Modern Methods of Crystal Structure Prediction -  - E-Book

Modern Methods of Crystal Structure Prediction E-Book

0,0
144,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Gathering leading specialists in the field of structure prediction, this book provides a unique view of this complex and rapidly developing field, reflecting the numerous viewpoints of the different authors. A summary of the major achievements over the last few years and of the challenges still remaining makes this monograph very timely.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 488

Veröffentlichungsjahr: 2011

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Contents

Cover

Half Title page

Related Titles

Title page

Copyright page

List of Contributors

Introduction: Crystal Structure Prediction, a Formidable Problem

References

Chapter 1: Periodic-Graph Approaches in Crystal Structure Prediction

1.1 Introduction

1.2 Terminology

1.3 The Types of Periodic Nets Important for Crystal Structure Prediction

1.4 The Concept of Topological Crystal Structure Representation

1.5 Computer Tools and Databases

1.6 Current Results on Nets Abundance

1.7 Some Properties of Nets Influencing the Crystal Structure

1.8 Outlook

References

Chapter 2: Energy Landscapes and Structure Prediction Using Basin-Hopping

2.1 Introduction

2.2 Visualizing the Landscape

2.3 Basin-Hopping Global Optimization

2.4 Energy Landscapes for Crystals and Glasses

References

Chapter 3: Random Search Methods

3.1 Introduction

3.2 History and Overview

3.3 Methods

3.4 Applications and Results

3.5 Summary and Conclusions

References

Chapter 4: Predicting Solid Compounds Using Simulated Annealing

4.1 Introduction

4.2 Locally Ergodic Regions on the Energy Landscape of Chemical Systems

4.3 Simulated Annealing and Related Stochastic Walker-Based Algorithms

4.4 Examples

4.5 Evaluation and Outlook

References

Chapter 5: Simulation of Structural Phase Transitions in Crystals: The Metadynamics Approach

5.1 Introduction

5.2 Simulation of Structural Transformations

5.3 The Metadynamics-Based Algorithm

5.4 Practical Aspects

5.5 Examples of Applications

5.6 Conclusions and Outlook

Acknowledgments

References

Chapter 6: Global Optimization with the Minima Hopping Method

6.1 Posing the Problem

6.2 The Minima Hopping Algorithm

6.3 Applications of the Minima Hopping Method

6.4 Conclusions

References

Chapter 7: Crystal Structure Prediction Using Evolutionary Approach

7.1 Theory

7.2 A Few Illustrations of the Method

7.3 Conclusions

Acknowledgments

References

Chapter 8: Pathways of Structural Transformations in Reconstructive Phase Transitions: Insights from Transition Path Sampling Molecular Dynamics

8.1 Introduction

8.2 Transition Path Sampling Molecular Dynamics

8.3 The Lesson of Sodium Chloride

8.4 The Formation of Domains

8.5 Structure of the B2–B1 Interfaces

8.6 Domain Fragmentation in CdSe Under Pressure

8.7 Intermediate Structures During Phase Transitions

8.8 Conclusions

References

Appendix: First Blind Test of Inorganic Crystal Structure Prediction Methods

References

Color Plates

Index

Edited byArtem R. Oganov

Modern Methods of Crystal Structure Prediction

Related Titles

Desiraju, G. R. (ed.)

Crystal Design

Structure and Function

2003

ISBN: 978-0-470-84333-8

Westbrook, J. H., Fleischer, R. L. (eds.)

Intermetallic Compounds, Volume 1, Crystal Structures

2000

ISBN: 978-0-471-60880-6

Desiraju, G. R. (ed.)

The Crystal as a Supramolecular Entity

1996

ISBN: 978-0-471-95015-8

The Editor

Artem R. OganovDepartment of Geosciences and Department of Physics and AstronomyState University of New YorkStony Brook, NY 11794USAartem.oganov@sunysb.edu

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication DataA catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche NationalbibliothekThe Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2011 WILEY-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-40939-6 ePdf ISBN: 978-3-527-63284-8 ePub ISBN: 978-3-527-64377-6 Mobi ISBN: 978-3-527-64378-3

List of Contributors

Vladislav A. Blatov

Samara State UniversityChemistry DepartmentAc. Pavlov St. 1443011 SamaraRussia

Salah Eddine Boulfelfel

MPI CPfSNoethnitzerstr. 4001187 DresdenGermany

Stefan GoedeckerBasel UniversityDepartment of Physics und AstronomyKlingelbergstrasse 824056 BaselSwitzerland

Richard G. HennigCornell UniversityDepartment of Materials Science and Engineering214 Bard HallIthaca, NY 14853-1501USA

Martin JansenMax Planck Institute for Solid State ResearchHeisenbergstr. 170569 StuttgartGermany

Stefano LeoniMPI CPfSNoethnitzerstr. 4001187 DresdenGermany

Andriy O. LyakhovStony Brook UniversityDepartment of Geosciences and New York Center for Computational ScienceStony Brook, NY 11794-2100USA

Roman Marto?ákComenius UniversityDepartment of Experimental PhysicsMlynská dolina F2842 48 BratislavaSlovakia

Artem R. OganovStony Brook UniversityDepartment of Geosciences,Department of Physics and Astronomy and New York Center for Computational ScienceStony Brook, NY 11794-2100USA

and

Moscow State UniversityGeology Department119992 MoscowRussia

Davide M. ProserpioUniversità degli Studi di MilanoDipartimento di ChimicaStrutturale e StereochimicaInorganica (DCSSI)Via G. Venezian 2120133 MilanoItaly

J. Christian SchönMax Planck Institute for Solid State ResearchHeisenbergstr. 170569 StuttgartGermany

William W. TiptonCornell UniversityDepartment of Materials Science and Engineering214 Bard HallIthaca, NY 14853-1501USA

Mario ValleData Analysis and Visualization ServicesSwiss National SupercomputingCentre (CSCS)Cantonale Galleria 2Manno, 6928Switzerland

David J. WalesUniversity of CambridgeDepartment of ChemistryLensfield RoadCambridge, CB2 1EWUK

Scott M. WoodleyUniversity College LondonDepartment of ChemistryGower StreetLondon WC1E 6 BTUK

Chapter 1

Periodic-Graph Approaches in Crystal Structure Prediction

Vladislav A. Blatov, Davide M. Proserpio

1.1 Introduction

The explosive growth in inorganic and organic materials chemistry has seen a great upsurge in the synthesis of crystalline materials with extended framework structures (zeolites, coordination polymers/coordination networks, metal–organic frameworks (MOFs), supramolecular architectures formed by hydrogen bonds and/or halogen bonds, etc.). There is a concomitant interest in simulating such materials and in designing new ones. In this respect, the role of new topological approaches in the modern crystallochemical analysis sharply increases compared to traditional geometrical methods that have been known for almost a century [1, 2]. As opposed to the geometrical model that represents the crystal structure as a set of points allocated in the space, the topological representation focuses on the main chemical property of crystalline substance – the system of chemical bonds. Since this system can be naturally described by an infinite periodic graph, the periodic-graph approaches compose the theoretical basis of the topological part of modern crystal chemistry. The history of these approaches is rather long, but only in the last two decades they have come into the limelight. Wells [3] was the first who thoroughly studied and classified different kinds of infinite periodic graph (net) and raised the question: what nets are important for crystal chemistry? This key question for successful prediction of possible topological motifs in crystals was being answered in two general ways initiated by Wells’ pioneer investigations.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!