility and integration.
As a consequence the whole field of microscopy is gradually shifting from the instrument to the application, from describing to measuring and to understanding the structure/property relations, from nanoscopy to nanology.
But these instruments will need a different generation of nanoscopists who need not only to master the increased flexibility and multifunctionality of the instruments, but to choose and combine the experimental possibilities to fit the material problem to be investigated.
It is the purpose of this new edition of the “Handbook of Nanoscopy” to provide an ideal reference base of knowledge for the future user.
Volume 1 elaborates on the basic principles underlying the different nanoscopical methods with a critical analysis of the merits, drawbacks and future prospects. Volume 2 focuses on a broad category of materials from the viewpoint of how the different nanoscopical measurements can contribute to solving materials structures and problems.
The handbook is written in a very readable style at a level of a general audience. Whenever relevant for deepening the knowledge, proper references are given.
Gustaaf van Tendeloo, Dirk van Dyck, and Stephen J. Pennycook
List of Contributors
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!