Micro Energy Harvesting -  - E-Book

Micro Energy Harvesting E-Book

0,0
160,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices.
The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches.
In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 818

Veröffentlichungsjahr: 2015

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Related Titles

Title Page

Copyright

About the Volume Editors

List of Contributors

Chapter 1: Introduction to Micro Energy Harvesting

1.1 Introduction to the Topic

1.2 Current Status and Trends

1.3 Book Content and Structure

Chapter 2: Fundamentals of Mechanics and Dynamics

2.1 Introduction

2.2 Strategies for Micro Vibration Energy Harvesting

2.3 Dynamical Models for Vibration Energy Harvesters

2.4 Beyond Linear Micro-Vibration Harvesting

2.5 Nonlinear Micro-Vibration Energy Harvesting

2.6 Conclusions

Acknowledgments

References

Chapter 3: Electromechanical Transducers

3.1 Introduction

3.2 Electromagnetic Transducers

3.3 Piezoelectric Transducers

3.4 Electrostatic Transducers

3.5 Other Electromechanical Transduction Principles

3.6 Effect of the Vibration Energy Harvester Mechanical Structure

3.7 Summary

References

Chapter 4: Thermal Fundamentals

4.1 Introduction

4.2 Fundamentals of Thermoelectric Power Generation

4.3 Near-Field Thermal Radiation and Thermophotovoltaic Power Generation

4.4 Conclusions

Acknowledgments

References

Chapter 5: Power Conditioning for Energy Harvesting – Theory and Architecture

5.1 Introduction

5.2 The Function of Power Conditioning

5.3 Summary

References

Chapter 6: Thermoelectric Materials for Energy Harvesting

6.1 Introduction

6.2 Performance Considerations in Materials Selection:

zT

6.3 Influence of Scale on Material Selection and Synthesis

6.4 Low Dimensionality: Internal Micro/Nanostructure and Related Approaches

6.5 Thermal Expansion and Its Role in Materials Selection

6.6 Raw Material Cost Considerations

6.7 Material Synthesis with Particular Relevance to Micro Energy Harvesting

6.8 Summary

References

Chapter 7: Piezoelectric Materials for Energy Harvesting

7.1 Introduction

7.2 What Is Piezoelectricity?

7.3 Thermodynamics: the Right Way to Describe Piezoelectricity

7.4 Material Figure of Merit: the Electromechanical Coupling Factor

7.5 Perovskite Materials

7.6 Wurtzites

7.7 PVDFs

7.8 Nanomaterials

7.9 Typical Values for the Main Piezoelectric Materials

7.10 Summary

References

Chapter 8: Electrostatic/Electret-Based Harvesters

8.1 Introduction

8.2 Electrostatic/Electret Conversion Cycle

8.3 Electrostatic/Electret Generator Models

8.4 Electrostatic Generators

8.5 Electrets and Electret Generator Model

8.6 Electret Generators

8.7 Summary

References

Chapter 9: Electrodynamic Vibrational Energy Harvesting

9.1 Introduction

9.2 Theoretical Background

9.3 Electrodynamic Harvester Architectures

9.4 Modeling and Optimization

9.5 Design and Fabrication

9.6 Summary

References

Chapter 10: Piezoelectric MEMS Energy Harvesters

10.1 Introduction

10.2 Development of Piezoelectric MEMS Energy Harvesters

10.3 Challenging Issues in Piezoelectric MEMS Energy Harvesters

10.4 Summary

References

Chapter 11: Vibration Energy Harvesting from Wideband and Time-Varying Frequencies

11.1 Introduction

11.2 Active Schemes for Tunable Resonant Devices

11.3 Passive Schemes for Tunable Resonant Devices

11.4 Wideband Devices

11.5 Summary and Future Research Directions

References

Chapter 12: Micro Thermoelectric Generators

12.1 Introduction

12.2 Classification of Micro Thermoelectric Generators

12.3 General Considerations for MicroTEGs

12.4 Micro Device Technologies

12.5 Applications of Complete Systems

12.6 Summary

References

Chapter 13: Micromachined Acoustic Energy Harvesters

13.1 Introduction

13.2 Historical Overview

13.3 Acoustics Background

13.4 Electroacoustic Transduction

13.5 Fabrication Methods

13.6 Testing and Characterization

13.7 Summary

13.8 Acknowledgments

References

Chapter 14: Energy Harvesting from Fluid Flows

14.1 Introduction

14.2 Fundamental and Practical Limits

14.3 Miniature Wind Turbines

14.4 Energy Harvesters Based on Flow Instability

14.5 Performance Comparison

14.6 Summary

References

Chapter 15: Far-Field RF Energy Transfer and Harvesting

15.1 Introduction

15.2 Nonradiative and Radiative (Far-Field) RF Energy Transfer

15.3 Receiving Rectifying Antenna

15.4 Rectifier

15.5 Transmission

15.6 Examples and Future Perspectives

15.7 Conclusions

References

Chapter 16: Microfabricated Microbial Fuel Cells

16.1 Introduction

16.2 Fundamentals of MEMS MFC

16.3 Prior Art MEMS MFCS

16.4 Future Work

16.5 Reducing Areal Resistivity

16.6 Autonomous Running

16.7 Elucidating the EET Mechanism

References

Chapter 17: Micro Photovoltaic Module Energy Harvesting

17.1 Introduction

17.2 Monolithically Integration of Solar Cells with IC

17.3 Low-Power Micro Photovoltaic Systems

17.4 Summary

References

Chapter 18: Power Conditioning for Energy Harvesting – Case Studies and Commercial Products

18.1 Introduction

18.2 Submilliwatt Electromagnetic Harvester Circuit Example

18.3 Single-Supply Pre-biasing for Piezoelectric Harvesters

18.4 Ultra-Low-Power Rectifier and MPPT for Thermoelectric Harvesters

18.5 Frequency Tuning of an Electromagnetic Harvester

18.6 Examples of Converters for Ultra-Low-Output Transducers

18.7 Power Processing for Electrostatic Devices

18.8 Commercial Products

18.9 Conclusions

References

Chapter 19: Micro Energy Storage: Considerations

19.1 Introduction

19.2 Boundary Conditions

19.3 Primary Energy Storage Approaches

References

Chapter 20: Thermoelectric Energy Harvesting in Aircraft

20.1 Introduction

20.2 Aircraft Standardization

20.3 Autonomous Wireless Sensor Systems

20.4 Thermoelectric Energy Harvesting in Aircraft

20.5 Design Considerations

20.6 Applications

20.7 Conclusions

References

Chapter 21: Powering Pacemakers with Heartbeat Vibrations

21.1 Introduction

21.2 Design Specifications

21.3 Estimation of Heartbeat Oscillations

21.4 Linear Energy Harvesters

21.5 Monostable Nonlinear Harvesters

21.6 Bistable Harvesters

21.7 Experimental Investigations

21.8 Heart Motion Characterization

21.9 Conclusions

21.10 Acknowledgment

References

Index

End User License Agreement

Pages

xvii

xviii

xix

xx

xxi

xxii

1

2

3

4

5

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

459

460

461

462

463

464

465

466

467

468

Guide

Cover

Table of Contents

Begin Reading

List of Illustrations

Figure 1.1

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 3.16

Figure 3.17

Figure 3.18

Figure 3.19

Figure 3.20

Figure 3.21

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.8

Figure 7.7

Figure 7.9

Figure 7.10

Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5

Figure 8.6

Figure 8.7

Figure 8.8

Figure 8.9

Figure 8.10

Figure 8.11

Figure 8.12

Figure 8.13

Figure 8.14

Figure 8.15

Figure 8.16

Figure 8.17

Figure 8.18

Figure 8.19

Figure 8.20

Figure 8.21

Figure 8.22

Figure 8.23

Figure 9.1

Figure 9.2

Figure 9.3

Figure 9.4

Figure 9.5

Figure 9.6

Figure 9.7

Figure 9.8

Figure 9.9

Figure 9.10

Figure 10.1

Figure 10.2

Figure 10.3

Figure 10.4

Figure 10.5

Figure 10.6

Figure 10.7

Figure 10.8

Figure 10.9

Figure 10.10

Figure 10.11

Figure 11.1

Figure 11.2

Figure 11.3

Figure 11.4

Figure 11.5

Figure 11.6

Figure 11.7

Figure 11.8

Figure 11.9

Figure 11.10

Figure 11.11

Figure 11.12

Figure 12.1

Figure 12.2

Figure 12.3

Figure 12.4

Figure 12.5

Figure 12.6

Figure 12.7

Figure 12.8

Figure 12.9

Figure 12.10

Figure 12.11

Figure 12.12

Figure 12.13

Figure 12.14

Figure 12.15

Figure 12.16

Figure 12.17

Figure 13.1

Figure 13.2

Figure 13.3

Figure 13.4

Figure 13.5

Figure 13.6

Figure 14.1

Figure 14.2

Figure 14.3

Figure 14.4

Figure 14.5

Figure 14.6

Figure 14.7

Figure 14.8

Figure 14.9

Figure 14.10

Figure 14.11

Figure 14.12

Figure 15.1

Figure 15.2

Figure 15.3

Figure 15.4

Figure 15.5

Figure 15.6

Figure 15.7

Figure 15.8

Figure 15.9

Figure 15.10

Figure 15.11

Figure 15.12

Figure 15.13

Figure 15.14

Figure 15.15

Figure 15.16

Figure 15.17

Figure 15.18

Figure 15.19

Figure 15.20

Figure 15.21

Figure 15.22

Figure 16.1

Figure 16.2

Figure 16.3

Figure 16.4

Figure 17.1

Figure 17.2

Figure 17.3

Figure 17.4

Figure 17.5

Figure 17.6

Figure 17.7

Figure 17.8

Figure 17.9

Figure 17.10

Figure 17.11

Figure 17.12

Figure 17.13

Figure 17.14

Figure 17.15

Figure 17.16

Figure 18.1

Figure 18.2

Figure 18.3

Figure 18.4

Figure 18.5

Figure 18.6

Figure 18.7

Figure 18.8

Figure 18.9

Figure 18.10

Figure 18.11

Figure 18.12

Figure 19.1

Figure 19.2

Figure 19.3

Figure 20.1

Figure 20.2

Figure 20.3

Figure 20.4

Figure 20.5

Figure 20.6

Figure 20.7

Figure 20.8

Figure 20.9

Figure 21.1

Figure 21.2

Figure 21.3

Figure 21.4

Figure 21.5

Figure 21.6

Figure 21.7

Figure 21.8

Figure 21.9

Figure 21.10

Figure 21.11

Figure 21.12

Figure 21.13

Figure 21.14

Figure 21.15

Figure 21.16

Figure 21.17

Figure 21.18

Figure 21.19

Figure 21.20

Figure 21.21

Figure 21.22

Figure 21.23

List of Tables

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 9.1

Table 9.2

Table 10.1

Table 10.2

Table 11.1

Table 11.2

Table 11.3

Table 12.1

Table 12.2

Table 12.3

Table 13.1

Table 13.2

Table 13.3

Table 13.4

Table 14.1

Table 15.1

Table 16.1

Table 16.2

Table 17.1

Table 19.1

Table 19.2

Table 19.3

Table 19.4

Table 20.1

Table 20.2

Table 20.3

Table 20.4

Table 20.5

Table 21.1

Related Titles

Tabata, O., Tsuchiya, T. (eds.)

Reliability of MEMS

Testing of Materials and Devices

2008

Print ISBN: 978-3-527-31494-2; also available in electronic formats

Saile, V., Wallrabe, U., Tabata, O., Korvink, J.G. (eds.)

LIGA and its Applications

2009

Print ISBN: 978-3-527-31698-4; also available in electronic formats

Hierold, C. (ed.)

Carbon Nanotube Devices

Properties, Modeling, Integration and Applications

2008

Print ISBN: 978-3-527-31720-2; also available in electronic formats

Krüger, A.

Carbon Materials and Nanotechnology

2010

Print ISBN: 978-3-527-31803-2; also available in electronic formats

Bechtold, T., Schrag, G., Feng, L. (eds.)

System-level Modeling of MEMS

2013

Print ISBN: 978-3-527-31903-9; also available in electronic formats

Korvink, J.G., Smith, P.J., Shin, D. (eds.)

Inkjet-based Micromanufacturing

2012

Print ISBN: 978-3-527-31904-6; also available in electronic formats ISBN: 978-3-527-64710-1

Brand, O., Dufour, I., Heinrich, S.M., Josse, F. (eds.)

Resonant MEMS

Principles, Modeling, Implementation and Applications

2014

Print ISBN: 978-3-527-33545-9; also available in electronic formats ISBN: 978-3-527-67633-0

Edited by Danick Briand, Eric Yeatman, and Shad Roundy

Micro Energy Harvesting

Volume Editors

Dr. Danick Briand

kEPFL-IMT SAMLAB

Rue Jaquet-Droz 1

2000 NEUCHÂTEL

Switzerland

Prof. Eric Yeatman

Imperial College London

Dep. of Electr. & Electron. Engin.

South Kensington Campus

London SW7 2AZ

United Kingdom

Prof. Shad Roundy

University of Utah

Dept. of Mech. Engineering

50 S. Central Campus Drive

United States

Series Editors

Oliver Brand

School Electrical/Comp. Eng.

Georgia Inst. of Technology

777 Atlantic Drive

United States

Gary K. Fedder

ECE Department & Robotics Inst

Carnegie Mellon University

United States

Prof. Christofer Hierold

ETH Zürich

ETH-Zentrum, CLA H9

Tannenstr. 3

8092 Zürich

Switzerland

Jan G. Korvink

Inst. f. Mikrosystemtechnik

Albert-Ludwigs-Univ. Freiburg

Georges-Köhler-Allee 103

79110 Freiburg

Germany

Osamu Tabata

Dept. of Mech. Eng./Kyoto Univ.

Faculty of Engineering

Yoshida Honmachi Sakyo-ku

606-8501 Kyoto

Japan

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2015 Wiley-VCH Verlag GmbH & Co.

KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-31902-2

ePDF ISBN: 978-3-527-67293-6

ePub ISBN: 978-3-527-67292-9

Mobi ISBN: 978-3-527-67291-2

oBook ISBN: 978-3-527-67294-3

Cover Design Schulz Grafik-Design, Fußgönnheim, Germany

Printing and Binding Strauss GmbH, Mörlenbach, Germany

About the Volume Editors

Danick Briand obtained his PhD degree in the field of microchemical systems from the Institute of Microtechnology (IMT), University of Neuchâtel, Switzerland, in 2001. He is currently a team leader at EPFL IMT Samlab in the field of EnviroMEMS, Energy and Environmental MEMS. He has been awarded the Eurosensors Fellowship in 2010. He has been author or co-author of more than 150 papers published in scientific journals and conference proceedings. He is a member of several scientific and technical conference committees in the field of sensors and MEMS, participating also in the organization of workshop and conferences. His research interests in the field of sensors and microsystems include environmental and energy MEMS.

Eric M. Yeatman has been a member of academic staff in Imperial College London since 1989 and Professor of Microengineering since 2005. He is Deputy Head of the Department of Electrical and Electronic Engineering, and has published more than 200 papers and patents, primarily on optical devices and materials and on microelectromechanical systems (MEMS). He is a Fellow and Silver Medalist of the Royal Academy of Engineering, and a Fellow of the IEEE. Prof. Yeatman is also co-founder and director of Microsaic Systems plc, which develops and markets miniature mass spectrometers for portable chemical analysis. His current research interests are in energy sources for wireless devices (particularly energy harvesting), radio frequency and photonic MEMS devices, pervasive sensing, and sensor networks.www.imperial.ac.uk/people/e.yeatman

Shad Roundy received his PhD in Mechanical Engineering from the University of California, Berkeley, in 2003. From there he moved to the Australian National University where he was a senior lecturer for 2 years. He spent the next several years working with start-up companies LV Sensors and EcoHarvester developing MEMS pressure sensors, accelerometers, gyroscopes, and energy-harvesting devices. He recently re-entered academia joining the mechanical engineering faculty at the University of Utah in 2012. Dr. Roundy is the recipient of the DoE Integrated Manufacturing Fellowship, the Intel Noyce Fellowship, and was named by MIT Technology Review as one of the world's top 100 young innovators for 2004. His current research interests are in harvesting energy for wireless sensors, particularly from vibrations, acoustics, and human motion, and in MEMS inertial sensing.

List of Contributors

M. Amin Karami

University of Michigan

Department of Aerospace Engineering

3064 Francois-Xavier Bagnoud Building

1320 Beal Avenue

Ann Arbor, MI 48109-2140

USA

David P. Arnold

University of Florida

Department of Electrical and Computer Engineering

213 Larsen Hall

Gainesville, FL 32611

USA

Adrien Badel

Université de Savoie

SYMME

74000 Annecy

France

Thomas Becker

Airbus Group Innovations

The Netherlands

and

EADS Innovation Works

EADS Deutschland GmbH

81663 Munich

Germany

Sébastien Boisseau

CEA-LETI

38054 Grenoble Cedex

France

Danick Briand

EPFL-IMT SAMLAB

Rue Jaquet-Droz 1

2000 NEUCHÂTEL

Switzerland

Stephen G. Burrow

University of Bristol

Faculty of Engineering

Queen's Building

Clifton BS8 1TR

UK

Clemens Cepnik

Robert Bosch GmbH

Automotive Electronics

Tübinger Str. 123

72762 Reutlingen

Germany

Junseok Chae

Arizona StateUniversity

School of Electrical

Computer, and Energy Engineering

650 E. Tyler Mall

Tempe, AZ 85287

USA

Shuo Cheng

Stellarray Incorporated

9210 Cameron Rd Ste 300

Austin, TX 78754

USA

Emmanuel Defay

CEA-LETI

38054 Grenoble Cedex

France

and

Luxembourg Institute of Science and Technology

4422 Belvaux

Luxembourg

Ghislain Despesse

CEA-LETI

38054 Grenoble Cedex

France

Alexandros Elefsiniotis

Airbus Group Innovations

The Netherlands

Fabien Formosa

Université de Savoie

SYMME

74000 Annecy

France

Mathieu Francoeur

University of Utah

Department of Mechanical Engineering

Radiative Energy Transfer Lab

Salt Lake City, UT 84112

USA

Luca Gammaitoni

University of Perugia

INFN Perugia and Wisepower srl

NiPS Laboratory

Department of Physics

via A. Pascoli, 1

06123 Perugia

Italy

Andrew S. Holmes

Imperial College

Electrical and Electronic Engineering

South Kensington Campus

London SW7 1AZ

UK

Stephen Horowitz

Interdisciplinary Consulting Corporation (IC2)

5745 SW 75th St, #364

Gainesville, FL 32608-5508

USA

Daniel J. Inman

University of Michigan

Department of Aerospace Engineering

3064 Francois-Xavier Bagnoud Building

1320 Beal Avenue

Ann Arbor, MI 48109-2140

USA

Michail E. Kiziroglou

Imperial College London

South Kensington Campus

London SW7 2AZ

UK

Mickaël Lallart

LGEF INSA Lyon

8 rue de la Physique

69621 Villeurbanne Cedex

France

Shunpu Li

University of Cambridge

Electrical Engineering Division

Cambridge CB3 0FA

UK

Lindsay M. Miller

University of California Berkeley

Mechanical Engineering

Etcheverry

Berkeley, CA 94720

USA

Andrew C. Miner

Romny Scientific, Inc.

1192 Cherry Avenue

San Bruno, CA 94066

USA

Paul D. Mitcheson

Imperial College

Electrical and Electronic Engineering

South Kensington Campus

London SW7 1AZ

UK

Cian O'Mathuna

Microsystems Group

Tyndall National Institute

Dyke Parade

Cork

Ireland

Jae Yeong Park

Kwangwoon University Department of Electronic Engineering

447-1, Wolgye-Dong

Nowon-Gu

Seoul 139-701

Korea

Hao Ren

Arizona StateUniversity

School of Electrical

Computer, and Energy Engineering

650 E. Tyler Mall

Tempe, AZ 85287

USA

Shad Roundy

University of Utah

Dept. of Mech. Engineering

50 S. Central Campus Drive

Salt Lake City, UT 84112

USA

Saibal Roy

Microsystems Group

Tyndall National Institute

Dyke Parade

Cork

Ireland

Mark Sheplak

University of Florida

Interdisciplinary Microsystems Group

Department of Mechanical and Aerospace Engineering

Department of Electrical and Computer Engineering

P. O. Box 116200

215 Larsen Hall

Gainesville, FL 32611-6200

USA

Ingo Stark

Perpetua Power Source Technologies, Inc.

1749 SW Airport Avenue

Corvallis, OR 97333

USA

Dan Steingart

Princeton University

Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and The Environment

D428 Engineering Quadrangle

Princeton, NJ 08544

USA

Yuji Suzuki

The University of Tokyo

Department of Mechanical Engineering

Hongo 7-3-1

Bukyo-ku

Tokyo 113-8656

Japan

Hubregt J. Visser

IMEC/Holst Centre

Sensors & Energy Harvesters Department

High Tech Campus 31

PO Box 8550

5605 KN Eindhoven

The Netherlands

Helios Vocca

University of Perugia

INFN Perugia and Wisepower srl

NiPS Laboratory

Department of Physics

via A. Pascoli, 1

06123 Perugia

Italy

Ruud Vullers

IMEC/Holst Centre

Sensors & Energy Harvesters Department

High Tech Campus 31

PO Box 8550

5605 KN Eindhoven

The Netherlands

Ningning Wang

Microsystems Group

Tyndall National Institute

Dyke Parade

Cork

Ireland

Wensi Wang

Microsystems Group

Tyndall National Institute

Dyke Parade

Cork

Ireland

Eric Yeatman

Imperial College London

Dep. of Electr. & Electron. Engin.

South Kensington Campus

London SW7 2AZ

UK

1Introduction to Micro Energy Harvesting

Danick Briand, Eric Yeatman and Shad Roundy

1.1 Introduction to the Topic

We are living in an increasingly intelligent world where countless numbers of autonomous wireless sensing devices continuously monitor, provide information on, and manipulate the environments in which we live. This trend is growing fast and will undoubtedly continue. The vision of this intelligent world has gone by many names including “wireless sensor networks,” “ambient intelligence,” and, more recently, “the Internet of Things (IoT).” Regardless of the current buzzwords, this vision will continue to take shape. We are now realistically talking about a trillion or more connected sensors populating the world. Almost all of these wireless connected devices are currently powered by batteries that have to be periodically recharged or replaced. This state of affairs is simply not practical if we are to have many hundreds of sensors per person on the planet. Alternative autonomous power supplies are becoming more and more critical. Furthermore, these power sources must be small, inexpensive, and highly reliable. This need has given rise to a new field of research, study, and engineering practice, usually referred to as Energy Harvesting. This book is intended to cover the engineering fundamentals and current state of the art associated with energy harvesting at the small scale, or Micro Energy Harvesting.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!