Innovative Catalysis in Organic Synthesis -  - E-Book

Innovative Catalysis in Organic Synthesis E-Book

0,0
165,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

C-H, C-O, C-C, and C-Heteroatom bond forming processes by using metal-ligand approaches for the synthesis of organic compounds of
biological, pharmacological and organic nanotechnological utility are the key areas addressed in this book. Authored by a European team
of leaders in the field, it brings together innovative approaches for a variety of catalysis reactions and processes frequently applied in organic
synthesis into a handy reference work. It covers all major types of catalysis, including homogeneous, heterogeneous, and organocatalysis, as
well as mechanistic and computational studies. Special attention is paid to the improvements in efficiency and sustainability of important
catalytic processes, such as selective oxidations, hydrogenation, and cross-coupling reactions, and to their utilization in industry.

The result is a valuable resource for advanced researchers in both academia and industry, as well as graduate students in organic chemistry
aiming for chemo-, regio- or stereoselective synthesis of organic compounds by using novel catalytic systems.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 544

Veröffentlichungsjahr: 2012

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Related Titles

Title Page

Copyright

Foreword

List of Contributors

Part I: Oxidation Reactions

Chapter 1: Polyoxometalates as Homogeneous Oxidation Catalysts

1.1 Soluble Metal Oxides as Oxidation Catalysts

1.2 Homogeneous Oxidations with POMs Based Only on Mo(VI), W(VI), V(V) Addenda Ions

1.3 Homogeneous Oxidations with TMS-POMs

1.4 Conclusions

Acknowledgments

References

Chapter 2: Bioinspired Oxidations Catalyzed by Nonheme Iron and Manganese Complexes

2.1 Introduction

2.2 Catalytic Oxidation of CC Bonds by Nonheme Iron and Manganese Complexes

2.3 Catalytic Oxidation of C–H Bonds by Nonheme Iron and Manganese Complexes

References

Chapter 3: The Fabulous Destiny of Sulfenic Acids

3.1 Introduction

3.2 Synthesis of Stable Sulfenic Acids

3.3 Generation of Transient Sulfenic Acids

3.4 Reactivity of Sulfenic Acids in the Preparation of Sulfoxides and Unsymmetrical Disulfides

3.5 Synthesis of Stable Sulfenate Anions

3.6 Generation of Transient Sulfenate Anions Leading to Sulfoxides

3.7 Conclusions

References

Chapter 4: Sustainable Catalytic Oxidations with Peroxides

4.1 Introduction

4.2 Metal-Based Selective Oxidations

4.3 Biocatalytic Oxidations with Hydrogen Peroxide

4.4 Conclusions

Acknowledgments

References

Part II: Hydrogenation and Reduction Reactions

Chapter 5: Asymmetric Hydrogenation of Dehydroamino acid Derivatives by Rh-Catalysts with Chiral Monodentate P-Ligands

5.1 Introduction

5.2 Chiral Monodentate Phosphorus Ligands in Asymmetric Hydrogenation

5.3 Catalyst Precursors

5.4 Mechanistic Insights

5.5 Formation of the MAC Adducts

5.6 Evolution of MAC-Adducts and Origin of Enantioselection

References

Chapter 6: Recent Advances in the Synthesis and Catalytic Hydrogenation of Dehydroamino Acid Derivatives and Bicyclo[2.2.2]octenes

6.1 Introduction

6.2 Synthesis of DDAA Derivatives and Bicyclo[2.2.2]octenes

6.3 Ligands

6.4 Homogeneous Hydrogenation and Hydrogenolysis Reactions with Dehydroamino Acid Derivatives and Bicyclo[2.2.2]oct-7-enes over Nanocolloids-Modified Catalysts

6.5 Heterogeneous Catalysts for Hydrogenolysis of Bicyclo[2.2.2]oct-7-enes

6.6 Layered-Double Hydroxides as a Support for Rh(TPPTS)3 and Rh-(m-TPPTC)3 Homogeneous Catalysts

6.7 Conclusions

Acknowledgments

References

Chapter 7: Ir-Catalyzed Hydrogenation of Minimally Functionalized Olefins Using Phosphite–Nitrogen Ligands

7.1 Introduction

7.2 Application of Phosphite–Nitrogen Ligands

7.3 Conclusions

Acknowledgments

References

Chapter 8: Modeling in Homogeneous Catalysis: a Tutorial

8.1 Introduction

8.2 Molecular Modeling

8.3 Wave Function Theory, WFT

8.4 Density Functional Theory, DFT

8.5 Orbitals

8.6 Basis Sets

8.7 Solvation

8.8 Analyzing the Reaction Energies

8.9 Analyzing the Electronic Structure

References

Part III: C–C and C–Hetero Bond-Forming Reactions

Chapter 9: Golden Times for Allenes

9.1 Introduction

9.2 Cyclization of Hydroxyallenes

9.3 Cyclization of Aminoallenes

9.4 Cyclization of Thioallenes

9.5 Conclusion

References

Chapter 10: Copper Catalysis in Arene and Heteroarene Functionalization through C–H Bond Activation

10.1 Introduction

10.2 C–C Bond-Forming Reactions

10.3 C–N Bond-Forming Reactions

10.4 C–O Bond-Forming Reactions

10.5 C–Halogen Bond-Forming Reactions

References

Chapter 11: Ligated Organocuprates: An A–Z Routemap of Mechanism and Application

11.1 Introduction

11.2 Accepted Mechanistic Proposals

11.3 Selective Applications in Privileged Copper(I) Catalysis

References

Chapter 12: Rh-, Ag-, and Cu-Catalyzed C–N Bond Formation

12.1 Introduction

12.2 Historical Background

12.3 Copper- and Silver-Catalyzed C–N Bond Formation

12.4 Rhodium-Catalyzed C–N Bond Formation

12.5 Conclusions

References

Chapter 13: Development of the Asymmetric Nozaki–Hiyama–Kishi Reaction

13.1 Introduction

13.2 Development of a Catalytic Nozaki–Hiyama–Kishi Reaction

13.3 Catalytic Enantioselective Nozaki–Hiyama–Kishi Reaction

13.4 Application of Salen-Derived Ligands in the Enantioselective Nozaki–Hiyama–Kishi Reaction

13.5 Application of Oxazoline-Containing Ligands in the Catalytic Enantioselective Nozaki–Hiyama–Kishi Reaction

13.6 Application of Tethered Bis(8-quinolinato) Chromium Complexes in the Catalytic Enantioselective Nozaki–Hiyama–Kishi

13.7 Application of Chiral Spirocyclic Borate Ligands to the Catalytic Enantioselective Nozaki–Hiyama–Kishi Allylation

13.8 Applications of Catalytic Nozaki–Hiyama–Kishi Reaction in Total Synthesis

13.9 Conclusions

References

Chapter 14: Chiral Imidate Ligands: Synthesis and Applications in Asymmetric Catalysis

14.1 Introduction

14.2 Cyclic Imidates

14.3 Synthesis of Imidates

14.4 Synthesis of Imidate Ligands

14.5 Synthesis of Imidate–Copper (I) Complexes

14.6 Application of Chiral Imidate Ligands in Enantioselective Catalysis

14.7 Novel Synthetic Applications of Cyclic Imidates

14.8 Conclusions

References

Chapter 15: Catalyzed Organic Reactions in Ball Mills

15.1 Introduction

15.2 Acid- or Base-Catalyzed Reactions

15.3 Organocatalytic Methods

15.4 Metal-Catalyzed Reactions

15.5 Conclusion and Perspective

References

Index

Related Titles

Beller, M., Renken, A., van Santen, R. A.

(eds.)

Catalysis

From Principles to Applications

2012

ISBN: 978-3-527-32349-4

Christmann, M., Bräse, S. (eds.)

Asymmetric Synthesis

More Methods and Applications

2013

ISBN: 978-3-527-32921-2

Pignataro, B. (ed.)

New Strategies in Chemical

Synthesis and Catalysis

2012

ISBN: 978-3-527-33090-4

Yudin, A. K. (ed.)

Catalyzed Carbon-Heteroatom

Bond Formation

2011

ISBN: 978-3-527-32428-6

Bäckvall, J.-E. (ed.)

Modern Oxidation Methods

2011

ISBN: 978-3-527-32320-3

Bullock, R. M. (ed.)

Catalysis without Precious

Metals

2010

ISBN: 978-3-527-32354-8

Cybulski, A., Moulijn, J. A., Stankiewicz, A.

(eds.)

Novel Concepts in Catalysis and

Chemical Reactors

Improving the Efficiency for the Future

2010

ISBN: 978-3-527-32469-9

Blaser, H.-U., Federsel, H.-J. (eds.)

Asymmetric Catalysis on

Industrial Scale

Challenges, Approaches and Solutions

2010

ISBN: 978-3-527-32489-7l

Ojima, I. (ed.)

Catalytic Asymmetric Synthesis

The Editor

Prof. Dr. Pher G. Andersson

Uppsala University

Department of Biochemistry and

Organic Chemistry

Husargatan 3

751 23 Uppsala

Sweden

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

ISBN: 978-3-527-33097-3

ePDF: 978-3-527-64661-6

oBook: 978-3-527-64658-6

ePub: 978-3-527-64660-9

Mobi: 978-3-527-64659-3

Foreword

This book had its genesis at a meeting on European Cooperation in Science and Technology (COST) in Ankara, Turkey, in 2010. The Actions of COST not only promote the development of new and exciting science but they are also a marvellous mechanism for bringing together new alliances and friendships between disparate communities of scientists where the sum is most definitely worth more than the separate paths. When Pher Andersson volunteered to coordinate a book describing some of the highlights of the endeavours of our own Action (D40) — “Innovative Catalysis: New Processes and Selectivities” I and others were wildly supportive. Not only did it seem an appropriate way to mark the end of five years of previous collaboration between laboratories in 23 separate countries, but the time is ripe to define what is new and exciting in the, now mature, field of selective catalysis. The experts of D40 have come together to give their own personal take on what they consider to be “innovative” approaches to catalysis in this first decade of the twenty-first century. I am most grateful to them all for freely volunteering their time and especially to Pher Andersson for bringing this mission to a speedy conclusion. I am sure that you will find something to pique your imagination for your own research in the next decade within — enjoy!

Simon Woodward

Chair, COST Action D40 (2007–2011)

ESF provides the COST Office through an EC contract

COST is supported by the EU RTD Framework programme

COST—the acronym for European Cooperation in Science and Technology— is the oldest and widest European intergovernmental network for cooperation in research. Established by the Ministerial Conference in November 1971, COST is presently used by the scientific communities of 36 European countries to cooperate in common research projects supported by national funds.

The funds provided by COST — less than 1% of the total value of the projects — support the COST cooperation networks (COST Actions) through which, with EUR 30 million per year, more than 30 000 European scientists are involved in research having a total value that exceeds EUR 2 billion per year. This is the financial worth of the European added value, which COST achieves.

A “bottom-up approach” (the initiative of launching a COST Action comes from the European scientists themselves), “à la carte participation” (only countries interested in the Action participate), “equality of access” (participation is open also to the scientific communities of countries not belonging to the European Union) and “flexible structure” (easy implementation and light management of the research initiatives) are the main characteristics of COST. As precursor of advanced multidisciplinary research COST has a very important role for the realisation of the European Research Area (ERA) anticipating and complementing the activities of the Framework Programmes, constituting a “bridge” toward the scientific communities of emerging countries, increasing the mobility of researchers across Europe and fostering the establishment of “Networks of Excellence” in many key scientific domains such as Biomedicine and Molecular Biosciences; Food and Agriculture; Forests, their Products and Services; Materials, Physical and Nanosciences; Chemistry and Molecular Sciences and Technologies; Earth System Science and Environmental Management; Information and Communication Technologies; Transport and Urban Development; and Individuals, Societies, Cultures, and Health. It covers basic and more applied research and also addresses issues of pre-normative nature or societal importance.

Web: http://www.cost.eu

List of Contributors

Elisabetta Alberico
Istituto di Chimica Biomolecolare
Consiglio Nazionale delle
Ricerche
trav. La Crucca n. 3, Li Punti
07040 Sassari
Italy
Pher G. Andersson
Uppsala University
Department of Biochemistry and
Organic Chemistry
BOX 576
751 23 Uppsala
Sweden
and
University of KwaZulu-Natal
School of Chemistry
Westville Campus
4000 Durban
South Africa
Isabel W.C.E. Arends
Delft University of Technology
Biocatalysis and Organic
Chemistry
Department of Biotechnology
Julianalaan 136
2628 Delft
The Netherlands
Maria Chiara Aversa
Università degli Studi di Messina
Dipartimento di Chimica
organica e biologica
Viale F. Stagno d'Alcontres 31
(vill. S. Agata)
98166 Messina
Italy
Katrien Bert
Ghent University, Laboratory for
Organic and Bioorganic Synthesis
Department of Organic
Chemistry
Krijgslaan 281 (S.4)
9000 Ghent
Belgium
Carsten Bolm
RWTH Aachen University
Institute for Organic Chemistry
Landoltweg 1
52056 Aachen
Germany
Paola Bonaccorsi
Università degli Studi di Messina
Dipartimento di Chimica
organica e biologica
Viale F. Stagno d'Alcontres 31
(vill. S. Agata)
98166 Messina
Italy
Marcella Bonchio
University of Padova
ITM-CNR and Department of
Chemical Sciences
via Marzolo 1
35131 Padova
Italy
Eric Clot
Universitè Montpellier 2
Institut Charles Gerhardt
34000 Montpellier
France
Sandro Cacchi
Sapienza Università di Roma
Dipartimento di Studi di Chimica
e Tecnologie del Farmaco
P.le A. Moro 5
00185 Rome
Italy
Mauro Carraro
University of Padova
ITM-CNR and Department of
Chemical Sciences
via Marzolo 1
35131 Padova
Italy
Valeria Conte
Roma Tor Vergata University
Department of Chemical Sciences
and Technologies
Via della Ricerca Scientifica snc
00133 Roma
Italy
Miquel Costas
Universitat de Girona
Facultat de Ciències
Qbis Group, Department of
Chemistry
Campus de Montilivi
17071 Girona
Catalonia
Spain
Philippe Dauban
Institut de Chimie des
Substances Naturelles
UPR 2301 CNRS
Avenue de la Terrasse
Gif-sur-Yvette
91198 Cedex
France
M. Mar Diaz-Requejo
Universidad de Huelva
Centro de Investigación en
Química Sostenible (CIQSO)
Departamento de Quimica y
Ciencia de Materiales
21007 Huelva
Spain
Montserrat Diéguez
Universitat Rovira i Virgili
Departament de Quàmica Fàsica i
Inorgànica
C/Marcel·li Domingo s/n
43007 Tarragona
Spain
Giancarlo Fabrizi
Sapienza Università di Roma
Dipartimento di Studi di Chimica
e Tecnologie del Farmaco
P.le A. Moro 5
00185 Rome
Italy
Isaac Garcia-Bosch
Universitat de Girona
Facultat de Ciències
Qbis Group, Department of
Chemistry
Campus de Montilivi
17071 Girona
Catalonia
Spain
Serafino Gladiali
Università di Sassari
Dipartimento di Chimica
via Vienna 2
07100 Sassari
Italy
Antonella Goggiamani
Sapienza Università di Roma
Dipartimento di Studi di Chimica
e Tecnologie del Farmaco
P.le A. Moro 5
00185 Rome
Italy
Ilya Gridnev
Graduate School of Science and
Engineering
Tokyo Institute of Technology
Department of Applied Chemistry
Ookayama, Meguro-ku
Tokyo 152-8552
Japan
Patrick J. Guiry
University College Dublin
Centre for Synthesis and
Chemical Biology
School of Chemistry and
Chemical Biology
Belfield
Dublin 4
Ireland
Gràinne C. Hargaden
Dublin Institute of Technology
FOCAS Institute and School of
Chemical and Pharmaceutical
Sciences
Kevin Street
Dublin 8
Ireland
Masooma Ibrahim
Jacobs University
School of Engineering and
Science
P.O. Box 750 561
28725 Bremen
Germany
Claire Jahier
University Bordeaux 1
IECB-CBMN UMR 5248 CNRS
2 Rue Robert Escarpit
33607 Pessac Cedex
France
Pieter Janssens
Ghent University
Laboratory for Organic and
Bioorganic Synthesis
Department of Organic
Chemistry
9000 Ghent
Belgium
Marijan Koevar
University of Ljubljana
Faculty of Chemistry and
Chemical Technology
Department of Chemistry and
Biochemistry
Chair of Organic Chemistry
Aškereva 5
1000 Ljubljana
Slovenia
Ulrich Kortz
Jacobs University
School of Engineering and
Science
P.O. Box 750 561
28725 Bremen
Germany
Norbert Krause
Dortmund University of
Technology
Organic Chemistry
Otto-Hahn-Strasse 6
44227 Dortmund
Germany
Anke Krebs
RWTH Aachen University
Institute for Organic Chemistry
Landoltweg 1
52056 Aachen
Germany
Camille Lescot
Institut de Chimie des
Substances Naturelles
UPR 2301 CNR
Avenue de la Terrasse
Gif-sur-Yvette
91198 Cedex
France
Giulia Licini
Padova University
Department of Chemical Sciences
Via Marzolo 1
35131 Padova
Italy
David Madec
Université de Toulouse
118 route de Narbonne
31062 Toulouse
France
Véronique Michelet
Ecole Nationale Supérieure de
Chimie de Paris Chimie
ParisTech
Laboratoire Charles Friedel
11 rue Pierre et Marie Curie
75231 Paris Cedex 5
France
Sylvain Nlate
University Bordeaux 1
European Institute of Chemistry
and Biology
IECB-CBMN UMR 5248 CNRS
2 Rue Robert Escarpit
33607 Pessac Cedex
France
Timothy Noël
Massachusetts Institute of
Technology
Department of Chemistry
77 Massachusetts Avenue
Cambridge
MA 02139
USA
Nadeen Nsouli
Jacobs University
School of Engineering and
Science
P.O. Box 750 561
Campus Ring 1
28725 Bremen
Germany
Per-Ola Norrby
University of Gothenburg
Department of Chemistry and
Molecular Biology
Kemigå rden 4
41296 Göteborg
Sweden
Bernd Ondruschka
Friedrich-Schiller University Jena
Institute for Technical Chemistry
and Environmental Chemistry
Lessingstr. 12
07743 Jena
Germany
Vasile I. Pârvulescu
University of Bucharest
Department of Organic
Chemistry
Biochemistry and Catalysis
B-dul Regina Elisabeta 4-12
030016 Bucharest
Romania
Oscar Pàmies
Universitat Rovira i Virgili
Departament de Química Física i
Inorgànica
C/Marcel· li Domingo s/n
43007 Tarragona
Spain
Pedro J. Perez
Universidad de Huelva
Centro de Investigación en
Química Sostenible (CIQSO)
Departamento de Quimica y
Ciencia de Materiales
21007 Huelva
Spain
Giovanni Poli
Université Pierre et
Marie Curie – UPMC
Institut Parisien de Chimie
Moléculaire
4, Place Jussieu, boîte 183
75252 Paris Cedex 5
France
Irene Prat
Universitat de Girona
Facultat de Ciències
Qbis Group, Department of
Chemistry
Campus de Montilivi
17071 Girona
Catalonia
Spain
Guillaume Prestat
Université Pierre et
Marie Curie – UPMC
Institut Parisien de Chimie
Moléculaire
4, Place Jussieu, boîte 183
75252 Paris Cedex 5
France
Michelet Ratovelomanana-Vidal
Ecole Nationale Supérieure de
Chimie de Paris Chimie
ParisTech
Laboratoire Charles Friedel
11 rue Pierre et Marie Curie
75231 Paris Cedex 5
France
Xavi Ribas
Universitat de Girona
Facultat de Ciències
Qbis Group, Department of
Chemistry
Campus de Montilivi
17071 Girona
Catalonia
Spain
Andrea Sartorel
University of Padova
ITM-CNR and Department of
Chemical Sciences
via Marzolo 1
35131 Padova
Italy
Achim Stolle
Friedrich-Schiller University Jena
Institute for Technical Chemistry
and Environmental Chemistry
Lessingstr. 12
07743 Jena
Germany
Johan Van der Eycken
Ghent University, Laboratory for
Organic and Bioorganic Synthesis
Department of Organic
Chemistry
9000 Ghent
Belgium
Darren Willcox
University of Nottingham
School of Chemistry
University Park
Nottingham NG7 2RG
United Kingdom

Part I

Oxidation Reactions

Chapter 1

Polyoxometalates as Homogeneous Oxidation Catalysts

Mauro Carraro, Andrea Sartorel, Masooma Ibrahim, Nadeen Nsouli, Claire Jahier, Sylvain Nlate, Ulrich Kortz, and Marcella Bonchio

1.1 Soluble Metal Oxides as Oxidation Catalysts

Polyoxometalates (POMs) are discrete multitransition metal oxides characterized by a formidable structural variety, resulting in different dimensions, shape, charge density, surface reactivity, and in a rich redox chemistry [1–7]. A first classification of POMs is based on the chemical composition of these species, essentially represented by two types of general formula [8]:

1. [MmOy]p− (isopolyanions)
2. [XxMmOy]q− (heteropolyanions)

where M is the main transition metal constituent of the POM, O is the oxygen atom, and X can be a nonmetal of the p block or a different transition metal.

Owing to their particular composition and electronic structure, POMs can be considered as discrete models of extended metal oxides. As for the latters, the doping process is a winning strategy to improve their catalytic behavior. Even if there are several examples concerning electrostatic interaction with different transition metal cations, the most stable coordination mode is on incorporation of the transition metal in the POM structure with the formation of ().

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!