144,99 €
Gathering leading specialists in the field of structure prediction, this book provides a unique view of this complex and rapidly developing field, reflecting the numerous viewpoints of the different authors. A summary of the major achievements over the last few years and of the challenges still remaining makes this monograph very timely.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 488
Veröffentlichungsjahr: 2011
Contents
Cover
Half Title page
Related Titles
Title page
Copyright page
List of Contributors
Introduction: Crystal Structure Prediction, a Formidable Problem
References
Chapter 1: Periodic-Graph Approaches in Crystal Structure Prediction
1.1 Introduction
1.2 Terminology
1.3 The Types of Periodic Nets Important for Crystal Structure Prediction
1.4 The Concept of Topological Crystal Structure Representation
1.5 Computer Tools and Databases
1.6 Current Results on Nets Abundance
1.7 Some Properties of Nets Influencing the Crystal Structure
1.8 Outlook
References
Chapter 2: Energy Landscapes and Structure Prediction Using Basin-Hopping
2.1 Introduction
2.2 Visualizing the Landscape
2.3 Basin-Hopping Global Optimization
2.4 Energy Landscapes for Crystals and Glasses
References
Chapter 3: Random Search Methods
3.1 Introduction
3.2 History and Overview
3.3 Methods
3.4 Applications and Results
3.5 Summary and Conclusions
References
Chapter 4: Predicting Solid Compounds Using Simulated Annealing
4.1 Introduction
4.2 Locally Ergodic Regions on the Energy Landscape of Chemical Systems
4.3 Simulated Annealing and Related Stochastic Walker-Based Algorithms
4.4 Examples
4.5 Evaluation and Outlook
References
Chapter 5: Simulation of Structural Phase Transitions in Crystals: The Metadynamics Approach
5.1 Introduction
5.2 Simulation of Structural Transformations
5.3 The Metadynamics-Based Algorithm
5.4 Practical Aspects
5.5 Examples of Applications
5.6 Conclusions and Outlook
Acknowledgments
References
Chapter 6: Global Optimization with the Minima Hopping Method
6.1 Posing the Problem
6.2 The Minima Hopping Algorithm
6.3 Applications of the Minima Hopping Method
6.4 Conclusions
References
Chapter 7: Crystal Structure Prediction Using Evolutionary Approach
7.1 Theory
7.2 A Few Illustrations of the Method
7.3 Conclusions
Acknowledgments
References
Chapter 8: Pathways of Structural Transformations in Reconstructive Phase Transitions: Insights from Transition Path Sampling Molecular Dynamics
8.1 Introduction
8.2 Transition Path Sampling Molecular Dynamics
8.3 The Lesson of Sodium Chloride
8.4 The Formation of Domains
8.5 Structure of the B2–B1 Interfaces
8.6 Domain Fragmentation in CdSe Under Pressure
8.7 Intermediate Structures During Phase Transitions
8.8 Conclusions
References
Appendix: First Blind Test of Inorganic Crystal Structure Prediction Methods
References
Color Plates
Index
Edited byArtem R. Oganov
Modern Methods of Crystal Structure Prediction
Related Titles
Desiraju, G. R. (ed.)
Crystal Design
Structure and Function
2003
ISBN: 978-0-470-84333-8
Westbrook, J. H., Fleischer, R. L. (eds.)
Intermetallic Compounds, Volume 1, Crystal Structures
2000
ISBN: 978-0-471-60880-6
Desiraju, G. R. (ed.)
The Crystal as a Supramolecular Entity
1996
ISBN: 978-0-471-95015-8
The Editor
Artem R. OganovDepartment of Geosciences and Department of Physics and AstronomyState University of New YorkStony Brook, NY 11794USAartem.oganov@sunysb.edu
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication DataA catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche NationalbibliothekThe Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
© 2011 WILEY-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-40939-6 ePdf ISBN: 978-3-527-63284-8 ePub ISBN: 978-3-527-64377-6 Mobi ISBN: 978-3-527-64378-3
List of Contributors
Vladislav A. Blatov
Samara State UniversityChemistry DepartmentAc. Pavlov St. 1443011 SamaraRussia
Salah Eddine Boulfelfel
MPI CPfSNoethnitzerstr. 4001187 DresdenGermany
Stefan GoedeckerBasel UniversityDepartment of Physics und AstronomyKlingelbergstrasse 824056 BaselSwitzerland
Richard G. HennigCornell UniversityDepartment of Materials Science and Engineering214 Bard HallIthaca, NY 14853-1501USA
Martin JansenMax Planck Institute for Solid State ResearchHeisenbergstr. 170569 StuttgartGermany
Stefano LeoniMPI CPfSNoethnitzerstr. 4001187 DresdenGermany
Andriy O. LyakhovStony Brook UniversityDepartment of Geosciences and New York Center for Computational ScienceStony Brook, NY 11794-2100USA
Roman Marto?ákComenius UniversityDepartment of Experimental PhysicsMlynská dolina F2842 48 BratislavaSlovakia
Artem R. OganovStony Brook UniversityDepartment of Geosciences,Department of Physics and Astronomy and New York Center for Computational ScienceStony Brook, NY 11794-2100USA
and
Moscow State UniversityGeology Department119992 MoscowRussia
Davide M. ProserpioUniversità degli Studi di MilanoDipartimento di ChimicaStrutturale e StereochimicaInorganica (DCSSI)Via G. Venezian 2120133 MilanoItaly
J. Christian SchönMax Planck Institute for Solid State ResearchHeisenbergstr. 170569 StuttgartGermany
William W. TiptonCornell UniversityDepartment of Materials Science and Engineering214 Bard HallIthaca, NY 14853-1501USA
Mario ValleData Analysis and Visualization ServicesSwiss National SupercomputingCentre (CSCS)Cantonale Galleria 2Manno, 6928Switzerland
David J. WalesUniversity of CambridgeDepartment of ChemistryLensfield RoadCambridge, CB2 1EWUK
Scott M. WoodleyUniversity College LondonDepartment of ChemistryGower StreetLondon WC1E 6 BTUK
Chapter 1
Periodic-Graph Approaches in Crystal Structure Prediction
Vladislav A. Blatov, Davide M. Proserpio
1.1 Introduction
The explosive growth in inorganic and organic materials chemistry has seen a great upsurge in the synthesis of crystalline materials with extended framework structures (zeolites, coordination polymers/coordination networks, metal–organic frameworks (MOFs), supramolecular architectures formed by hydrogen bonds and/or halogen bonds, etc.). There is a concomitant interest in simulating such materials and in designing new ones. In this respect, the role of new topological approaches in the modern crystallochemical analysis sharply increases compared to traditional geometrical methods that have been known for almost a century [1, 2]. As opposed to the geometrical model that represents the crystal structure as a set of points allocated in the space, the topological representation focuses on the main chemical property of crystalline substance – the system of chemical bonds. Since this system can be naturally described by an infinite periodic graph, the periodic-graph approaches compose the theoretical basis of the topological part of modern crystal chemistry. The history of these approaches is rather long, but only in the last two decades they have come into the limelight. Wells [3] was the first who thoroughly studied and classified different kinds of infinite periodic graph (net) and raised the question: what nets are important for crystal chemistry? This key question for successful prediction of possible topological motifs in crystals was being answered in two general ways initiated by Wells’ pioneer investigations.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!