162,99 €
Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers will gain a deeper understanding of the catalytic transformations, allowing them to adapt the knowledge to their own investigations.
With its ideal combination of fundamental and applied research, this is an essential reference for researchers and graduate students both in academic institutions and in the chemical industry.
With a foreword by Nobel laureate Roald Hoffmann.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 825
Veröffentlichungsjahr: 2014
Cover
Related Titles
Title Page
Copyright
List of Contributors
Foreword
1 The Magic Force That Became a Science
2 It Should Go Off, Shouldn't It?
3 Incendiary Acts
4 Döbereiner's Feuerzeug
5 Geopolitics and Science
6 Chemistry in Culture
7 How Does Hydrogen Burn?
8 Knowing without Seeing
References
Introduction
I
II
III
IV
Part I: Mechanisms of Elementary Reactions in Catalytic Processes
Chapter 1: Quantum Dynamics of Molecular Elementary Processes in Catalytic Transformations
1.1 Introduction
1.2 Structural and Energetic Aspects
1.3 Quantum Dynamical Calculations
1.4 Summary and Outlook
Acknowledgments
References
Chapter 2: Activation of Small Molecules with Metal and Metal Oxide Clusters in Inert Gas Matrixes
2.1 Introduction
2.2 The Matrix Isolation Technique – Advantages and Limitations
2.3 Formation and Characterization of Metal Atom Dimers and Clusters
2.4 Reactions of Atom Dimers or Clusters
2.5 Formation and Characterization of Metal Oxides
2.6 Reactions Involving Metal Oxides
2.7 Concluding Remarks
Acknowledgments
References
Chapter 3: Toward Single-Molecule Catalysis
3.1 Introduction
3.2 Probes for Single-Molecule Chemistry
3.3 Approaching Single-Molecule Studies in Homogeneous Catalysis
3.4 Discussion and Perspectives
Acknowledgments
References
Chapter 4: Intermediates and Elementary Reactions in Gold Catalysis
4.1 Introduction
4.2 The Initial Step: π-Coordination of the Substrate
4.3 The Nucleophilic Addition: Vinylgold and Alkylgold Intermediates
4.4 The Reaction of the Organogold Intermediates with Electrophiles
4.5 “Vinylidene” Gold(I) Intermediates
4.6 Protons and Hydride in Gold Catalysis
4.7 Future Perspectives
References
Chapter 5: Diastereoselectivity in Alkene Metathesis
5.1 Introduction
5.2 Stereoselective Alkene Metathesis Catalysts
5.3 Combining Catalytic Activity and Stereoselectivity in Ruthenium Carbenes: an Antagonism?
5.4 Stereoselectivity in Ring-Opening Metathesis Polymerization (ROMP)
5.5 Outlook
5.6 Summary
References
Part II: New Catalysts – New and Old Reactions
Chapter 6: Oxidation Catalysis with High-Valent Nonheme Iron Complexes
6.1 Introduction
6.2 Bispidine Ligands
6.3 Oxidation of the Ferrous Precursors
6.4 Spin States of the Ferryl Catalysts
6.5 Redox Properties of the Ferryl Oxidants
6.6 Reactivity of the Ferryl Compounds
6.7 Conclusion
Acknowledgment
References
Chapter 7: Single-Site Organochromium Catalysts for High Molecular Weight Polyolefins
7.1 Introduction
7.2 Ligand Design
7.3 Chromium Complexes of Non-Cp Ligands
7.4 Chromium Complexes Based on Cp
7.5 Polymerization Behavior of Donor-Functionalized Cp Chromium Complexes Developed in Heidelberg
7.6 En Route to Tunable Catalysts
7.7 Conclusion
References
Chapter 8: Ligand Design and Mechanistic Studies for Ni-Catalyzed Hydrocyanation and 2-Methyl-3-Butenenitrile Isomerization Based upon Rh-Hydroformylation Research
8.1 Introduction
8.2 Recent Advances in Ni-Catalyzed Hydrocyanation and Isomerization Reactions
8.3 Recent Advances in Ni-Catalyzed Hydrocyanation and Isomerization Reactions Employing the TTP-Ligand Family
Acknowledgments
References
Chapter 9: Strongly Electron Donating Tridentate N-Heterocyclic Biscarbene Ligands for Rhodium and Iridium Catalysts
9.1 Introduction
9.2 Ligand Systems
9.3 Synthesis and Reactivity of the Complexes
9.4 Catalytic Activities of the Rh Complexes
9.5 Catalytic Activities of the Ir Complexes
9.6 Discussion
9.7 Summary, Conclusion, and Outlook
References
Chapter 10: NHCP Ligands for Catalysis
10.1 Introduction
10.2 Recent Advances in Catalysis with NHCP Ligands
10.3 Recent Advances in Asymmetric Catalysis with Chiral NHCP Ligands
10.4 Recent Advances in NHCP Chemistry Featuring Bulky, Electron-Rich, Small-Bite-Angle Ligands
References
Part III: Catalysts in Synthesis
Chapter 11: Ir-Catalyzed Asymmetric Allylic Substitution Reactions – Fundamentals and Applications in Natural Products Synthesis
11.1 Introduction
11.2 Background on Reaction Mechanism
11.3 Dibenzocyclooctatetraene (dbcot) as Ancillary Ligand
11.4 Applications in Organic Synthesis
11.5 Conclusions
Acknowledgments
References
Chapter 12: Sequential Catalysis Involving Metal-Catalyzed Cycloisomerizations and Cyclizations
12.1 Introduction
12.2 Sequences Initiated by Cycloisomerizations
12.3 Sequences Initiated by Ring-Closing Olefin Metathesis
12.4 Sequences Initiated by Alkynylation and Carbopalladative Insertions
12.5 Sequences Intercepted by Cyclizations
12.6 Conclusion
Acknowledgment
Abbreviations
References
Chapter 13: C–N-Coupling Reactions in Catalytic One-Pot Syntheses Using Molecular Group 4 Catalysts
13.1 Introduction
13.2 Group 4 Metal Catalysts for the Hydroamination and Hydrohydrazination of C–C Multiple Bonds as well as Complex Reaction Sequences Based Thereon
13.3 Case Histories
References
Chapter 14: Sequential Catalysis for the Stereoselective Synthesis of Complex Polyketides
14.1 Complex Polyketides
14.2 Domino Nucleophilic Addition–Tsuji–Trost Reaction
14.3 Sequential Diyne Cyclization and Regioselective Opening of Zirconacyclopentadienes
14.4 Conclusion and Perspectives
References
Chapter 15: Modular Assembly of Chiral Catalysts with Polydentate Stereodirecting Ligands
15.1 Introduction
15.2 A Modular Synthesis of
C
3
- and
C
1
-Chiral 1,1,1-Tris(oxazolyl)ethanes (“Trisox”)
15.3 The
Boxmi
Pincer System: a Highly Efficient Modular Stereodirecting Ligand for a Broad Range of Catalytic Reactions
15.4 Bidentate N-Heterocyclic Carbene Ligands Incorporating Oxazoline Units
15.5 New Modular Di- and Tridentate Phospholane Ligands
References
Part IV: Structures and Mechanisms in Biological Systems
Chapter 16: Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins
16.1 Introduction
16.2 Cytochrome P450 Enzymes
16.3 Photoelectrons – Friend and Foe
16.4 X-ray Free-Electron Lasers
References
Chapter 17: The Catalytic Strategy of P–O Bond-Cleaving Enzymes: Comparing EcoRV and Myosin
17.1 Introduction
17.2 Results
17.3 Conclusions
17.4 Methods
References
Chapter 18: Selective Hybrid Catalysts Based on Nucleic Acids
18.1 Introduction
18.2 Hybrid Catalysis
18.3 DNA-Based Hybrid Catalysis
18.4 Organometallic Chemistry with Nucleic Acids
18.5 Combinatorial Selections of Catalysts from Nucleic Acid Libraries
18.6 Site-Specific Internal Functionalization of Nucleic Acids with Transition-Metal Ligands and Other Moieties
18.7 Metallation of DNA–Ligand Conjugates
18.8 Site-Specific Terminal Functionalization of Nucleic Acids with Substrates
18.9 Allylic Aminations by DNA-Based Hybrid Catalysts
18.10 Summary and Outlook
References
Part V: Studies of Immobilized Catalysts – Introduction
V.1 Introduction
V.2 Covalent Immobilization of Catalysts
V.3 Support Materials
V.4 Examples of Immobilized Catalyst Systems
References
Chapter 19: Dendrimers as Platforms for Stereoselective Catalysis
19.1 Introduction
19.2 Fixation of Chiral Catalysts on Dendrimers and Hyperbranched Polymers
19.3 Case Histories
19.4 Conclusion and Outlook
References
Chapter 20: Solid Phases as Protective Environments for Biomimetic Catalysts
20.1 Introduction
20.2 Site Isolation Experienced by Matrix-Bound Transition-Metal Complexes
20.3 Immobilized Structural and Spectroscopic Active Site Models
20.4 Elementary Reaction Steps Performed by Solid-Phase Supported Complexes
20.5 Immobilized Functional Active Site Models
20.6 Final Remarks
Abbreviations
References
Chapter 21: High-Throughput Screening of Catalysts and Reactions
21.1 Introduction
21.2 Technical Requirements for On-Column Reaction Chromatography
21.3 Determination of Kinetic Data
21.4 Determination of Activation Parameters
21.5 On-Column Reaction Chromatography for the Investigation of Catalytic Reactions
21.6 Outlook
References
Index
End User License Agreement
XV
XVI
XVII
XVIII
XIX
XX
XXI
XXII
XXIII
XXIV
XXV
XXVI
XXVII
XXIV
XXX
XXXI
XXXII
5
6
7
8
9
11
10
12
13
15
16
17
18
19
20
14
21
22
23
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
98
97
100
99
101
102
103
104
105
107
108
109
110
111
112
113
114
115
116
117
118
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
147
148
149
150
151
152
153
155
154
157
156
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
284
285
283
286
287
288
289
290
291
292
293
294
295
296
297
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
442
441
443
444
446
445
447
448
449
450
451
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
1
2
3
119
120
121
235
236
237
238
343
344
345
393
394
395
396
397
398
399
400
401
402
403
404
405
Cover
Table of Contents
Foreword
Introduction
Part I: Mechanisms of Elementary Reactions in Catalytic Processes
Chapter 1: Quantum Dynamics of Molecular Elementary Processes in Catalytic Transformations
Figure 1
Figure 2
Figure 3
Scheme 1.1
Scheme 1.2
Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9
Figure 1.10
Figure 1.11
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Scheme 2.1
Scheme 2.2
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Scheme 4.1
Figure 4.2
Figure 4.1
Scheme 4.2
Scheme 4.3
Scheme 4.4
Scheme 4.5
Scheme 4.6
Scheme 4.7
Figure 4.3
Scheme 4.8
Scheme 4.9
Scheme 4.10
Scheme 4.11
Figure 4.4
Scheme 4.12
Scheme 4.13
Scheme 4.14
Scheme 4.15
Scheme 4.16
Scheme 4.17
Scheme 4.18
Scheme 4.19
Scheme 4.20
Scheme 4.21
Scheme 5.1
Figure 5.1
Scheme 5.2
Scheme 5.3
Scheme 5.4
Scheme 5.5
Scheme 5.6
Scheme 5.7
Scheme 5.8
Figure 5.2
Scheme 5.9
Scheme 5.10
Scheme 5.11
Figure 5.3
Scheme 5.12
Scheme 5.13
Scheme 5.14
Scheme 5.15
Scheme 6.1
Figure 6.1
Scheme 6.2
Figure 6.2
Figure 6.3
Scheme 6.3
Scheme 6.4
Scheme 6.5
Scheme 6.6
Figure 6.4
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Scheme 8.1
Scheme 8.2
Scheme 8.3
Scheme 8.4
Scheme 8.5
Scheme 8.6
Scheme 8.7
Scheme 8.8
Figure 8.1
Figure 8.2
Figure 8.3
Scheme 8.9
Scheme 8.10
Figure 8.4
Scheme 8.11
Scheme 8.12
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Scheme 9.2
Scheme 9.1
Scheme 9.3
Scheme 9.4
Scheme 9.5
Scheme 9.6
Scheme 9.7
Scheme 9.8
Figure 9.5
Figure 9.6
Figure 9.7
Figure 9.8
Figure 9.9
Figure 9.10
Figure 9.11
Figure 9.12
Figure 9.13
Figure 9.14
Figure 10.1
Scheme 10.1
Scheme 10.2
Scheme 10.3
Scheme 10.4
Figure 10.2
Scheme 10.5
Figure 10.3
Scheme 10.6
Figure 10.4
Figure 10.5
Scheme 10.7
Scheme 10.8
Scheme 10.9
Scheme 10.10
Scheme 10.11
Scheme 10.12
Scheme 10.13
Scheme 10.14
Scheme 11.1
Scheme 11.2
Scheme 11.3
Figure 11.1
Figure 11.2
Scheme 11.4
Scheme 11.5
Scheme 11.6
Scheme 11.7
Scheme 11.8
Figure 11.3
Scheme 11.9
Scheme 11.10
Scheme 11.11
Scheme 11.12
Scheme 11.13
Schemes 11.14
Figure 11.15
Scheme 11.16
Scheme 12.1
Scheme 12.2
Scheme 12.3
Scheme 12.4
Scheme 12.5
Scheme 12.6
Scheme 12.7
Scheme 12.8
Scheme 12.9
Scheme 12.10
Scheme 12.11
Scheme 12.12
Scheme 12.13
Scheme 12.14
Scheme 12.15
Scheme 12.16
Scheme 12.17
Scheme 12.18
Scheme 12.19
Scheme 12.20
Scheme 12.21
Scheme 12.22
Scheme 12.23
Scheme 12.24
Scheme 12.25
Scheme 12.26
Scheme 12.27
Scheme 12.28
Scheme 12.29
Scheme 13.1
Scheme 13.2
Scheme 13.3
Scheme 13.4
Scheme 13.5
Figure 13.1
Scheme 13.6
Scheme 13.7
Scheme 13.8
Scheme 13.9
Figure 13.2
Figure 13.3
Scheme 13.10
Scheme 13.11
Figure 13.4
Figure 13.5
Figure 14.1
Scheme 14.1
Scheme 14.2
Scheme 14.3
Scheme 14.4
Scheme 14.5
Scheme 14.6
Scheme 14.7
Scheme 14.8
Scheme 14.9
Scheme 14.10
Scheme 14.11
Scheme 14.12
Figure 15.1
Scheme 15.1
Scheme 15.2
Scheme 15.3
Figure 15.2
Scheme 15.4
Scheme 15.5
Figure 15.3
Scheme 15.6
Scheme 15.7
Scheme 15.8
Scheme 15.9
Scheme 15.10
Scheme 15.11
Scheme 15.12
Scheme 15.13
Scheme 15.14
Scheme 15.15
Figure 15.4
Figure 15.5
Scheme 15.16
Figure 15.6
Scheme 15.17
Figure 15.7
Scheme 15.18
Scheme 15.19
Figure 15.8
Figure 16.1
Figure 16.2
Figure 16.3
Figure 17.1
Figure 17.2
Figure 17.3
Figure 17.4
Figure 17.5
Figure 17.6
Figure 17.7
Figure 18.1
Figure 18.2
Figure 18.3
Scheme 18.1
Figure 18.4
Figure 18.5
Figure 18.6
Figure 18.7
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 19.1
Scheme 19.1
Scheme 19.2
Figure 19.2
Figure 19.3
Scheme 19.3
Figure 19.4
Scheme 19.4
Figure 19.5
Figure 19.6
Scheme 19.5
Scheme 19.6
Figure 19.7
Figure 19.8
Figure 19.9
Figure 20.1
Figure 20.2
Figure 20.3
Figure 20.4
Figure 20.5
Figure 20.6
Figure 20.7
Figure 20.8
Figure 20.9
Figure 20.10
Figure 20.11
Figure 20.12
Figure 20.13
Figure 21.1
Figure 21.2
Figure 21.3
Figure 21.4
Figure 21.5
Figure 21.6
Figure 21.7
Figure 21.8
Scheme 21.1
Figure 21.9
Figure 21.10
Figure 21.11
Figure 21.12
Scheme 21.2
Figure 21.13
Table 5.1
Table 6.1
Table 6.2
Table 6.3
Table 8.1
Table 8.2
Table 10.1
Table 10.2
Table 15.1
Table 15.2
Table 15.3
Table 15.4
Table 15.5
Table V.1
Table 19.1
Table 19.2
Table 21.1
Table 21.2
Cornils, B., Herrmann, W.A., Beller, M., Paciello, R. (eds.)
Applied Homogeneous Catalysis with Organometallic Compounds
A Comprehensive Handbook in Three Volumes
3 Edition
2015
Print ISBN: 978-3-527-32897-0, also available in digital formats
Wilson, K., Lee, A.F. (eds.)
Heterogeneous Catalysts for Clean Technology
Spectroscopy, Design, and Monitoring
2014
Print ISBN: 978-3-527-33213-7, also available in digital formats
Kamer, P.P., van Leeuwen, P.P. (eds.)
Phosphorus(III) Ligands in Homogeneous Catalysis – Design and Synthesis
2012
Print ISBN: 978-0-470-66627-2, also available in digital formats
Hashmi, A.S., Toste, F.D. (eds.)
Modern Gold Catalyzed Synthesis
2012
Print ISBN: 978-3-527-31952-7, also available in digital formats
Che, M., Vedrine, J.C. (eds.)
Characterization of Solid Materials and Heterogeneous Catalysts
From Structure to Surface Reactivity
2012
Print ISBN: 978-3-527-32687-7, also available in digital formats
Beller, M., Renken, A., van Santen, R.A. (eds.)
Catalysis
From Principles to Applications
2012
Print ISBN: 978-3-527-32349-4
Itsuno, S. (ed.)
Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis
2011
Print ISBN: 978-0-470-56820-0, also available in digital formats
van Leeuwen, P.W., Chadwick, J.C.
Homogeneous Catalysts
Activity – Stability – Deactivation
2011
Print ISBN: 978-3-527-32329-6, also available in digital formats
Zhou, Q. (ed.)
Privileged Chiral Ligands and Catalysts
2011
Print ISBN: 978-3-527-32704-1, also available in digital formats
Edited by Lutz H. Gade and Peter Hofmann
The Editors
Prof. Dr. Lutz H. Gade
Ruprecht-Karls-Universität Heidelberg
Anorganisch-Chem. Institut (ACI)
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Prof. Dr. Peter Hofmann
Ruprecht-Karls-Universität Heidelberg
Organisch-Chemisches Institut (OCI)
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Cover picture
Source: BASF Pressefoto
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-33521-3
ePDF ISBN: 978-3-527-67330-8
ePub ISBN: 978-3-527-67329-2
Mobi ISBN: 978-3-527-67328-5
oBook ISBN: 978-3-527-67327-8
List of Contributors
Marcel Brill
Ruprecht-Karls-Universität Heidelberg
Organisch-Chemisches Institut (OCI)
Im Neuenheimer Feld 270
Heidelberg
Germany
Dominik Brox
Ruprecht-Karls-Universität Heidelberg
Physikalisch-Chemisches Institut (PCI)
Im Neuenheimer Feld 229
Heidelberg
Germany
Peter Comba
Ruprecht-Karls-Universität Heidelberg
Anorganisch-Chemisches Institut (ACI)
Im Neuenheimer Feld 270
Heidelberg
Germany
Thomas Debnar
Rheinische Friedrich-Wilhelms-University of Bonn
Department of Organic Chemistry and Biochemistry
Gerhard-Domagk-Street 1
Bonn
Germany
Markus Enders
Ruprecht-Karls Universität Heidelberg
Anorganisch-Chemisches Institut (ACI)
Im Neuenheimer Feld 270
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!