273,99 €
In this comprehensive two-volume resource on the topic senior lead generation medicinal chemists present a coherent view of the current methods and strategies in industrial and academic lead generation. This is the first book to combine both standard and innovative approaches in comparable breadth and depth, including several recent successful lead generation case studies published here for the first time. Beginning with a general discussion of the underlying principles and strategies, individual lead generation approaches are described in detail, highlighting their strengths and weaknesses, along with all relevant bordering disciplines like e.g. target identification and validation, predictive methods, molecular recognition or lead quality matrices. Novel lead generation approaches for challenging targets like DNA-encoded library screening or chemical biology approaches are treated here side by side with established methods as high throughput and affinity screening, knowledge- or fragment-based lead generation, and collaborative approaches. Within the entire book, a very strong focus is given to highlight the application of the presented methods, so that the reader will be able to learn from real life examples. The final part of the book presents several lead generation case studies taken from different therapeutic fields, including diabetes, cardiovascular and respiratory diseases, neuroscience, infection and tropical diseases. The result is a prime knowledge resource for medicinal chemists and for every scientist involved in lead generation.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1431
Veröffentlichungsjahr: 2016
Cover
Methods and Principles in Medicinal Chemistry
Title Page
Copyright
Dedication
List of Contributors
Preface
References
A Personal Foreword
Part I: Introduction to Lead Generation
1: Introduction: Learnings from the Past – Characteristics of Successful Leads
Acknowledgments
References
2: Modern Lead Generation Strategies
2.1 Lead Generation Greatly Influences Clinical Candidate Quality
2.2 Screening of Compound Libraries has Undergone a Major Paradigm Change
2.3 New Chemical Modalities are Available to Tackle Difficult Targets
2.4 As Demands have Increased, New Lead Generation Methods Emerged
2.5 How do Lead Generation Chemists Meet These Challenges and Subsequently Provide Their Lead Optimization Colleagues with High-Quality Lead Series?
References
Part II: The Importance of Target Identification for Generating Successful Leads
3: “Ligandability” of Drug Targets: Assessment of Chemical Tractability via Experimental and In Silico Approaches
3.1 Introduction
3.2 The Concept of Ligandability
3.3 The Intersection of Ligandability and Human Disease Target Space
3.4 Practical Examples of the Use of Fragment Screening for Ligandability Assessment
3.5 Conclusions and Outlook
References
4: Chemistry-Driven Target Identification
4.1 Introduction
4.2 Chemistry-Driven Target Discovery: Enabling Biology
4.3 Chemistry for Target Discovery
4.4 Small-Molecule Target Identification Techniques
4.5 Conclusions
References
Part III: Hit Generation Methods
5: Lead Generation Based on Compound Collection Screening
5.1 Introduction
5.2 Screening of Existing Collections: the General Workflow
5.3 Generation of New Screening Compounds
5.4 Other Concepts
5.5 Summary and Outlook
References
6: Fragment-Based Lead Generation
6.1 Introduction
6.2 Screening Methods
6.3 Hit Validation
6.4 Ligand Efficiency and Other Metrics
6.5 Hit Optimization
6.6 Fragment Growing
6.7 Fragment Linking
6.8 Protein–Protein Interactions
6.9 GPCRs
6.10 Computational Approaches
6.11 Conclusions
References
7: Rational Hit Generation
7.1 Introduction
7.2 Lead Generation: Transition State and Substrate Analogs
7.3 Hit Generation by Rational Library Design
7.4 Hit Generation by Virtual Screening
7.5 Hit Generation by Scaffold Replacement Technologies
7.6 Hit Generation by Chemogenomics Approaches
7.7 Summary
References
8: Competitive Intelligence–based Lead Generation and Fast Follower Approaches
8.1 Introduction
8.2 Competitive Intelligence-based Approach
8.3 Fast Follower Approach
References
9: Selective Optimization of Side Activities: An Alternative and Promising Strategy for Lead Generation
9.1 Introduction
9.2 Definition, Rational, and Concept of the SOSA Approach
9.3 Drugs in Other Drugs: Drug as Fragments
9.4 Drug Repositioning and Drug Repurposing
9.5 The SOSA Approach and Analog Design
9.6 Patentability and Interference Risk of the SOSA Approach
9.7 Case Studies and Examples
9.8 Conclusions
References
10: Lead Generation for Challenging Targets
10.1 Introduction
10.2 DNA-Encoded Library Technology in Lead Generation
10.3 Stapled Peptide
10.4 Phenotypic Screening
10.5 Summary
References
11: Collaborative Approaches to Lead Generation
11.1 Introduction
11.2 Creativity
11.3 Speed
11.4 Risk Sharing
11.5 Intellectual Property
11.6 Costs
11.7 Management
11.8 Lilly's Open Innovation Drug Discovery
11.9 Molecular Library Program
11.10 EU Openscreen
11.11 European Lead Factory
11.12 Medicines for Malaria Venture
11.13 Open Source Malaria Project
11.14 Drugs for Neglected Diseases Initiative
11.15 Open Lab Foundation
11.16 Scientists Against Malaria
11.17 Open Source Drug Discovery
11.18 TB Alliance
11.19 Summary
References
Part IV: Converting Hits to Successful Leads
12: A Medicinal Chemistry Perspective on the Hit-to-Lead Phase in the Current Era of Drug Discovery
12.1 Introduction
12.2 Active to Hit Processes
12.3 Target Potency: Energetics of Binding
12.4 Addressing Vast Chemical Space: HtL Strategies
12.5 Matched Pair Analysis
12.6 The Role of Hydrophobicity and HtL
12.7 Probing H-Bond Donors and Acceptors
12.8 Structure Based DD in HtL
12.9 Statistical Molecular Design
12.10 Hit to Lead is not Lead Optimization
12.11 Summary
References
13: Molecular Recognition and Its Importance for Fragment-Based Lead Generation and Hit-to-Lead
13.1 Introduction
13.2 Brief Summary of the Main Factors that Govern Molecular Interactions
13.3 Thermodynamics of Molecular Interactions and Impact on Hit Finding and Optimization
13.4 Enthalpy as a Key Decision Tool in Medicinal Chemistry
13.5 Importance of Enthalpic Interactions: Drivers of Selectivity and Specificity?
13.6 Fragment Screening Hit Optimization: Fragment Linking
13.7 Interstitial Waters and Their Usefulness: Case Studies on HSP-90
13.8 Fragments to Find Hot Spots in Binding Pockets
13.9 Nonclassical Hydrogen Bonds – Interactions of Halogen Atoms with Π-Systems and Carbonyl Groups: Factor Xa and Cathepsin L
13.10 Binding Mode Dependency of the Experimental Conditions and Chemical Framework of Ligand
13.11 Cooperativity in Binding: DAO or DAAO D-Amino Acid Oxidase
References
14: Affinity-Based Screening Methodologies and Their Application in the Hit-to-Lead Phase
14.1 Introduction
14.2 Nuclear Magnetic Resonance Spectroscopy
14.3 Optical Biosensors: Surface Plasmon Resonance and Optical Waveguide Grating
14.4 Isothermal Titration Calorimetry
14.5 Thermal Shift Assay
14.6 Mass Spectrometry Approaches
14.7 Encoded Library Technologies
14.8 Emerging Technologies: Microscale Thermophoresis and Backscattering Interferometry
References
15: Predictive Methods in Lead Generation
15.1 Introduction
15.2 Compound Property Prediction
15.3 Multiparameter Optimization: Identifying High-Quality Compounds
15.4 De Novo Design: Guiding the Exploration of Novel Chemistry
15.5 Selection: Balancing Quality with Diversity
15.6 Conclusions
References
16: Lead Quality
16.1 Introduction
16.2 Properties in Drug Design
16.3 Optimizing Properties: Useful Rules, Guides, and Simple Metrics for Early-Stage Projects
16.4 Predicted Dose to Man as a Measure of Early- and Late-Stage Lead Quality
16.5 Summary
References
Part V: Hypothesis-driven Lead Optimization
17: The Strategies and Politics of Successful Design, Make, Test, and Analyze (DMTA) Cycles in Lead Generation
17.1 DMTA Cycles: Perspectives from History
17.2 Test: What Assays, in What Order, and Why?
17.3 Additional Advice for “Test” Component of DMTA
17.4 Design: What to Make and Why?
17.5 Additional Advice for “Design” Component of DMTA
17.6 Make: Challenges and Strategies for Synthesis
17.7 Additional Advice for the “Make” Component of DMTA
17.8 Analyze: Making Sense of What's Been Done and Formulating Sensible Plans for the Next Designs
17.9 Additional Advice for “Analyze” Component of DMTA
17.10 Results: Do Lead Optimization Teams Get What They Need?
References
Part VI: Recent Lead Generation Success Stories
18: Lead Generation Paved the Way for the Discovery of a Novel H3 Inverse Agonist Clinical Candidate
18.1 Introduction
18.2 Hit Identification
18.3 Lead Generation
18.4 Lead Optimization and Candidate Selection
18.5 Conclusions
Acknowledgments
References
19: Vorapaxar: From Lead Identification to FDA Approval
19.1 Introduction
19.2 Background Information on Antiplatelet Agents
19.3 Thrombin Receptor (Protease-activated Receptor-1) Antagonists as a Novel Class of Antiplatelet Agents
19.4 Mechanism of Thrombin Receptor Activation
19.5 Preclinical Data Supporting the Antiplatelet Effect of Thrombin Receptor Antagonists
19.6 Himbacine-derived Thrombin Receptor Antagonists
19.7 Conclusions
Abbreviations
Acknowledgments
References
20: Lead Generation Approaches Delivering Inhaled β2-Adrenoreceptor Agonist Drug Candidates
20.1 Introduction
20.2 Lead Generation Exercises to Discover β2AR Agonist Clinical Candidates
20.3 AstraZeneca Lead Generation Exercises to Discover β2AR Agonist Clinical Candidates
20.4 Summary
References
21: GPR81 HTS Case Study
21.1 General Remarks
21.2 The Target
21.3 Screening Cascade
21.4 Compound Selection (10 k Validation Set)
21.5 HTS
21.6 Hit Evaluation
21.7 Alternative Lead Generation Strategies
21.8 Conclusions
References
22: Development of Influenza Virus Sialidase Inhibitors
22.1 Introduction
22.2 Targets for Anti-influenza Drug Development: Receptor Binding and Receptor Cleavage
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!