162,99 €
Molecular modeling encompasses applied theoretical approaches and computational techniques to model structures and properties of molecular compounds and materials in order to predict and / or interpret their properties. The modeling covered in this book ranges from methods for small chemical to large biological molecules and materials. With its comprehensive coverage of important research fields in molecular and materials science, this is a must-have for all organic, inorganic and biochemists as well as materials scientists interested in applied theoretical and computational chemistry. The 28 chapters, written by an international group of experienced theoretically oriented chemists, are grouped into four parts: Theory and Concepts; Applications in Homogeneous Catalysis; Applications in Pharmaceutical and Biological Chemistry; and Applications in Main Group, Organic and Organometallic Chemistry. The various chapters include concept papers, tutorials, and research reports.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 828
Veröffentlichungsjahr: 2011
Contents
Cover
Related Titles
Title Page
Copyright
Preface
List of Contributors
Part One: Theory and Concepts
Chapter 1: Accurate Dispersion-Corrected Density Functionals for General Chemistry Applications
1.1 Introduction
1.2 Theoretical Background
1.3 Examples
1.4 Summary and Conclusions
Acknowledgments
References
Chapter 2: Free-Energy Surfaces and Chemical Reaction Mechanisms and Kinetics
2.1 Introduction
2.2 Elementary Reactions
2.3 Two Consecutive Steps
2.4 Multiple Consecutive Steps
2.5 Competing Reactions
2.6 Catalysis
2.7 Conclusions
References
Chapter 3: The Art of Choosing the Right Quantum Chemical Excited-State Method for Large Molecular Systems
3.1 Introduction
3.2 Existing Excited-State Methods for Medium-Sized and Large Molecules
3.3 Analysis of Electronic Transitions
3.4 Calculation of Static Absorption and Fluorescence Spectra
3.5 Dark States
3.6 Summary and Conclusions
References
Chapter 4: Assigning and Understanding NMR Shifts of Paramagnetic Metal Complexes
4.1 The Aim and Scope of the Chapter
4.2 Basic Theory of Paramagnetic NMR
4.3 Signal Assignments
4.4 Case Studies
References
Chapter 5: Tracing Ultrafast Electron Dynamics by Modern Propagator Approaches
5.1 Charge Migration Processes
5.2 Interatomic Coulombic Decay in Noble Gas Clusters
References
Chapter 6: Natural Bond Orbitals and Lewis-Like Structures of Copper Blue Proteins
6.1 Introduction: Localized Bonding Concepts in Copper Chemistry
6.2 Localized Bonds and Molecular Geometries in Polyatomic Cu Complexes
6.3 Copper Blue Proteins and Localized Bonds
6.4 Summary
References
Chapter 7: Predictive Modeling of Molecular Properties: Can We Go Beyond Interpretation?
7.1 Introduction
7.2 Models and Modeling
7.3 Parameterized Classical and Quantum Mechanical Theories
7.4 Predictive Energies and Structures
7.5 Other Gas-Phase Properties
7.6 Solvent Effects: The Major Problem
7.7 Reaction Selectivity
7.8 Biological and Pharmaceutical Modeling
7.9 Conclusions
Acknowledgments
References
Chapter 8: Interpretation and Prediction of Properties of Transition Metal Coordination Compounds
8.1 Introduction
8.2 Molecular Structure Optimization
8.3 Correlation of Molecular Structures and Properties
8.4 Computation of Molecular Properties
8.5 A Case Study: Electronic and Magnetic Properties of Cyano-Bridged Homodinuclear Copper(II) Complexes
8.6 Conclusions
Acknowledgments
References
Chapter 9: How to Realize the Full Potential of DFT: Build a Force Field Out of It
9.1 Introduction
9.2 Spin-Crossover in Fe(II) Complexes
9.3 Ligand Field Molecular Mechanics
9.4 Molecular Discovery for New SCO Complexes
9.5 Dynamic Behavior of SCO Complexes
9.6 Light-Induced Excited Spin-State Trapping
9.7 Summary and Future Prospects
References
Part two: Applications in Homogeneous Catalysis
Chapter 10: Density Functional Theory for Transition Metal Chemistry: The Case of a Water-Splitting Ruthenium Cluster
10.1 Introduction
10.2 Shortcomings of Present-Day Density Functionals
10.3 Strategies for Constructing Density Functionals
10.4 A Practical Example: Catalytic Water Splitting
10.5 Conclusions
Appendix 10.A: Computational Methodology
Acknowledgments
References
Chapter 11: Rational and Efficient Development of a New Class of Highly Active Ring-Opening Metathesis Polymerization Catalysts
11.1 Introduction
11.2 A New Lead Structure: Introduction of Chelating, Bulky, Electron-Rich Bisphosphines with Small Bite Angles
11.3 ROMP Activity of the Neutral Systems
11.4 Cationic Carbene Complexes: Synthesis and Structure
11.5 Olefin Metathesis with Cationic Carbene Complexes: Mechanistic Considerations
11.6 ROMP Kinetics in Solution
11.7 Summary and Outlook
Acknowledgments
References
Chapter 12: Effects of Substituents on the Regioselectivity of Palladium-Catalyzed Allylic Substitutions: A DFT Study
12.1 Introduction
12.2 Computational Details
12.3 Results and Discussion
12.4 Conclusions
References
Chapter 13: Dicopper Catalysts for the Azide Alkyne Cycloaddition: A Mechanistic DFT Study
13.1 Introduction
13.2 Theoretical Methods
13.3 Discussion of the CuAAC Mechanism
13.4 Conclusion and Summary
References
Chapter 14: From Dynamics to Kinetics: Investigation of Interconverting Stereoisomers and Catalyzed Reactions
14.1 Investigation of Interconversions by Gas Chromatography
14.2 Evaluation Tools
14.3 Investigation of Catalyzed Reactions
14.4 Perspectives
References
Chapter 15: Mechanistic Dichotomies in Coupling–Isomerization–Claisen Pericyclic Domino Reactions in Experiment and Theory
15.1 Introduction
15.2 Computation of the Concluding Intramolecular Diels–Alder Reaction in the Domino Formation of (Tetrahydroisobenzofuran) spiro-Benzofuranones and spiro-Indolones
15.3 Computation of the Pericyclic Dichotomies of Propargyl Tritylethers
15.4 Conclusions
Acknowledgments
References
Part Three: Applications in Pharmaceutical and Biological Chemistry
Chapter 16: Computational Design of New Protein Catalysts
16.1 Introduction
16.2 The Inside-Out Approach
16.3 Catalyst Selection and the Catalytic Unit
16.4 Theozymes
16.5 Scaffold Selection and Theozyme Incorporation
16.6 Design
16.7 Evaluating Matches and Designs
16.8 Experiments
16.9 Successful Enzyme Designs
16.10 Rational Redesign and Directed Evolution of Designed Enzymes with Low Activities
16.11 Summary
References
Chapter 17: Computer- Assisted Drug Design
17.1 Neuraminidase Inhibitors
17.2 Cyclooxygenase Inhibitors
17.3 Concluding Remarks
References
Chapter 18: Statics of Biomacromolecules
18.1 Introduction
18.2 Rigidity Theory and Analysis
18.3 Application of Rigidity Analysis to Biomacromolecules
18.4 Conclusions
References
Chapter 19: Strained Molecules: Insights from Force Distribution Analysis
19.1 Strain in Molecules
19.2 Force Distribution Analysis
19.3 Outlook
References
Chapter 20: Mercury Detoxification by Bacteria: Simulations of Transcription Activation and Mercury–Carbon Bond Cleavage
20.1 Introduction
20.2 Transcription Activation of MerOP by MerR upon Hg(II)-Binding
20.3 Hg–C Bond Cleavage Catalyzed by the MerB
20.4 Summary and Conclusions
Acknowledgments
References
Chapter 21: Elucidation of the Conformational Freedom of Ferrocene Amino Acid (Bio)Conjugates: A Complementary Theoretical and Experimental Approach
21.1 Introduction
21.2 Simple Ferrocene Amino Acid (Bio)Conjugates
21.3 Systems with Amide-Bridged Fca Units
21.4 Modeling Responses to External Stimuli
21.5 Conclusions
References
Part Four: Applications in Main Group, Organic, and Organometallic Chemistry
Chapter 22: Theoretical Investigation of the 13C NMR Chemical Shift–NCN Angle Correlation in N-Heterocyclic Carbenes
22.1 Introduction
22.2 Method Validation
22.3 13C-NMR Chemical Shift –N–C–N Angle Correlation Within Various Carbene Types
22.4 N–C–N Angle-Shielding Tensor Correlations: Carbene A
22.5 Correlation Between N–C–N Angle and HOMO-LUMO Gap ΔE: Carbene A
22.6 Correlations in N-Heterocyclic Carbenes
Acknowledgements
References
Chapter 23: Structures of Azole-Containing Macrocyclic Peptides
23.1 Azoles in Nature and Civilization
23.2 Azole-Containing Macrocyclic Peptides in Nature: Opening New Boundaries in Science
23.3 Achiral Applications of Lissoclinum-Related Macrocyclic Peptides
23.4 Applications of Lissoclinum-Related Macrocyclic Peptides as Chiral Tools
References
Chapter 24: Modeling of Complex Polyketides: Stereochemical Determination by a Combination of Computational and NMR Methods
24.1 Myxobacterial Polyketides
24.2 Development of Computational and NMR Methods for Stereochemical Determination: Case Studies with the Archazolids
24.3 Selected Applications of Combined Computational and NMR Methods for Stereochemical Determination
24.4 Conclusion and Perspectives
References
Chapter 25: Quantifying Building Principles of Borane Clusters
25.1 Introduction
25.2 Structural Features and Energy Penalties
25.3 Macropolyhedral Boranes
25.4 Conclusions
References
Chapter 26: Hydrogenation and Dehydrogenation of Dinuclear Boron- and Gallium Hydrides: Quantum Chemical Calculations and Experiments
26.1 Dihydrogen Activation with Main-Group Element Compounds
26.2 Preliminary Quantum Chemical Calculations
26.3 Experimental Studies in Concert with Quantum Chemical Calculations
References
Chapter 27: Cages and Clusters of Indium: Spherical Aromaticity?
27.1 Introduction
27.2 Synthesis of Polyhedral Indium Clusters
27.3 Quantum Chemical Calculations
27.4 Summary
References
Chapter 28: Lipophilic Anions
References
Index
Related Titles
Comba, P.; Hambley, T. W.; Martin, B.
Molecular Modeling of Inorganic Compounds
Third, Completely Revised and Enlarged
Edition
2009
ISBN: 978-3-527-31799-8
Lipkowitz, K. B.
Reviews in Computational Chemistry
Volume 27
2011
ISBN: 978-0-470-58714-0
Grunenberg, J. (ed.)
Computational Spectroscopy
Methods, Experiments and Applications
2010
ISBN: 978-3-527-32649-5
Vaz Junior, M., de Souza Neto, E. A.,
Munoz-Rojas, P. A. (eds.)
Advanced Computational
Materials Modeling
From Classical to Multi-Scale Techniques
2010
ISBN: 978-3-527-32479-8
Matta, C. F. (ed.)
Quantum Biochemistry
2010
ISBN: 978-3-527-32322-7
Heine, T., Joswig, J.-O., Gelessus, A.
Computational Chemistry Workbook
Learning Through Examples
2009
ISBN: 978-3-527-32442-2
Reiher, M., Wolf, A.
Relativistic Quantum Chemistry
The Fundamental Theory of Molecular
Science
2009
ISBN: 978-3-527-31292-4
Hinchliffe, A.
Molecular Modelling for Beginners
Second Edition
2008
ISBN: 978-0-470-51313-2
Ross, R. B., Mohanty, S. (eds.)
Multiscale Simulation Methods for Nanomaterials
2008
ISBN: 978-0-470-10528-3
Koch, W., Holthausen, M.C.
A Chemist´s Guide to Density Functional Theory
2001
ISBN: 978-3-527-30372-4
All books published by >Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.
© 2011 Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form -- by photoprinting, microfilm, or any other means -- nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
ISBN Print: 978-3-527-33021-8
ISBN ePDF: 978-3-527-63642-6
ISBN ePub: 978-3-527-63641-9
ISBN Mobi: 978-3-527-63643-3
ISBN oBook: 978-3-527-63640-2
Preface
“Modern preparatively oriented molecular scientists design new molecules, interpret observed properties and compare them with those of known compounds, using widely available programs based on molecular mechanics, molecular dynamics, DFT, ab initio quantum chemistry, and also including data mining, spectra simulations and statistical analysis. Experimental chemists with skills in computational chemistry and a thorough understanding of the underlying theory therefore have a considerable advantage in their professional career.”
This is the basis of the DFG-funded Graduate College “Modeling of Molecular Properties,” which is conducted at the chemical institutes of the University of Heidelberg, and has helped to establish a strong culture for the combination of theory and experiment in molecular chemistry. This book has been written by and for the participants of the International Conference on Molecular Modeling, organized as a final meeting of the Heidelberg Graduate College on Molecular Modeling, and also to celebrate the 625th birthday of Heidelberg University and the International Year of Chemistry, 2011.
The areas covered include modeling and scientific computation for molecular chemistry, biological systems and material sciences, based on quantum mechanics (density functional theory and ab initio quantum theory), empirical molecular modeling (MM, MD), and general methods such as data mining, statistical analysis, spectra simulations and structure–property correlations. That is, theory, applied theory, and computational chemistry in a broad sense and applied to various fields related to the chemical sciences.
The 28 chapters, written by an international group of experienced theoretically oriented chemists, are grouped into four parts: “Theory and Concepts”; “Applications in Homogeneous Catalysis”; “Applications in Pharmaceutical and Biological Chemistry”; and “Applications in Main Group, Organic and Organometallic Chemistry.” The various chapters include concept papers, tutorials, and research reports.
I am very grateful to all of the authors for providing their excellent contributions, to Marlies von Schönebeck-Schilly and Karin Stelzer for their much appreciated help with handling the manuscripts, and to Gudrun Walter and Lesley Belfit from Wiley-VCH for their excellent collaboration.
Heidelberg January 2011
Peter Comba
List of Contributors
Regina Berg
Universität Heidelberg
Organisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Michael Bessel
Universität Heidelberg
Organisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Martina Bühler
Universität Heidelberg
Anorganisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Lorenz S. Cederbaum
Universität Heidelberg
Theoretische Chemie
Im Neuenheimer Feld 229
69120 Heidelberg
Germany
Nihan Çelebi-Ölçüm
University of California, Los Angeles
Department of Chemistry and Biochemistry
607 Charles E. Young Drive East
Los Angeles, CA 90095-1569
USA
Timothy Clark
Friedrich-Alexander-Universität Erlangen-Nürnberg
Computer-Chemie-Centrum and Excellence Cluster “Engineering of Advanced Materials”
Nägelsbachstrasse 25
91052 Erlangen
Germany
Peter Comba
Universität Heidelberg
Anorganisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Robert James Deeth
University of Warwick
Department of Chemistry
Coventry CV4 7AL
UK
Sandra Dreisigacker
Universität Heidelberg
Organisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Andreas Dreuw
Johann Wolfgang Goethe-Universität
Institut für Physikalische und Theoretische Chemie
Max von Laue Str. 7
60438 Frankfurt am Main
Germany
Daniel M. D'Souza
The University of Edinburgh
School of Chemistry
The King's Buildings, West Mains Road
Edinburgh EH9 3JJ
UK
Markus Enders
Universität Heidelberg
Anorganisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Simone Fulle
Heinrich-Heine-University Dusseldorf
Institute of Pharmaceutical and Medicinal Chemistry
Department of Mathematics and Natural Sciences
Universitätsstrasse 1
40225 Düsseldorf
Germany
Lars Goerigk
Organisch-Chemisches Institut der Universität Münster
Theoretische Organische Chemie
Corrensstraße 40
48149 Münster
Germany
and
NRW Graduate School of Chemistry
Wilhelm-Klemm-Straße 10
48149 Münster
Germany
Holger Gohlke
Heinrich-Heine-University Dusseldorf
Institute of Pharmaceutical and Medicinal Chemistry
Department of Mathematics and Natural Sciences
Universitätsstrasse 1
40225 Düsseldorf
Germany
Frauke Gräter
Heidelberg Institute for Theoretical Studies gGmbH
Molecular Biomechanics
Schloss-Wolfsbrunnenweg 35
69118 Heidelberg
Germany
and
Klaus-Tschira-Lab
MPG-CAS Partner Institute for Computational Biology
320 Yueyang Lu
200031 Shanghai
China
Stefan Grimme
Organisch-Chemisches Institut der Universität Münster
Theoretische Organische Chemie
Corrensstraße 40
48149 Münster
Germany
Hao-Bo Guo
Oak Ridge National Laboratory
UT/ORNL Center for Molecular Biophysics, P.O. Box 2008
Oak Ridge, TN 37831
USA
Gebhard Haberhauer
Universität Duisburg-Essen
Fakultät für Chemie
Institut für Organische Chemie
Universitätsstrasse 7
45117 Essen
Germany
Philipp H.P. Harbach
Johann Wolfgang Goethe-Universität
Institut für Physikalische und Theoretische Chemie
Max von Laue Str. 7
60438 Frankfurt am Main
Germany
Jeremy N. Harvey
University of Bristol
School of Chemistry and Centre for Computational Chemistry
Cantock's Close
Bristol BS8 1TS
UK
Katja Heinze
Johannes Gutenberg University of Mainz
Department of Analytical and Inorganic Chemistry
Duesbergweg 10-14
55128 Mainz
Germany
Guenter Helmchen
Universität Heidelberg
Organisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Hans-Jörg Himmel
Universität Heidelberg
Anorganisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Matthias Hofmann
Universität Heidelberg
Anorganisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Peter Hofmann
Universität Heidelberg
Organisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Hans-Dieter Höltje
Heinrich-Heine-University
Institute for Pharmaceutical and Medicinal Chemistry Düsseldorf
Universitätsstrasse 1
40225 Düsseldorf
Germany
Kendal N. Houk
University of California, Los Angeles
Department of Chemistry and Biochemistry
607 Charles E. Young Drive East
Los Angeles, CA 90095-1569
USA
Kristina Hüttinger
Johannes Gutenberg University of Mainz
Department of Analytical and Inorganic Chemistry
Duesbergweg 10-14
55128 Mainz
Germany
Scott A. Johnson
University of California, Los Angeles
Department of Chemistry and Biochemistry
607 Charles E. Young Drive East
Los Angeles, CA 90095-1569
USA
Alexander Johs
Oak Ridge National Laboratory
Environmental Sciences Division
Oak Ridge, TN 37831
USA
Seonah Kim
University of California, Los Angeles
Department of Chemistry and Biochemistry
607 Charles E. Young Drive East
Los Angeles, CA 90095-1569
USA
Gert Kiss
University of California, Los Angeles
Department of Chemistry and Biochemistry
607 Charles E. Young Drive East
Los Angeles, CA 90095-1569
USA
Doris L. Klein
Heinrich-Heine-University Dusseldorf
Institute of Pharmaceutical and Medicinal Chemistry
Department of Mathematics and Natural Sciences
Universitätsstrasse 1
40225 Düsseldorf
Germany
Alexander I. Kuleff
Universität Heidelberg
Theoretische Chemie
Im Neuenheimer Feld 229
69120 Heidelberg
Germany
Doris Kunz
Eberhard Karls Universität Tübingen
Institut für Anorganische Chemie
Auf der Morgenstelle 18
72076 Tübingen
Germany
Clark R. Landis
University of Wisconsin
Department of Chemistry
1101 University Avenue
Madison, WI 53706
USA
Gerald Linti
Universität Heidelberg
Anorganisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Bernhard Mayer
Heinrich-Heine-Universität Düsseldorf
Institut für Makromolekulare Chemie und Organische Chemie
Lehrstuhl für Organische Chemie
Universitätsstrasse 1
40225 Düsseldorf
Germany
Dirk Menche
Universität Heidelberg
Organisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Kirill Monakhov
Universität Heidelberg
Anorganisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Thomas J.J. Müller
Heinrich-Heine-Universität Düsseldorf
Institut für Makromolekulare Chemie und Organische Chemie
Lehrstuhl für Organische Chemie
Universitätsstrasse 1
40225 Düsseldorf
Germany
Michael Nonnenmacher
Universität Heidelberg
Organisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Geoffrey Nosrati
University of California, Los Angeles
Department of Chemistry and Biochemistry
607 Charles E. Young Drive East
Los Angeles, CA 90095-1569
USA
Jerry M. Parks
Oak Ridge National Laboratory
UT/ORNL Center for Molecular Biophysics, P.O. Box 2008
Oak Ridge, TN 37831
USA
Robert Paton
University of California, Los Angeles
Department of Chemistry and Biochemistry
607 Charles E. Young Drive East
Los Angeles, CA 90095-1569
USA
Markus Pernpointner
Universität Heidelberg
Theoretische Chemie
Im Neuenheimer Feld 229
69120 Heidelberg
Germany
Christopher Pfleger
Heinrich-Heine-University Dusseldorf
Institute of Pharmaceutical and Medicinal Chemistry
Department of Mathematics and Natural Sciences
Universitätsstrasse 1
40225 Düsseldorf
Germany
Áron Pintér
Universität Duisburg-Essen
Fakultät für Chemie
Institut für Organische Chemie
Universitätsstrasse 7
45117 Essen
Germany
Maren Podewitz
ETH Zurich
Laboratorium für Physikalische Chemie
Wolfgang-Pauli-Strasse 10
8093 Zurich
Switzerland
Jevgenij A. Raskatov
Universität Heidelberg
Organisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Prakash C. Rathi
Heinrich-Heine-University Dusseldorf
Institute of Pharmaceutical and Medicinal Chemistry
Department of Mathematics and Natural Sciences
Universitätsstrasse 1
40225 Düsseldorf
Germany
Markus Reiher
ETH Zurich
Laboratorium für Physikalische Chemie
Wolfgang-Pauli-Strasse 10
8093 Zurich
Switzerland
Thomas Schnetz
Universität Heidelberg
Organisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Daniel Siebler
Johannes Gutenberg University of Mainz
Department of Analytical and Inorganic Chemistry
Duesbergweg 10-14
55128 Mainz
Germany
Jeremy C. Smith
Oak Ridge National Laboratory
UT/ORNL Center for Molecular Biophysics, P.O. Box 2008
Oak Ridge, TN 37831
USA
Bernd F. Straub
Universität Heidelberg
Organisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Oliver Trapp
Universität Heidelberg
Organisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Martin August Otfried Volland
Universität Heidelberg
Organisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Frank Weinhold
University of Wisconsin
Department of Chemistry
1101 University Avenue
Madison, WI 53706
USA
Thomas Weymuth
ETH Zurich
Laboratorium für Physikalische Chemie
Wolfgang-Pauli-Strasse 10
8093 Zurich
Switzerland
Michael Wrede
Universität Heidelberg
Organisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Thomas Zessin
Universität Heidelberg
Anorganisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Part One
Theory and Concepts