Laboratory Astrochemistry -  - E-Book

Laboratory Astrochemistry E-Book

0,0
151,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Written by leading scientists in the field and intended for a broader readership, this is an ideal starting point for an overview of current research and developments. As such, the book covers a broad spectrum of laboratory astrophysics and chemistry, describing recent advances in experiments, as well as theoretical work, including fundamental physics and modeling chemical networks. For researchers as well as students and newcomers to the field.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1123

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Related Titles

Title Page

Copyright

List of Contributors

Preface

Chapter 1: The Astrophysical Background

1.1 The Contents of this Volume

References

Chapter 2: Molecular Spectroscopy

2.1 Electronic Spectroscopy of Potential Carriers of Diffuse Interstellar Bands

Acknowledgments

2.2 UV–Vis Gas-Phase Absorption Spectroscopy of PAHs

Acknowledgments

2.3 Laboratory IR Spectroscopy of PAHs

2.4 The Spectroscopy of Complex Molecules

References

Chapter 3: Gas Phase Chemistry

3.1 Introduction

3.2 Dissociative Recombination

3.3 Inelastic Processes

3.4 Low Temperature Trapping Experiments

3.5 Negative Ion Chemistry in the Early Universe

Acknowledgments

References

Chapter 4: Molecular Photodissociation

4.1 Introduction

4.2 Photodissociation Processes

4.3 Photodissociation Cross Sections

4.4 Astrophysical Radiation Fields

4.5 Photodissociation Rates

4.6 Photodissociation of CO and its Isotopologs

4.7 Photostability of PAHs

4.8 Summary

Acknowledgments

References

Chapter 5: Surface Science

5.1 Introduction

5.2 Molecular Hydrogen Formation on Carbonaceous Surfaces

5.3 The Influence of Ice Morphology on Interstellar Chemistry

5.4 Solid-State Pathways toward Molecular Complexity in Space

5.5 New Calculational Strategies for Including Surface Reactions in Astrochemical Network Models

References

Chapter 6: Dust and Nanoparticle Spectroscopy

6.1 Introduction I: Spectroscopic Observations of Cosmic Dust

6.2 Introduction II: Techniques in Laboratory Dust Spectroscopy

6.3 The Bulk of Interstellar Dust: Amorphous Silicates

6.4 Crystalline Silicates

6.5 Oxides as High-Temperature Condensates

6.6 Spectroscopic Properties of Carbon Compounds

6.7 Photoluminescence Studies of Silicon-Based Nanoparticles

Acknowledgments

References

Chapter 7: Formation of Nanoparticles and Solids

7.1 Condensation of Cosmic Dust in Astrophysical Environments

7.2 Laboratory Approach to Gas-Phase Condensation of Particles

7.3 Gas-phase Condensation Experiments of Magnesium Iron Silicates

7.4 Gas-Phase Condensation of Carbonaceous Particles in the Laboratory

7.5 Processing of Silicates

7.6 Carbon Dust Modifications under Thermal Annealing and Irradiation by UV Photons, Ions, and H Atoms

Acknowledgments

References

Index

EULA

Pages

XIII

XIV

XV

XVI

XVII

XVIII

XIX

XX

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

75

74

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

111

110

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

Guide

Cover

Table of Contents

Preface

Chapter 1: The Astrophysical Background

List of Illustrations

Figure 1.1

Figure 1.2

Figure 1.3

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

Figure 2.16

Figure 2.17

Figure 2.18

Figure 2.19

Figure 2.20

Figure 2.21

Figure 2.22

Figure 2.23

Figure 2.24

Figure 2.25

Figure 2.26

Figure 2.28

Figure 2.27

Figure 2.29

Figure 2.30

Figure 3.1

Figure 3.2

Figure 3.4

Figure 3.3

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 3.16

Figure 3.17

Figure 3.18

Figure 3.19

Figure 3.20

Figure 3.21

Figure 3.22

Figure 3.23

Figure 3.24

Figure 3.25

Figure 3.26

Figure 3.27

Figure 3.28

Figure 3.29

Figure 3.31

Figure 3.30

Figure 3.32

Figure 3.33

Figure 3.34

Figure 3.35

Figure 3.36

Figure 3.37

Figure 3.38

Figure 3.39

Figure 3.40

Figure 3.41

Figure 3.42

Figure 3.43

Figure 3.44

Figure 3.45

Figure 3.46

Figure 3.47

Figure 3.48

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.15

Figure 5.16

Figure 5.17

Figure 5.18

Figure 5.19

Figure 5.20

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16

Figure 6.17

Figure 6.18

Figure 6.19

Figure 6.20

Figure 6.21

Figure 6.22

Figure 6.23

Figure 6.24

Figure 6.25

Figure 6.26

Figure 6.27

Figure 6.28

Figure 6.29

Figure 6.30

Figure 6.31

Figure 6.32

Figure 6.33

Figure 6.34

Figure 6.35

Figure 6.36

Figure 6.37

Figure 6.38

Figure 6.39

Figure 6.40

Figure 6.41

Figure 6.42

Figure 6.43

Figure 6.44

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.8

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.9

Figure 7.10

Figure 7.11

Figure 7.12

Figure 7.13

Figure 7.14

Figure 7.15

Figure 7.16

Figure 7.17

Figure 7.18

Figure 7.19

Figure 7.20

Figure 7.21

Figure 7.22

Figure 7.23

Figure 7.24

Figure 7.25

Figure 7.26

Figure 7.27

Figure 7.28

Figure 7.30

Figure 7.29

Figure 7.31

Figure 7.32

Figure 7.33

Figure 7.34

Figure 7.35

Figure 7.36

List of Tables

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 2.5

Table 2.6

Table 3.1

Table 3.2

Table 3.3

Table 5.1

Table 6.1

Table 7.1

Table 7.3

Table 7.4

Table 7.5

Table 7.6

Table 7.7

Related Titles

 

Meierhenrich, Uwe

Comets And Their Origin

The Tool To Decipher A Comet

2014

Print ISBN 978-3-527-41281-5

 

Foukal, Peter V.

Solar Astrophysics

2013

Print ISBN 978-3-527-41174-0

 

Kwok, Sun

Organic Matter in the Universe

2011

Print ISBN 978-3-527-40986-0

 

Rehder, D.

Chemistry in Space

From Interstellar Matter to the Origin of Life

2010

Print ISBN: 978-3-527-32689-1

Edited by Stephan Schlemmer, Thomas Giesen, Harald Mutschke, and Cornelia Jäger

Laboratory Astrochemistry

From Molecules through Nanoparticles to Grains

Editors

 

Prof. Stephan Schlemmer

Universität zu Köln

I. Physikalisches Institut

Zülpicher Straße 77

50937 Köln

Germany

 

Dr. Harald Mutschke

Friedrich-Schiller-Universität Jena

Astrophysikalisches Institut und Universitäts-Sternwarte

Schillergäßchen 2-3

D-07745 Jena

Germany

 

Prof. Thomas Giesen

Universität Kassel

Fachbereich 10 - Physik

Fachgruppe Laborastrophysik

Heinrich-Plett-Str. 40

34132 Kassel

Germany

 

Dr. Cornelia Jäger

Friedrich Schiller University Jena

Max Planck Institute for Astronomy

Laboratory Astrophysics Group

Helmholtzweg 3

D-07743 Jena

Germany

 

Cover Design

Infrared image of the NGC 7129 nebula obtained with the Spitzer Space Telescope (Credit: NASA/JPL-Caltech/T. Megeath). The cluster of young stars and associated nebula are located at a distance of 3300 light years in the constellation Cepheus. This image is a color composite of images at 3.6 (blue), 4.5 (green), and 8.0 micron (red). The yellow superposed spectrum is the 988 GHz line of water observed toward this source with the HIFI instrument onboard the Herschel Space Observatory (Johnstone et al. 2010, A&A 521, L41). The broad line wings are due to fast-moving hot water in outflows from the young star, whereas the narrow absorption feature indicates the presence of cold quiescent water associated with the protostellar envelope. Montage by L.Kristensen.

 

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-40889-4

ePDF ISBN: 978-3-527-65316-4

ePub ISBN: 978-3-527-65315-7

Mobi ISBN: 978-3-527-65314-0

oBook ISBN: 978-3-527-65313-3

List of Contributors

Oskar Asvany

Universität zu Köln

I. Physikalisches Institut

Zülpicher Straße 77

50937 Köln

Germany

Yvain Carpentier

Friedrich Schiller University Jena

Laboratory Astrophysics Group

of the Max Planck Institute for Astronomy

Helmholtzweg 3

D-07743 Jena

Germany

and

Laboratoire de Physique des Lasers

Atomes et Molécules Université de Lille 1

F-59655 Villeneuve d'Ascq Cedex

France

Mark Collings

Heriot-Watt University

Institute of Chemical Sciences

Riccarton

Edinburgh EH14 4AS

UK

Olivier Debieu

Max-Planck-Institut für Astronomie

Laborastrophysik- und Clusterphysikgruppe

am Institut für Festkörperphysik

Friedrich-Schiller-Universität Jena

Helmholtzweg 3

D-07743 Jena

Germany

and

CIRIMAT-ENSIACET

4, allee Emile Monso

BP 44362

31030 Toulouse CEDEX 4

France

Ewine F. van Dishoeck

Leiden University

Leiden Observatory

Niels Bohrweg 2

NL-2333 CA Leiden

The Netherlands

Francois Dulieu

Cergy-Pontoise University

LERMA

5, mai Gay Lussac

95031 Cergy Pontoise

France

Jean-Hugues Fillion

UPMC

LERMA

4 Place Jussieu

75252 Paris

France

Hans-Peter Gail

Institut für Theoretische Astrophysik

Zentrum für Astronomie

Ruprecht-Karls-Universität

Universität Heidelberg

D-69120 Heidelberg

Albert-Ueberle-Str. 2

Germany

Wolf Geppert

Stockholm University

Department of Molecular Physics

Roslagstullsbacken 21C

106 91 Stockholm

Sweden

Thomas Giesen

Universität Kassel

Institut für Physik

Fachbereich 10 - Physik

Fachgruppe Laborastrophysik

Heinrich-Plett-Str. 40

34132 Kassel

Germany

Juraj Glosik

Charles University

Department of Surface and Plasma Science

Faculty of Mathematics and Physics

V Holešovičkách 2

18000 Prague

Czech Republic

Olivier Guillois

Service des Photons

Atomes et Molécules

CEA Saclay

F-91191 Gif/Yvette Cedex

France

Thomas Henning

Max Planck Institute for Astronomy

Königstuhl 17

D-69117 Heidelberg

Germany

Eric Herbst

University of Virginia

Departments of Chemistry and Astronomy

Charlottesville

VA 22904

USA

Liv Hornekær

Aarhus University

Department of Physics and Astronomy

Ny Munkegade 1520

8000 Aarhus C

Denmark

Friedrich Huisken

Friedrich Schiller University Jena

Laboratory Astrophysics Group

of the Max Planck Institute for Astronomy

Helmholtzweg 3

D-07743 Jena

Germany

Sergio Ioppolo

Radboud University Nijmegen

Nijmegen Institute for Molecules and Materials

P.O. Box 9010

NL-6500 GL Nijmegen

The Netherlands

and

California Institute of Technology

Division of Geological and Planetary Sciences

1200 E. California Blvd.

Pasadena, California 91125

USA

Cornelia Jäger

Max-Planck-Institut für Astronomie

Laborastrophysik- und Clusterphysikgruppe

am Institut für Festkörperphysik

Friedrich-Schiller-Universität Jena

Helmholtzweg 3

D-07743 Jena

Germany

Chiyoe Koike

Ritsumeikan University

Department of Physics

Kusatsu

Shiga 525-8577

Japan

Holger Kreckel

Max-Planck-Institut for Nuclear Physics

Saupfercheckweg 1

69117 Heidelberg

Germany

Harold Linnartz

University of Leiden

Leiden Observatory

Sackler Laboratory for Astrophysics

PO Box 9513

2300 RA Leiden

The Netherlands

John P. Maier

University of Basel

Department of Chemistry

Klingelbergstrasse 80

4056 Basel

Switzerland

Martin McCoustra

Heriot-Watt University

Institute of Chemical Sciences

Riccarton

Edinburgh EH14 4AS

UK

Vito Mennella

INAF-Osservatorio Astronomico di Capodimonte

Via Moiariello 16

80131 Napoli

Italy

Holger S.P. Müller

Universität zu Köln

I. Physikalisches Institut

Zülpicher Strasse 77

50937 Köln

Germany

Harald Mutschke

Friedrich-Schiller-Universität Jena

Astrophysikalisches Institut und Universitäts-Sternwarte

Schillergäßchen 2-3

D-07745 Jena

Germany

Joseph A. Nuth

NASA Goddard Space Flight Center

Mail Code 691

Greenbelt, MD 20771

USA

Karin I. Öberg

Harvard Smithsonian Center for Astrophysics

60 Garden Street

Cambridge, MA 02138

USA

Jos Oomens

Radboud University

Institute for Molecules and Materials

FELIX Facility

Toernooiveld 7

6525 ED Nijmegen

The Netherlands

and

University of Amsterdam

Van't Hoff Institute for Molecular Sciences

Science Park 904

1098 XH Amsterdam

The Netherlands

Maria Elisabetta Palumbo

Osservatorio Astrofisico di Catania - INAF

Via Santa Sofia 78

95123 Catania

Italy

David Parker

Radboud University Nijmegen

Department of Molecular and Laser Physics

Institute for Molecules and Materials

Heijendaalseweg 135

6525 AJ Nijmegen

The Netherlands

Olivier Pirali

Institut des Sciences Moléculaires d'Orsay

UMR8214 CNRS – Université Paris-Sud

Bât. 210

91405 Orsay cedex

France

and

AILES Beamline

Synchrotron SOLEIL

L'Orme des Merisiers

Saint-Aubin

91192 Gif-sur-Yvette CEDEX

France

Thomas Posch

Universität Wien

Institut für Astrophysik

Türkenschanzstraße 17

A-1180 Vienna

Austria

Karsten Potrick

Friedrich Schiller University Jena

Laboratory Astrophysics Group

of the Max Planck Institute for Astronomy

Helmholtzweg 3

D-07743 Jena

Germany

Stephen D. Price

University College London (UCL)

Chemistry Department

20 Gordon Street

London WC1H 0AJ

UK

Frans J. M. Rietmeijer

University of New Mexico

Department of Earth and Planetary Sciences

221 Yale Boulevard NE

Albuquerque

NM 87131.0001

USA

Corey A. Rice

University of Basel

Department of Chemistry

Klingelbergstrasse 80

4056 Basel

Switzerland

Gaël Rouillé

Friedrich Schiller University Jena

Laboratory Astrophysics Group

of the Max Planck Institute for Astronomy

Helmholtzweg 3

D-07743 Jena

Germany

Daniel Wolf Savin

Columbia University, Astrophysics Laboratory

MC 5247

550 West 120th Street

New York, NY 10027-6601

USA

Stephan Schlemmer

Universität zu Köln

I. Physikalisches Institut

Zülpicher Straße 77

50937 Köln

Germany

Torsten Schmidt

Friedrich Schiller University Jena

Laboratory Astrophysics Group

of the Max Planck Institute for Astronomy

Helmholtzweg 3

D-07743 Jena

Germany

and

Royal Institute of Technology (KTH)

Material Physics

ICT School

Electrum 229

SE-164 40 Kista-Stockholm

Sweden

Mathias Steglich

Friedrich Schiller University Jena

Laboratory Astrophysics Group

of the Max Planck Institute for Astronomy

Helmholtzweg 3

D-07743 Jena

Germany

and

University of Basel

Department of Chemistry

Klingelbergstrasse 80

CH-4056 Basel

Switzerland

Akemi Tamanai

Universität Heidelberg

Kirchhoff-Institut für Physik

Im Neuenheimer Feld 227

D-69120 Heidelberg

Germany

Alexander G.G.M. Tielens

Leiden University

Leiden Observatory

PO Box 9513

2300 RA Leiden

The Netherlands

Ruud Visser

University of Michigan

Department of Astronomy

1085 S. University Ave

Ann Arbor, MI 48109– 1107

USA

Malcolm Walmsley

INAF

Osservatorio Astrofisico di Arcetri

Largo E. Fermi 5

50125 Firenze

Italy

and

Dublin Institute of Advanced Studies (Cosmic Physics)

31 Fitzwilliam Place

Dublin 2

Ireland

Laurent Wiesenfeld

Laboratoire d'Astrophysique de l'Observatoire de Grenoble

414, Rue de la Piscine

Domaine Universitaire

BP 53

38041 Grenoble Cedex 09

France

Andreas Wolf

Max-Planck-Institut for Nuclear Physics

Saupfercheckweg 1

69117 Heidelberg

Germany

Simon Zeidler

Friedrich-Schiller-Universität Jena

Astrophysikalisches Institut und Universitäts-Sternwarte

Schillergäßchen 2-3

D-07745 Jena

Germany

and

National Astronomical Observatory of Japan

Gravitational Wave Project Office

Osawa 2-21-1

Mitaka

Tokyo 181-8588

Japan

Preface

The field of laboratory astrophysics is well established and developing various branches of dedicated research in laboratories to provide astronomy with elementary data for the interpretation of their observations. Over the past 20 years, the branch that deals with molecular physics, chemical physics, and the physics and chemistry of dust particles became very active. As a result, laboratory astrochemistry is an important area of research around the globe. In view of today's needs to interpret the richness of observations in the era of the Herschel or ALMA obersvatories, much of the atomic and molecular data is stored in a growing number of databases like those for chemical reaction rates and those for molecular spectroscopy. In recent years, even a common framework for these databases has been developed in order to access many databases at the same time as this is needed for the interpretation of the vast information from the detailed astronomical observations.

A concerted development of laboratory astrochemistry became possible through continuous funding on national and international levels and through a strong exchange between the groups active in this field of research. Especially, the different European training networks and COST activities as well as the establishment of a Laboratory Astrophysics Division (LAD) within the American Astronomical Society helped scientists to create awareness of this new and growing discipline and to attract students to work in this field. In the course of these developments, we felt that it could be helpful for new graduate students or fellow scientists to be introduced to the very different approaches of laboratory astrochemistry. The field is already too wide that one book could address all topics in great detail. Instead the idea of this book was to compile chapters on molecular spectroscopy, photodissociation, gas-phase processes, surfaces of grains, dust formation, and their spectroscopic properties.

In order to fit into one book, each chapter has an introductory section which is followed by a small set of contributions summarizing some recent advances. This attempt could by no means be comprehensive. Instead our intention is that reading the various chapters guides and encourages newcomers to then look up original work.

We would like to thank the chapter authors for their activities to bring together a number of coauthors contributing to the individual chapters. We are grateful to those authors for their participation and, in particular, for the patience to finish this work. Especially, we want to thank Malcom Walmsley for the introductory chapter to this book where he highlights the need of laboratory astrochemistry for the interpretation of astronomical observations. Several other people helped to prepare this work and we want to thank them and all coauthors for the patience and endurance to complete thiswork.

October 2014

Stephan Schlemmer, Thomas Giesen,

Harald Mutschke and Cornelia Jäger

2Molecular Spectroscopy

Thomas Giesen

High-resolution spectroscopy applied to gas-phase molecules is a powerful tool to derive and to analyze molecular properties from spectral line profiles and transition frequencies. In a simplified scheme, the visible and ultraviolet spectral range (UV–vis) reveals the valence-electronic structure of molecules in ground and excited vibronic states. Spectroscopy in the mid-infrared (IR) reveals the vibrational molecular dynamics, whereas at millimeter/submillimeter wavelengths the molecular structure can be derived from rotational transitions. The spectral resolution is limited by the Doppler effect and—especially in the UV–vis region—by lifetime broadening rather than by instrumental constraints. Because the Doppler width scales linearly with frequency, details of the rotational and hyperfine structures are often resolved only at low frequencies corresponding to millimeter/submillimeter wavelengths.

Since the first discovery of molecules in space by the detection of optical spectra of CN and CH, spectroscopy has successfully been applied to astronomy, not only for identification of new molecular species but also to derive physical conditions, for example, gas excitation temperatures, heat transfer and cooling conditions in star-forming regions, and turbulences and shocks of interstellar gas flow. The amount of accurate spectral data from astronomical observations over the accessible frequency range (from the UV–vis to the millimeter and centimeter wavelength region) has been significantly improved over the last two decades thanks to remarkably enhanced receiver techniques, the access to excellent observation sites on satellites, airplanes, and high-altitude platforms, and through improved angular resolution of interferometrically coupled telescope arrays, such as the Atacama Large Millimeter Array (ALMA) and Atacama Submillimeter Array in Chile.

Laboratory spectroscopic studies of gas-phase molecules allow a direct comparison with astronomical data and have significantly contributed to the interpretation of astrophysical observations. Most of the 180 interstellar molecules known to date have been identified by rotational transitions in the millimeter/submillimeter wavelength region. In the mid- and far-IR region, ro-vibrational transitions, especially of nonpolar molecules which have no pure rotational spectra, have been observed. Examples of recent detections are benzene (C6H12) and the fullerenes (C60, and C70