Microwaves in Organic Synthesis -  - E-Book

Microwaves in Organic Synthesis E-Book

0,0
403,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

The third edition of the bestselling two-volume reference covers everything you need to know about microwave technology for synthesis
- from the best equipment to nonthermal effects, from solid-support reactions to catalysis. Completely revised and updated with half of the authors completely new to the project, this comprehensive work is clearly divided into two parts on the fundamentals of microwave irradiation, and application of microwaves and synergies with other enabling techniques. Also new to this edition are chapters on on-line monitoring, flow chemistry, combination with ultrasounds and natural products, including multicomponent reactions.

An indispensable source for organic, catalytic, physical, and medicinal chemists.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1824

Veröffentlichungsjahr: 2013

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Related Titles

Title Page

Copyright

Contents to Volume 1

Preface

List of Contributors

Part I: Fundamental Aspects of Microwave Irradiation in Organic Chemistry

Chapter 1: Microwave–Materials Interactions and Dielectric Properties: From Molecules and Macromolecules to Solids and Colloidal Suspensions

1.1 Fundamentals of Microwave–Matter Interactions

1.2 Dielectric Properties and Molecular Behavior

1.3 Conclusion

References

Chapter 2: Development and Design of Reactors in Microwave-Assisted Chemistry

2.1 Introduction

2.2 Basic Concepts for Reactions and Reactors in Organic Synthesis

2.3 Methods for Enhancing the Rates of Organic Reactions

2.4 Microwave-Assisted Organic Syntheses

2.5 Commercial Microwave Reactors

2.6 Selected Equipment and Applications

2.7 Qualification and Validation of Reactors and Results

2.8 Conclusion and the Future

References

Chapter 3: Key Ingredients for Mastery of Chemical Microwave Processes

3.1 The Systemic Approach

3.2 Thermal Dependence of Dielectric Loss

3.3 Electric Field Effects

3.4 Loop Modes or Strange Solutions of Maxwell's Equations

3.5 Hydrodynamic Aspects

3.6 Thermodynamic and Other Effects of Electric Fields

3.7 Athermal and Specific Effects of Electric Field

3.8 The Thermal Path Effect: Anisothermal Conditions

3.9 Hot Spots and Heterogeneous Kinetics

3.10 Conclusion

References

Chapter 4: Nonthermal Effects of Microwaves in Organic Synthesis

4.1 Introduction

4.2 Origin of Microwave Effects

4.3 Specific Nonthermal Microwave Effects

4.4 Effects of the Medium

4.5 Effects Depending on Reaction Mechanisms

4.6 Effects Depending on the Position of the Transition State Along the Reaction coordinate

4.7 Effects on Selectivity

4.8 Some Illustrative Examples

4.9 Concerning the Absence of Microwave Effects

4.10 Conclusion: Suitable Conditions for Observation of Specific MW Effects

References

Chapter 5: Selectivity Modifications Under Microwave Irradiation

5.1 Introduction

5.2 Selective Heating

5.3 Modification of Chemoselectivity and Regioselectivity

5.4 Modification of Stereo- and Enantioselectivity

5.5 Conclusion

Acknowledgments

References

Chapter 6: Elucidation of Microwave Effects: Methods, Theories, and Predictive Models

6.1 Introduction

6.2 Thermal Effects

6.3 Non-Thermal Effects

6.4 Conclusion

Acknowledgments

References

Chapter 7: Microwave Susceptors

7.1 Introduction

7.2 Graphite as a Sensitizer

7.3 Graphite as Sensitizer and Catalyst

7.4 The Use of Silicon Carbide Susceptors in Microwave Chemistry

Acknowledgments

References

Chapter 8: Tools for Monitoring Reactions Performed Using Microwave Heating

8.1 Introduction

8.2 Watching Microwave-Heated Reactions in Real Time

8.3 Monitoring Microwave-Heated Reactions Using In Situ Spectroscopic Tools

8.4 Conclusion

References

Chapter 9: Microwave Frequency Effects in Organic Synthesis

9.1 Introduction

9.2 Historical Review of Microwave Frequency Effects in Chemical Reactions

9.3 Microwave Chemical Reaction Apparatus Operating at Various Frequencies

9.4 Frequency Effects and Heating Efficiency in Various Solutions

9.5 Examples of Chemical Reactions Impacted by Microwave Frequency Effects

9.6 Conclusion

Acknowledgments

References

Part II: Applications of Microwave Irradiation

Chapter 10: Organic Synthesis Using Microwaves and Supported Reagents

10.1 Introduction

10.2 Microwave-Accelerated Solvent-Free Organic Reactions

10.3 Protection–Deprotection Reactions

10.4 Condensation Reactions

10.5 Isomerization and Rearrangement Reactions

10.6 Diels–Alder Cycloaddition of a Triazole Ring

10.7 Addition Reactions

10.8 Oxidation Reactions – Oxidation of Alcohols and Sulfides

10.9 Reduction Reactions

10.10 Synthesis of Heterocyclic Compounds

10.11 Miscellaneous Reactions

10.12 Conclusion

References

Chapter 11: Gaseous Reactants in Microwave-Assisted Synthesis

11.1 Introduction

11.2 Liquid-Phase Synthesis

11.3 Wet Air Oxidation

11.4 Gas-Phase Synthesis

11.5 Waste Gas Treatment

11.6 Conclusion and Outlook

References

Chapter 12: Microwaves and Electrochemistry

12.1 Introduction to Microwave Assisted Electrode Processes

12.2 Macroelectrode Processes in the Presence of Microwaves

12.3 Microelectrode Processes in the Presence of Microwaves

12.4 Junction-Electrode Processes in the Presence of Microwaves

12.5 Electrochemical Flow Reactor Processes in the Presence of Microwaves

12.6 Future Trends

References

Chapter 13: The Combined Use of Microwaves and Ultrasound: Methods and Practice

13.1 Introduction

13.2 The Search for the Best Coupling

13.3 Microwave- and Ultrasound-Enhanced Synthesis and Catalysis

13.4 Formation of Advanced Materials

13.5 Conclusion and Future Trends

References

Chapter 14: Microwaves in Photochemistry and Photocatalysis

14.1 Introduction

14.2 UV/Vis Discharges in Electrodeless Lamps

14.3 Microwave Photochemical and Photocatalytic Reactors

14.4 Interactions of UV/Vis and Microwave Radiation with Matter

14.5 Microwave Photochemistry and Photocatalysis

14.6 Applications

14.7 Future Trends

Acknowledgments

References

Title Page

Contents to Volume 2

Preface

List of Contributors

Chapter 15: Microwave-Heated Transition Metal-Catalyzed Coupling Reactions

15.1 Introduction

15.2 Cross-Coupling Reactions

15.3 Arylation of C, N, O, S, P and Halogen Nucleophiles

15.4 The Heck Reaction

15.5 Carbonylative Coupling Reactions

15.6 Conclusion

Acknowledgments

References

Chapter 16: Microwaves in Heterocyclic Chemistry

16.1 Introduction

16.2 Microwave-Assisted Synthesis of Four- and Five-Membered Systems with One and More Than Two Heteroatoms

16.3 Six-Membered Systems with One Heteroatom

16.4 Six-Membered Systems with More Than One Heteroatom

16.5 Bicyclic Systems (Six Atoms + Five Atoms) with One, Two, and More Heteroatoms

16.6 Bicyclic Systems (Six Atoms + Six Atoms) with One, Two, and More Heteroatoms

16.7 Seven Membered Heterocycles with Two Heteroatoms: Microwave-Assisted Synthesis of Benzodiazepines and Related Compounds

16.8 Microwave-Assisted Nucleophilic Aromatic Substitution (SNAr)

16.9 Microwaves in Total Synthesis of Bioactive Heterocycles

16.10 Conclusion

Acknowledgments

References

Chapter 17: Microwave-Assisted Cycloaddition Reactions

17.1 Introduction

17.2 Microwave-Assisted [3 + 2]-Cycloaddition Reactions

17.3 Microwave-Assisted [4 + 2]-Cycloaddition Reactions

17.4 Microwave-Assisted [2 + 2]-Cycloaddition Reactions

17.5 Other Microwave-Assisted Cycloaddition Reactions

17.6 Conclusion

Acknowledgments

References

Chapter 18: Microwave-Assisted Heterogeneously Catalyzed Processes

18.1 Introduction

18.2 Acid-Catalyzed Reactions

18.3 Based-Catalyzed Reactions

18.4 Redox Reactions

18.5 Coupling Reactions

18.6 Other Reactions

18.7 Conclusion and Outlook

Acknowledgments

References

Chapter 19: Microwaves in the Synthesis of Natural Products

19.1 Introduction

19.2 Total Synthesis of Various Classes of Natural Products

19.3 Total Synthesis of Various Classes of Alkaloids

19.4 Synthesis of Analogs of Natural Products

19.5 Synthesis of Building Blocks (Subunits) for Natural Product

19.6 Conclusion and Overview

References

Chapter 20: Microwave-Enhanced Synthesis of Peptides, Proteins, and Peptidomimetics

20.1 Introduction

20.2 Synthesis Approaches

20.3 Microwave Theory for Peptide Synthesis

20.4 Nα-Amino Protection Strategies

20.5 Amide Bond Formation

20.6 Modified Peptides

20.7 Non-Natural Peptidomimetics

20.8 Resin Cleavage

20.9 Recommended Protocols

20.10 Conclusion

20.11 Abbreviations

Acknowledgment

References

Chapter 21: A Journey into Recent Microwave-Assisted Carbohydrate Chemistry

21.1 Introduction

21.2 Acylation

21.3 Glycosylation

21.4 Halogenation-Dehalogenation

21.5 Sulfation

21.6 Anomerization

21.7 Synthesis of Sugar Derivatives

21.8 Synthesis of Biologically and Pharmacological Active Compounds

21.9 Synthesis of Heterocycles

21.10 Synthesis of Phosphorus Compounds

21.11 Synthesis of Nanostructured Materials

21.12 Conclusion

Acknowledgment

References

Chapter 22: Polymer Chemistry Under Microwave Irradiation

22.1 Introduction

22.2 Synthesis of Polymers Under Microwave Irradiation

22.3 Conclusion

References

Chapter 23: Application of Microwave Irradiation in Carbon Nanostructures

23.1 Fullerenes Under Microwave Irradiation

23.2 Microwave Irradiation in Carbon Nanotubes

23.3 Microwave Irradiation in Other Carbon Nanoforms

23.4 Conclusion

References

Chapter 24: Microwave-Assisted Multicomponent Reactions in the Synthesis of Heterocycles

24.1 Introduction

24.2 Nitrogen Heterocycles

24.3 Oxygen-Containing Rings

24.4 Sulfur-Containing Rings

24.5 Oxygen- and Nitrogen-Containing Rings

24.6 Carbacycles

24.7 Multiple Ring Systems

24.8 Conclusion

24.9 Abbreviations

References

Chapter 25: Microwave-Assisted Continuous Flow Organic Synthesis (MACOS)

25.1 Introduction

25.2 Equipment

25.3 MACOS in Homogeneous System

25.4 MACOS in Heterogeneous System

25.5 Conclusion and Outlook

References

Index

Related Titles

Series Editor: Anastas, P. T. Volume Editors: Boethling, R., Voutchkova, A., Li, C.-J., Perosa, A., Selva, M. (eds.)

Handbook of Green Chemistry - Green Processes

3-Volume Set 2012

ISBN: 978-3-527-31576-5

Gruttadauria, M., Giacalone, F. (eds.)

Catalytic Methods in Asymmetric Synthesis

Advanced Materials, Techniques, and~Applications

2011

ISBN: 978-0-470-64136-1

Kappe, C. O., Dallinger, D., Murphree, S. S.

Practical Microwave Synthesis for Organic Chemists

Strategies, Instruments, and Protocols

2009

ISBN: 978-3-527-32097-4

Bogdal, D., Prociak, A.

Microwave-Enhanced Polymer Chemistry and Technology

2007

ISBN: 978-0-8138-2537-3

The Editor

Prof. Antonio de la Hoz

Universidad de Castilla-la Mancha

Facultad de Química

Departamento de Química Orgánica

13071 Ciudad Real

Spain

Dr. André Loupy

Université Paris-Sud

Laboratoire des Réactions Sélectives sur Supports

Batiment 410

91405 Orsay Cedex

France

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2012 Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form — by photoprinting, microfilm, or any other means — nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33116-1

ePDF ISBN: 978-3-527-65134-4

ePub ISBN: 978-3-527-65133-7

mobi ISBN: 978-3-527-65132-0

oBook ISBN: 978-3-527-65131-3

Contents to Volume 1

Preface

Since the publication of the first edition of this book in 2002, the use of microwaves in organic synthesis has today become a general and useful methodology, with application in almost all kinds of reactions in organic chemistry and also in many other fields of chemistry, not covered in this book.

The two famous pioneering papers from Gedye and Giguere in 1986 are generally considered the beginning of the use of this methodology in organic synthesis. Since then, many authors have contributed to its development and spreading throughout the world. We would highlight the pioneering work of Strauss in Australia, Loupy/Bram and Hamelin in Europe, and Varma in the USA – all of them authors in the present and previous editions of this book. Today, a new generation of very active and highly competent chemists has extended the applications of microwave irradiation and the development of new instruments and methodologies.

The introduction of microwave instruments specially designed for chemistry was one of the milestones in the development of this methodology. Since their introduction, the number of papers dedicated to microwave-assisted organic chemistry has increased exponentially. Thanks to these instruments, careful control of all reaction parameters, temperature, pressure, incident power, and so on, is now possible. In this way, reproducibility of microwave-assisted reactions, the major drawback of this methodology when using domestic-type ovens, was achieved. Moreover, these new instruments were fitted for laboratory work with high security.

This third edition consists of 25 chapters seriously restructured and updated in relation to the previous editions, nine chapters being completely new.

The first part of the book is dedicated to fundamental aspects of microwave irradiation in organic synthesis. First, a revision and description of materials–wave interactions is presented (Chapter 1), including interactions from molecules to macromolecules to solids and colloidal suspensions. Chapter 2 is dedicated to microwave technology and instruments including scale-up, while Chapter 3 is dedicated to the design of microwave-assisted processes. The issue of microwave effects (possibly nonthermal) is discussed in Chapter 4; methods, theories, and predictive models are collected in a new chapter (Chapter 6). The modifications of selectivity under microwave irradiation are reviewed in Chapter 5. Some important aspects of microwave methodology are collected in the new Chapters 7–9 such as the use of microwave susceptors (Chapter 7), methods for monitoring of microwave-assisted reactions (Chapter 8), and the influence of variable frequency in organic chemistry (Chapter 9).

The second part is dedicated to applications of microwave irradiation and its synergic use with other enabling technologies. In this regard, new chapters have been included on microwaves and electrochemistry (Chapter 12), ultrasound (Chapter 13), and flow methodologies (Chapter 25). Revised chapters were prepared on reactions on solid supports (Chapter 10) and photochemistry and photocatalysis under microwaves (Chapter 14). Some classic applications, in which microwave irradiation has afforded spectacular results, have been revised and extended, such as transition metal-catalyzed reactions (Chapter 15), heterocyclic chemistry (Chapter 16), cycloaddition reactions (Chapter 17), carbohydrate chemistry (Chapter 21), and multicomponent reactions (Chapter 24). Applications to solid-phase peptide synthesis (Chapter 20), polymer chemistry (Chapter 22), and carbon nanostructured materials (Chapter 23) have been substantially modified since these very active areas have found many new applications. Finally, new chapters dealing with applications to gaseous reagents (Chapter 11), heterogeneous catalysis (Chapter 18), and the synthesis of natural products (Chapter 19) have been added.

We wish to thank sincerely all our colleagues and friends involved in the realization of this book. We want to express sincerely to them, all eminent specialists, our gratitude for agreeing to devote their competence and time to submitting and reviewing chapters to ensure the success of this book.

We would like especially to dedicate this book to the memory two authors in the first and second editions recently deceased: Professor Jack Hamelin, our “Jack Pote” (in French, pote means friend), and Mohamed Soufiaoui, our “Great Friend.” Chapters 16 and 17 are dedicated to them. They were excellent friends as well as extraordinary researchers with important dedication and engagement with their respective universities and countries (France and Morocco).

Antonio de la Hoz and André Loupy

List of Contributors

Jesus Alcázar
Janssen-Cilag SA
Janssen Research and Development
C/Jarama 75
45007 Toledo
Spain
R.B. Nasir Baig
US Environmental Protection Agency
Sustainable Technology Division
National Risk Management Research Laboratory
26 West Martin Luther King Drive
Cincinnati
OH 45268
USA
Alina Mariana Balu
Universidad de Córdoba
Departamento de Química Orgánica
Campus de Excelencia Agroalimentario de Rabanales (CeiA3) Edificio Marie Curie
Carretera Nacional IV-A
Km 396
Córdoba 14014
Spain
Jitender B. Bariwal
ISF College of Pharmacy
Department of Medicinal Chemistry
Ferozepur G.T. Road
Moga
Punjab 142001
India
Jean Pierre Bazureau
Université de Rennes 1
Sciences Chimiques de Rennes
UMR CNRS 6226
Groupe Ingenierie Chimique et Molecules pour le Vivant (ICMV)
35042 Rennes
France
Rachid Benhida
Université de Nice–Sophia Antipolis
UMR 7272 CNRS
Equipe Molécules Bioactives
Institut de Chimie de Nice
28 avenue de Valrose
06108 Nice cedex 2
France
Thierry Besson
Université de Rouen
Laboratoire C.O.B.R.A., CNRS
UMR 6014 & FR 3038
Institut de Recherche en Chimie Organique Fine (IRCOF)
rue Tesnière
76130 Mont Saint Aignan
France
Dariusz Bogdal
Politechnika Krakowska
Polymer Science and Technology
ul. Warszawska 24
31-155 Krakow
Poland
Werner Bonrath
DSM Nutritional Products Ltd.
Process R&D, Bldg. 214, P.O. Box 2676
CH-4002 Basel
Switzerland and
Wurmisweg 576
CH-4303 Kaiseraugst
Switzerland
Khalid Bougrin
Université Mohammed V–Agda
Faculté des Sciences
Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique URAC23
4 avenue Ibn Battouta
BP 1014 Rabat
CP 10000
Morocco
Guillaume Burgy
Université de Rennes 1
Sciences Chimiques de Rennes
UMR CNRS 6226
Groupe Ingenierie Chimique et Molecules pour le Vivant (ICMV)
35042 Rennes
France
Jalpa J. Bariwal
ISF College of Pharmacy
Department of Medicinal Chemistry
Ferozepur G.T. Road
Moga
Punjab 142001
India
José Ramón Carrillo
Universidad de Castilla-La Mancha
Facultad de Ciencias y Tecnologías Químicas
Avda. Camilo José Cela 10
13071 Ciudad Real
Spain
Daniel Carrié
Université de Rennes 1
Sciences Chimiques de Rennes
UMR CNRS 6226
Groupe Ingenierie Chimique et Molecules pour le Vivant (ICMV)
35042 Rennes
France
Maria Assunta Chiacchio
Università di Catania
Dipartimento di Scienze del Farmaco
Viale A. Doria 6
95125 Catania
Italy
Pedro Cintas
Universidad de Extremadura
Facultad de Ciencias
Departamento de Química Orgánica e Inorgánica
Avenida de Elvas s/n
06006 Badajoz
Spain
Jonathan M. Collins
CEM Corporation
3100 Smith Farm Road
Matthews
NC 28104
USA
Richard G. Compton
Oxford University
Physical and Theoretical Chemistry Laboratory
South Parks Road
Oxford
OX1 3TU
UK
Antonino Corsaro
Università di Catania
Dipartimento di Scienze del Farmaco
Viale A. Doria 6
95125 Catania
Italy
Giancarlo Cravotto
Università di Torino
Dipartimento di Scienza e Tecnologia del Farmaco
Via P. Giuria 9
10125 Torino
Italy
Vladimír Církva
Academy of Sciences of the Czech Republic
Institute of Chemical Process Fundamentals
Rozvojová 135
165 02 Prague
Czech Republic
Pilar de la Cruz
Instituto de Nanociencia
Nanotecnología y Materiales Moleculares (INAMOL-UCLM)
Departamento de Química Inorgánica
Orgánica y Bioquímica
45071 Toledo
Spain
Sara E.C. Dale
University of Bath
Department of Chemistry
Bath
BA2 7AY
UK
ángel Díaz-Ortiz
Universidad de Castilla-La Mancha
Facultad de Ciencias y Technologías Químicas
Avda. Camilo José Cela 10
13071 Ciudad Real
Spain
María Victoria Gómez
Universidad de Castilla-La Mancha
Facultad de Ciencias y Technologías Químicas
Avda. Camilo José Cela 10
13071 Ciudad Real
Spain
Solène Guihéneuf
Université de Rennes 1
Sciences Chimiques de Rennes
UMR CNRS 6226
Groupe Ingenierie Chimique et Molecules pour le Vivant (ICMV)
35042 Rennes
France
Trevor A. Hamlin
University of Connecticut
Department of Chemistry
55 North Eagleville Road
Storrs
CT 06269-3060
USA
María Antonia Herrero
Universidad de Castilla-La Mancha
Facultad de Ciencias Químicas
Avda. Camilo José Cela 10
13071 Ciudad Real
Spain
Satoshi Horikoshi
Sophia University
Faculty of Science and Technology
Department of Materials and Life Sciences
7-1 Kioicho
Chiyodaku
Tokyo 102-8554
Japan
Antonio de la Hoz
Universidad de Castilla-La Mancha
Facultad de Ciencias y Technologías Químicas
Avda. Camilo José Cela 10
13071 Ciudad Real
Spain
Sarah Komaty
Université de Rennes 1
Sciences Chimiques de Rennes
UMR CNRS 6226
Groupe Ingenierie Chimique et Molecules pour le Vivant (ICMV)
35042 Rennes
France
Art Kruithof
Amsterdam Institute for Molecules
Medicines and Systems
Department of Chemistry & pharmkaceutical sciences
Boelelaan 1083
1081HV Amsterdam
The Netherlands
C. Oliver Kappe
Karl Franzens University Graz
Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry
Heinrichstrasse 28
8010 Graz
Austria
Jean Martial L'Helgoual'ch
Université de Rennes 1
Sciences Chimiques de Rennes
UMR CNRS 6226
Groupe Ingenierie Chimique et Molecules pour le Vivant (ICMV)
35042 Rennes
France
Fernando Langa
Instituto de Nanociencia
Nanotecnología y Materiales Moleculares (INAMOL-UCLM)
Departamento de Química Inorgánica
Orgánica y Bioquímica
45071 Toledo
Spain
Mats Larhed
Uppsala University
Biomedical Centre (BMC)
Department of Medicinal Chemistry
Organic Pharmaceutical Chemistry
Box 574, Uppsala
SE-75123
Sweden
Nicholas E. Leadbeater
University of Connecticut
Department of Chemistry
55 North Eagleville Road
Storrs
CT 06269-3060
USA
Emmanuelle Limanton
Université de Rennes 1
Sciences Chimiques de Rennes
UMR CNRS 6226
Groupe Ingenierie Chimique et Molecules pour le Vivant (ICMV)
35042 Rennes
France
André Loupy
Université Paris-Sud 11
Laboratoire des Réactions Sélectives sur Supports
Laboratoire de Chimie des procédés et Substances Naturelles
ICMMO
Bâtiment 410
91405 Orsay
France
Rafael Luque
Universidad de Córdoba
Departamento de Química Orgánica
Campus de Excelencia Agroalimentario de Rabanales (CeiA3) Edificio Marie Curie
Carretera Nacional IV-A, Km 396
Córdoba 14014
Spain
Duncan J. Macquarrie
The University of York
Green Chemistry Centre of Excellence
York
YO10 5DD
UK
Frank Marken
University of Bath
Department of Chemistry
Bath
BA2 7AY
UK
Juan de M. Muñoz
Janssen-Cilag SA
Janssen Research and Development
C/Jarama 75
45007 Toledo
Spain
Peter Nilsson
Uppsala University
Biomedical Centre (BMC)
Department of Medicinal Chemistry
Organic Pharmaceutical Chemistry
Box 574, Uppsala
SE-75123
Sweden
Luke R. Odell
Uppsala University
Biomedical Centre (BMC)
Department of Medicinal Chemistry
Organic Pharmaceutical Chemistry
Box 574, Uppsala
SE-75123
Sweden
Kristofer Olofsson
Medical Products Agency
Box 26
Uppsala
SE-75103
Sweden
Bernd Ondruschka
Friedrich-Schiller University Jena
Department of Technical Chemistry and Environmental Chemistry
Lessingstrasse 12
07743 Jena
Germany
Romano V.A. Orru
Amsterdam Institute for Molecules
Medicines and Systems
Department of Chemistry & pharmkaceutical sciences
Boelelaan 1083
1081HV Amsterdam
The Netherlands
Ludovic Paquin
Université de Rennes 1
Sciences Chimiques de Rennes
UMR CNRS 6226
Groupe Ingenierie Chimique et Molecules pour le Vivant (ICMV)
35042 Rennes
France
Laurence Perreux
Université Paris-Sud 11
Laboratoire des Réactions Sélectives sur Supports
Laboratoire de Chimie des procédés et Substances Naturelles
ICMMO
Bâtiment 410
91405 Orsay
France
Alain Petit
Université Paris-Sud 11
Laboratoire des Réactions Sélectives sur Supports
Laboratoire de Chimie des procédés et Substances Naturelles
ICMMO
Bâtiment 410
91405 Orsay
France
Urszula Pisarek
Politechnika Krakowska
Polymer Science and Technology
ul. Warszawska 24
31-155 Krakow
Poland
Venerando Pistarà
Università di Catania
Dipartimento di Scienze del Farmaco
Viale A. Doria 6
95125 Catania
Italy
Pierre Pribetich
Groupe d'Etudes et de Recherches sur les Microondes (GERM)- Laboratoire
Interdisciplinaire Carnot de Bourgogne (ICB)
UMR 6303 CNRS-Université de Bourgogne
9 Av. A. Savary
BP 47870
F-21078 DIJON Cedex
France
Pilar Prieto
Universidad de Castilla-La Mancha
Facultad de Ciencias y Technologías Químicas
Avda. Camilo José Cela 10
13071 Ciudad Real
Spain
Giovanni Romeo
Università di Messina
Dipartimento Farmaco-Chimico
Viale SS. Annunziata 6
98168 Messina
Italy
Eelco Ruijter
Amsterdam Institute for Molecules
Medicines and Systems
Department of Chemistry & pharmkaceutical sciences
Boelelaan 1083
1081HV Amsterdam
The Netherlands
Francesco Russo
Uppsala University
Biomedical Centre (BMC)
Department of Medicinal Chemistry
Organic Pharmaceutical Chemistry
Box 574, Uppsala
SE-75123
Sweden
Jason R. Schmink
Department of Chemistry
Bryn Mawr College, 101 North Merion Avenue
Bryn Mawr
PA 19010
USA
Peter Scholz
Friedrich-Schiller University Jena
Institute for Technical Chemistry and Environmental Chemistry (ITUC)
Lessingstrasse 12
07743Jena
Germany
Nick Serpone
Universita di Pavia
Dipartimento di Chimica
Gruppo Fotochimico
via Taramelli 10
27100 Pavia
Italy
Achim Stolle
Friedrich-Schiller University Jena
Institute for Technical Chemistry and Environmental Chemistry (ITUC)
Lessingstrasse 12
07743 Jena
Germany
Didier Stuerga
Groupe d'Etudes et de Recherches sur les Microondes (GERM)-Labortoire Interdisciplinaire Carnot de Bourgogne (ICB)
UMR 6303 CNRS-Université de Bourgogne
9 Av. A. Savary
BP 47870
F-21078 DIJON Cedex
France
Ana Sánchez Migallón
Universidad de Castilla-La Mancha
Facultad de Ciencias y Technologías Químicas
Avda. Camilo José Cela 10
13071 Ciudad Real
Spain
Erik V. Van der Eycken
Katholieke Universiteit Leuven
Department of Chemistry
Laboratory for Organic and Microwave-Assisted Chemistry (LOMAC)
Celestijnenlaan 200F
Leuven 3001
Belgium
Rajender S. Varma
US Environmental Protection Agency
Sustainable Technology Division
National Risk Management Research Laboratory
26 West Martin Luther King Drive
Cincinnati
OH 45268
USA
Karime Wacothon Coulibaly
Université de Rennes 1
Sciences Chimiques de Rennes
UMR CNRS 6226
Groupe Ingenierie Chimique et Molecules pour le Vivant (ICMV)
35042 Rennes
France

Part I

Fundamental Aspects of Microwave Irradiation in Organic Chemistry

Chapter 1

Microwave–Materials Interactions and Dielectric Properties: From Molecules and Macromolecules to Solids and Colloidal Suspensions

Didier Stuerga

1.1 Fundamentals of Microwave–Matter Interactions

The objective of the first part of the book is to explain in a chemically intelligible fashion the physical origin of microwave–matter interactions and in this chapter especially the theory of dielectric relaxation of polar molecules. This third revised edition contains approximately 30% of new material in order to cover a large area of reaction media able to be heated by microwave irradiation. Colloidal suspensions and highly functional polymers are now included. The accounts presented in the various chapters are intended to be illustrative rather than exhaustive. They are planned to serve as introductions to the various aspect of interest for comprehensive microwave heating. In this sense, the treatment is selective and to some extent arbitrary. Hence the reference lists contain historical papers and valuable reviews to which the reader anxious to pursue further particular aspects should certainly turn.

It is the author's conviction, confirmed over many years of teaching experience, that it is much safer – at least for those who rate not trained physicists – to deal intelligently with oversimplified models than to use sophisticated methods which require experience before becoming productive. However, and in response to comments on the first and second editions, the author has given more technical comments in relation to a better understanding of concepts and ideas. These paragraphs can be omitted depending on the level of experience of the reader. They are preceded by two type of logo: TOOLS and CONCEPTS.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!