Modeling of Molecular Properties -  - E-Book

Modeling of Molecular Properties E-Book

0,0
162,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Molecular modeling encompasses applied theoretical approaches and computational techniques to model structures and properties of molecular compounds and materials in order to predict and / or interpret their properties. The modeling covered in this book ranges from methods for small chemical to large biological molecules and materials. With its comprehensive coverage of important research fields in molecular and materials science, this is a must-have for all organic, inorganic and biochemists as well as materials scientists interested in applied theoretical and computational chemistry. The 28 chapters, written by an international group of experienced theoretically oriented chemists, are grouped into four parts: Theory and Concepts; Applications in Homogeneous Catalysis; Applications in Pharmaceutical and Biological Chemistry; and Applications in Main Group, Organic and Organometallic Chemistry. The various chapters include concept papers, tutorials, and research reports.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 828

Veröffentlichungsjahr: 2011

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Contents

Cover

Related Titles

Title Page

Copyright

Preface

List of Contributors

Part One: Theory and Concepts

Chapter 1: Accurate Dispersion-Corrected Density Functionals for General Chemistry Applications

1.1 Introduction

1.2 Theoretical Background

1.3 Examples

1.4 Summary and Conclusions

Acknowledgments

References

Chapter 2: Free-Energy Surfaces and Chemical Reaction Mechanisms and Kinetics

2.1 Introduction

2.2 Elementary Reactions

2.3 Two Consecutive Steps

2.4 Multiple Consecutive Steps

2.5 Competing Reactions

2.6 Catalysis

2.7 Conclusions

References

Chapter 3: The Art of Choosing the Right Quantum Chemical Excited-State Method for Large Molecular Systems

3.1 Introduction

3.2 Existing Excited-State Methods for Medium-Sized and Large Molecules

3.3 Analysis of Electronic Transitions

3.4 Calculation of Static Absorption and Fluorescence Spectra

3.5 Dark States

3.6 Summary and Conclusions

References

Chapter 4: Assigning and Understanding NMR Shifts of Paramagnetic Metal Complexes

4.1 The Aim and Scope of the Chapter

4.2 Basic Theory of Paramagnetic NMR

4.3 Signal Assignments

4.4 Case Studies

References

Chapter 5: Tracing Ultrafast Electron Dynamics by Modern Propagator Approaches

5.1 Charge Migration Processes

5.2 Interatomic Coulombic Decay in Noble Gas Clusters

References

Chapter 6: Natural Bond Orbitals and Lewis-Like Structures of Copper Blue Proteins

6.1 Introduction: Localized Bonding Concepts in Copper Chemistry

6.2 Localized Bonds and Molecular Geometries in Polyatomic Cu Complexes

6.3 Copper Blue Proteins and Localized Bonds

6.4 Summary

References

Chapter 7: Predictive Modeling of Molecular Properties: Can We Go Beyond Interpretation?

7.1 Introduction

7.2 Models and Modeling

7.3 Parameterized Classical and Quantum Mechanical Theories

7.4 Predictive Energies and Structures

7.5 Other Gas-Phase Properties

7.6 Solvent Effects: The Major Problem

7.7 Reaction Selectivity

7.8 Biological and Pharmaceutical Modeling

7.9 Conclusions

Acknowledgments

References

Chapter 8: Interpretation and Prediction of Properties of Transition Metal Coordination Compounds

8.1 Introduction

8.2 Molecular Structure Optimization

8.3 Correlation of Molecular Structures and Properties

8.4 Computation of Molecular Properties

8.5 A Case Study: Electronic and Magnetic Properties of Cyano-Bridged Homodinuclear Copper(II) Complexes

8.6 Conclusions

Acknowledgments

References

Chapter 9: How to Realize the Full Potential of DFT: Build a Force Field Out of It

9.1 Introduction

9.2 Spin-Crossover in Fe(II) Complexes

9.3 Ligand Field Molecular Mechanics

9.4 Molecular Discovery for New SCO Complexes

9.5 Dynamic Behavior of SCO Complexes

9.6 Light-Induced Excited Spin-State Trapping

9.7 Summary and Future Prospects

References

Part two: Applications in Homogeneous Catalysis

Chapter 10: Density Functional Theory for Transition Metal Chemistry: The Case of a Water-Splitting Ruthenium Cluster

10.1 Introduction

10.2 Shortcomings of Present-Day Density Functionals

10.3 Strategies for Constructing Density Functionals

10.4 A Practical Example: Catalytic Water Splitting

10.5 Conclusions

Appendix 10.A: Computational Methodology

Acknowledgments

References

Chapter 11: Rational and Efficient Development of a New Class of Highly Active Ring-Opening Metathesis Polymerization Catalysts

11.1 Introduction

11.2 A New Lead Structure: Introduction of Chelating, Bulky, Electron-Rich Bisphosphines with Small Bite Angles

11.3 ROMP Activity of the Neutral Systems

11.4 Cationic Carbene Complexes: Synthesis and Structure

11.5 Olefin Metathesis with Cationic Carbene Complexes: Mechanistic Considerations

11.6 ROMP Kinetics in Solution

11.7 Summary and Outlook

Acknowledgments

References

Chapter 12: Effects of Substituents on the Regioselectivity of Palladium-Catalyzed Allylic Substitutions: A DFT Study

12.1 Introduction

12.2 Computational Details

12.3 Results and Discussion

12.4 Conclusions

References

Chapter 13: Dicopper Catalysts for the Azide Alkyne Cycloaddition: A Mechanistic DFT Study

13.1 Introduction

13.2 Theoretical Methods

13.3 Discussion of the CuAAC Mechanism

13.4 Conclusion and Summary

References

Chapter 14: From Dynamics to Kinetics: Investigation of Interconverting Stereoisomers and Catalyzed Reactions

14.1 Investigation of Interconversions by Gas Chromatography

14.2 Evaluation Tools

14.3 Investigation of Catalyzed Reactions

14.4 Perspectives

References

Chapter 15: Mechanistic Dichotomies in Coupling–Isomerization–Claisen Pericyclic Domino Reactions in Experiment and Theory

15.1 Introduction

15.2 Computation of the Concluding Intramolecular Diels–Alder Reaction in the Domino Formation of (Tetrahydroisobenzofuran) spiro-Benzofuranones and spiro-Indolones

15.3 Computation of the Pericyclic Dichotomies of Propargyl Tritylethers

15.4 Conclusions

Acknowledgments

References

Part Three: Applications in Pharmaceutical and Biological Chemistry

Chapter 16: Computational Design of New Protein Catalysts

16.1 Introduction

16.2 The Inside-Out Approach

16.3 Catalyst Selection and the Catalytic Unit

16.4 Theozymes

16.5 Scaffold Selection and Theozyme Incorporation

16.6 Design

16.7 Evaluating Matches and Designs

16.8 Experiments

16.9 Successful Enzyme Designs

16.10 Rational Redesign and Directed Evolution of Designed Enzymes with Low Activities

16.11 Summary

References

Chapter 17: Computer- Assisted Drug Design

17.1 Neuraminidase Inhibitors

17.2 Cyclooxygenase Inhibitors

17.3 Concluding Remarks

References

Chapter 18: Statics of Biomacromolecules

18.1 Introduction

18.2 Rigidity Theory and Analysis

18.3 Application of Rigidity Analysis to Biomacromolecules

18.4 Conclusions

References

Chapter 19: Strained Molecules: Insights from Force Distribution Analysis

19.1 Strain in Molecules

19.2 Force Distribution Analysis

19.3 Outlook

References

Chapter 20: Mercury Detoxification by Bacteria: Simulations of Transcription Activation and Mercury–Carbon Bond Cleavage

20.1 Introduction

20.2 Transcription Activation of MerOP by MerR upon Hg(II)-Binding

20.3 Hg–C Bond Cleavage Catalyzed by the MerB

20.4 Summary and Conclusions

Acknowledgments

References

Chapter 21: Elucidation of the Conformational Freedom of Ferrocene Amino Acid (Bio)Conjugates: A Complementary Theoretical and Experimental Approach

21.1 Introduction

21.2 Simple Ferrocene Amino Acid (Bio)Conjugates

21.3 Systems with Amide-Bridged Fca Units

21.4 Modeling Responses to External Stimuli

21.5 Conclusions

References

Part Four: Applications in Main Group, Organic, and Organometallic Chemistry

Chapter 22: Theoretical Investigation of the 13C NMR Chemical Shift–NCN Angle Correlation in N-Heterocyclic Carbenes

22.1 Introduction

22.2 Method Validation

22.3 13C-NMR Chemical Shift –N–C–N Angle Correlation Within Various Carbene Types

22.4 N–C–N Angle-Shielding Tensor Correlations: Carbene A

22.5 Correlation Between N–C–N Angle and HOMO-LUMO Gap ΔE: Carbene A

22.6 Correlations in N-Heterocyclic Carbenes

Acknowledgements

References

Chapter 23: Structures of Azole-Containing Macrocyclic Peptides

23.1 Azoles in Nature and Civilization

23.2 Azole-Containing Macrocyclic Peptides in Nature: Opening New Boundaries in Science

23.3 Achiral Applications of Lissoclinum-Related Macrocyclic Peptides

23.4 Applications of Lissoclinum-Related Macrocyclic Peptides as Chiral Tools

References

Chapter 24: Modeling of Complex Polyketides: Stereochemical Determination by a Combination of Computational and NMR Methods

24.1 Myxobacterial Polyketides

24.2 Development of Computational and NMR Methods for Stereochemical Determination: Case Studies with the Archazolids

24.3 Selected Applications of Combined Computational and NMR Methods for Stereochemical Determination

24.4 Conclusion and Perspectives

References

Chapter 25: Quantifying Building Principles of Borane Clusters

25.1 Introduction

25.2 Structural Features and Energy Penalties

25.3 Macropolyhedral Boranes

25.4 Conclusions

References

Chapter 26: Hydrogenation and Dehydrogenation of Dinuclear Boron- and Gallium Hydrides: Quantum Chemical Calculations and Experiments

26.1 Dihydrogen Activation with Main-Group Element Compounds

26.2 Preliminary Quantum Chemical Calculations

26.3 Experimental Studies in Concert with Quantum Chemical Calculations

References

Chapter 27: Cages and Clusters of Indium: Spherical Aromaticity?

27.1 Introduction

27.2 Synthesis of Polyhedral Indium Clusters

27.3 Quantum Chemical Calculations

27.4 Summary

References

Chapter 28: Lipophilic Anions

References

Index

Related Titles

Comba, P.; Hambley, T. W.; Martin, B.

Molecular Modeling of Inorganic Compounds

Third, Completely Revised and Enlarged

Edition

2009

ISBN: 978-3-527-31799-8

Lipkowitz, K. B.

Reviews in Computational Chemistry

Volume 27

2011

ISBN: 978-0-470-58714-0

Grunenberg, J. (ed.)

Computational Spectroscopy

Methods, Experiments and Applications

2010

ISBN: 978-3-527-32649-5

Vaz Junior, M., de Souza Neto, E. A.,

Munoz-Rojas, P. A. (eds.)

Advanced Computational

Materials Modeling

From Classical to Multi-Scale Techniques

2010

ISBN: 978-3-527-32479-8

Matta, C. F. (ed.)

Quantum Biochemistry

2010

ISBN: 978-3-527-32322-7

Heine, T., Joswig, J.-O., Gelessus, A.

Computational Chemistry Workbook

Learning Through Examples

2009

ISBN: 978-3-527-32442-2

Reiher, M., Wolf, A.

Relativistic Quantum Chemistry

The Fundamental Theory of Molecular

Science

2009

ISBN: 978-3-527-31292-4

Hinchliffe, A.

Molecular Modelling for Beginners

Second Edition

2008

ISBN: 978-0-470-51313-2

Ross, R. B., Mohanty, S. (eds.)

Multiscale Simulation Methods for Nanomaterials

2008

ISBN: 978-0-470-10528-3

Koch, W., Holthausen, M.C.

A Chemist´s Guide to Density Functional Theory

2001

ISBN: 978-3-527-30372-4

All books published by >Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2011 Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form -- by photoprinting, microfilm, or any other means -- nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

ISBN Print: 978-3-527-33021-8

ISBN ePDF: 978-3-527-63642-6

ISBN ePub: 978-3-527-63641-9

ISBN Mobi: 978-3-527-63643-3

ISBN oBook: 978-3-527-63640-2

Preface

“Modern preparatively oriented molecular scientists design new molecules, interpret observed properties and compare them with those of known compounds, using widely available programs based on molecular mechanics, molecular dynamics, DFT, ab initio quantum chemistry, and also including data mining, spectra simulations and statistical analysis. Experimental chemists with skills in computational chemistry and a thorough understanding of the underlying theory therefore have a considerable advantage in their professional career.”

This is the basis of the DFG-funded Graduate College “Modeling of Molecular Properties,” which is conducted at the chemical institutes of the University of Heidelberg, and has helped to establish a strong culture for the combination of theory and experiment in molecular chemistry. This book has been written by and for the participants of the International Conference on Molecular Modeling, organized as a final meeting of the Heidelberg Graduate College on Molecular Modeling, and also to celebrate the 625th birthday of Heidelberg University and the International Year of Chemistry, 2011.

The areas covered include modeling and scientific computation for molecular chemistry, biological systems and material sciences, based on quantum mechanics (density functional theory and ab initio quantum theory), empirical molecular modeling (MM, MD), and general methods such as data mining, statistical analysis, spectra simulations and structure–property correlations. That is, theory, applied theory, and computational chemistry in a broad sense and applied to various fields related to the chemical sciences.

The 28 chapters, written by an international group of experienced theoretically oriented chemists, are grouped into four parts: “Theory and Concepts”; “Applications in Homogeneous Catalysis”; “Applications in Pharmaceutical and Biological Chemistry”; and “Applications in Main Group, Organic and Organometallic Chemistry.” The various chapters include concept papers, tutorials, and research reports.

I am very grateful to all of the authors for providing their excellent contributions, to Marlies von Schönebeck-Schilly and Karin Stelzer for their much appreciated help with handling the manuscripts, and to Gudrun Walter and Lesley Belfit from Wiley-VCH for their excellent collaboration.

Heidelberg January 2011

Peter Comba

List of Contributors

Regina Berg

Universität Heidelberg

Organisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Michael Bessel

Universität Heidelberg

Organisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Martina Bühler

Universität Heidelberg

Anorganisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Lorenz S. Cederbaum

Universität Heidelberg

Theoretische Chemie

Im Neuenheimer Feld 229

69120 Heidelberg

Germany

Nihan Çelebi-Ölçüm

University of California, Los Angeles

Department of Chemistry and Biochemistry

607 Charles E. Young Drive East

Los Angeles, CA 90095-1569

USA

Timothy Clark

Friedrich-Alexander-Universität Erlangen-Nürnberg

Computer-Chemie-Centrum and Excellence Cluster “Engineering of Advanced Materials”

Nägelsbachstrasse 25

91052 Erlangen

Germany

Peter Comba

Universität Heidelberg

Anorganisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Robert James Deeth

University of Warwick

Department of Chemistry

Coventry CV4 7AL

UK

Sandra Dreisigacker

Universität Heidelberg

Organisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Andreas Dreuw

Johann Wolfgang Goethe-Universität

Institut für Physikalische und Theoretische Chemie

Max von Laue Str. 7

60438 Frankfurt am Main

Germany

Daniel M. D'Souza

The University of Edinburgh

School of Chemistry

The King's Buildings, West Mains Road

Edinburgh EH9 3JJ

UK

Markus Enders

Universität Heidelberg

Anorganisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Simone Fulle

Heinrich-Heine-University Dusseldorf

Institute of Pharmaceutical and Medicinal Chemistry

Department of Mathematics and Natural Sciences

Universitätsstrasse 1

40225 Düsseldorf

Germany

Lars Goerigk

Organisch-Chemisches Institut der Universität Münster

Theoretische Organische Chemie

Corrensstraße 40

48149 Münster

Germany

and

NRW Graduate School of Chemistry

Wilhelm-Klemm-Straße 10

48149 Münster

Germany

Holger Gohlke

Heinrich-Heine-University Dusseldorf

Institute of Pharmaceutical and Medicinal Chemistry

Department of Mathematics and Natural Sciences

Universitätsstrasse 1

40225 Düsseldorf

Germany

Frauke Gräter

Heidelberg Institute for Theoretical Studies gGmbH

Molecular Biomechanics

Schloss-Wolfsbrunnenweg 35

69118 Heidelberg

Germany

and

Klaus-Tschira-Lab

MPG-CAS Partner Institute for Computational Biology

320 Yueyang Lu

200031 Shanghai

China

Stefan Grimme

Organisch-Chemisches Institut der Universität Münster

Theoretische Organische Chemie

Corrensstraße 40

48149 Münster

Germany

Hao-Bo Guo

Oak Ridge National Laboratory

UT/ORNL Center for Molecular Biophysics, P.O. Box 2008

Oak Ridge, TN 37831

USA

Gebhard Haberhauer

Universität Duisburg-Essen

Fakultät für Chemie

Institut für Organische Chemie

Universitätsstrasse 7

45117 Essen

Germany

Philipp H.P. Harbach

Johann Wolfgang Goethe-Universität

Institut für Physikalische und Theoretische Chemie

Max von Laue Str. 7

60438 Frankfurt am Main

Germany

Jeremy N. Harvey

University of Bristol

School of Chemistry and Centre for Computational Chemistry

Cantock's Close

Bristol BS8 1TS

UK

Katja Heinze

Johannes Gutenberg University of Mainz

Department of Analytical and Inorganic Chemistry

Duesbergweg 10-14

55128 Mainz

Germany

Guenter Helmchen

Universität Heidelberg

Organisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Hans-Jörg Himmel

Universität Heidelberg

Anorganisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Matthias Hofmann

Universität Heidelberg

Anorganisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Peter Hofmann

Universität Heidelberg

Organisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Hans-Dieter Höltje

Heinrich-Heine-University

Institute for Pharmaceutical and Medicinal Chemistry Düsseldorf

Universitätsstrasse 1

40225 Düsseldorf

Germany

Kendal N. Houk

University of California, Los Angeles

Department of Chemistry and Biochemistry

607 Charles E. Young Drive East

Los Angeles, CA 90095-1569

USA

Kristina Hüttinger

Johannes Gutenberg University of Mainz

Department of Analytical and Inorganic Chemistry

Duesbergweg 10-14

55128 Mainz

Germany

Scott A. Johnson

University of California, Los Angeles

Department of Chemistry and Biochemistry

607 Charles E. Young Drive East

Los Angeles, CA 90095-1569

USA

Alexander Johs

Oak Ridge National Laboratory

Environmental Sciences Division

Oak Ridge, TN 37831

USA

Seonah Kim

University of California, Los Angeles

Department of Chemistry and Biochemistry

607 Charles E. Young Drive East

Los Angeles, CA 90095-1569

USA

Gert Kiss

University of California, Los Angeles

Department of Chemistry and Biochemistry

607 Charles E. Young Drive East

Los Angeles, CA 90095-1569

USA

Doris L. Klein

Heinrich-Heine-University Dusseldorf

Institute of Pharmaceutical and Medicinal Chemistry

Department of Mathematics and Natural Sciences

Universitätsstrasse 1

40225 Düsseldorf

Germany

Alexander I. Kuleff

Universität Heidelberg

Theoretische Chemie

Im Neuenheimer Feld 229

69120 Heidelberg

Germany

Doris Kunz

Eberhard Karls Universität Tübingen

Institut für Anorganische Chemie

Auf der Morgenstelle 18

72076 Tübingen

Germany

Clark R. Landis

University of Wisconsin

Department of Chemistry

1101 University Avenue

Madison, WI 53706

USA

Gerald Linti

Universität Heidelberg

Anorganisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Bernhard Mayer

Heinrich-Heine-Universität Düsseldorf

Institut für Makromolekulare Chemie und Organische Chemie

Lehrstuhl für Organische Chemie

Universitätsstrasse 1

40225 Düsseldorf

Germany

Dirk Menche

Universität Heidelberg

Organisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Kirill Monakhov

Universität Heidelberg

Anorganisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Thomas J.J. Müller

Heinrich-Heine-Universität Düsseldorf

Institut für Makromolekulare Chemie und Organische Chemie

Lehrstuhl für Organische Chemie

Universitätsstrasse 1

40225 Düsseldorf

Germany

Michael Nonnenmacher

Universität Heidelberg

Organisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Geoffrey Nosrati

University of California, Los Angeles

Department of Chemistry and Biochemistry

607 Charles E. Young Drive East

Los Angeles, CA 90095-1569

USA

Jerry M. Parks

Oak Ridge National Laboratory

UT/ORNL Center for Molecular Biophysics, P.O. Box 2008

Oak Ridge, TN 37831

USA

Robert Paton

University of California, Los Angeles

Department of Chemistry and Biochemistry

607 Charles E. Young Drive East

Los Angeles, CA 90095-1569

USA

Markus Pernpointner

Universität Heidelberg

Theoretische Chemie

Im Neuenheimer Feld 229

69120 Heidelberg

Germany

Christopher Pfleger

Heinrich-Heine-University Dusseldorf

Institute of Pharmaceutical and Medicinal Chemistry

Department of Mathematics and Natural Sciences

Universitätsstrasse 1

40225 Düsseldorf

Germany

Áron Pintér

Universität Duisburg-Essen

Fakultät für Chemie

Institut für Organische Chemie

Universitätsstrasse 7

45117 Essen

Germany

Maren Podewitz

ETH Zurich

Laboratorium für Physikalische Chemie

Wolfgang-Pauli-Strasse 10

8093 Zurich

Switzerland

Jevgenij A. Raskatov

Universität Heidelberg

Organisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Prakash C. Rathi

Heinrich-Heine-University Dusseldorf

Institute of Pharmaceutical and Medicinal Chemistry

Department of Mathematics and Natural Sciences

Universitätsstrasse 1

40225 Düsseldorf

Germany

Markus Reiher

ETH Zurich

Laboratorium für Physikalische Chemie

Wolfgang-Pauli-Strasse 10

8093 Zurich

Switzerland

Thomas Schnetz

Universität Heidelberg

Organisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Daniel Siebler

Johannes Gutenberg University of Mainz

Department of Analytical and Inorganic Chemistry

Duesbergweg 10-14

55128 Mainz

Germany

Jeremy C. Smith

Oak Ridge National Laboratory

UT/ORNL Center for Molecular Biophysics, P.O. Box 2008

Oak Ridge, TN 37831

USA

Bernd F. Straub

Universität Heidelberg

Organisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Oliver Trapp

Universität Heidelberg

Organisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Martin August Otfried Volland

Universität Heidelberg

Organisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Frank Weinhold

University of Wisconsin

Department of Chemistry

1101 University Avenue

Madison, WI 53706

USA

Thomas Weymuth

ETH Zurich

Laboratorium für Physikalische Chemie

Wolfgang-Pauli-Strasse 10

8093 Zurich

Switzerland

Michael Wrede

Universität Heidelberg

Organisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Thomas Zessin

Universität Heidelberg

Anorganisch-Chemisches Institut

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Part One

Theory and Concepts