Molecular Catalysts -  - E-Book

Molecular Catalysts E-Book

0,0
162,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers will gain a deeper understanding of the catalytic transformations, allowing them to adapt the knowledge to their own investigations.

With its ideal combination of fundamental and applied research, this is an essential reference for researchers and graduate students both in academic institutions and in the chemical industry.

With a foreword by Nobel laureate Roald Hoffmann.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 825

Veröffentlichungsjahr: 2014

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Related Titles

Title Page

Copyright

List of Contributors

Foreword

1 The Magic Force That Became a Science

2 It Should Go Off, Shouldn't It?

3 Incendiary Acts

4 Döbereiner's Feuerzeug

5 Geopolitics and Science

6 Chemistry in Culture

7 How Does Hydrogen Burn?

8 Knowing without Seeing

References

Introduction

I

II

III

IV

Part I: Mechanisms of Elementary Reactions in Catalytic Processes

Chapter 1: Quantum Dynamics of Molecular Elementary Processes in Catalytic Transformations

1.1 Introduction

1.2 Structural and Energetic Aspects

1.3 Quantum Dynamical Calculations

1.4 Summary and Outlook

Acknowledgments

References

Chapter 2: Activation of Small Molecules with Metal and Metal Oxide Clusters in Inert Gas Matrixes

2.1 Introduction

2.2 The Matrix Isolation Technique – Advantages and Limitations

2.3 Formation and Characterization of Metal Atom Dimers and Clusters

2.4 Reactions of Atom Dimers or Clusters

2.5 Formation and Characterization of Metal Oxides

2.6 Reactions Involving Metal Oxides

2.7 Concluding Remarks

Acknowledgments

References

Chapter 3: Toward Single-Molecule Catalysis

3.1 Introduction

3.2 Probes for Single-Molecule Chemistry

3.3 Approaching Single-Molecule Studies in Homogeneous Catalysis

3.4 Discussion and Perspectives

Acknowledgments

References

Chapter 4: Intermediates and Elementary Reactions in Gold Catalysis

4.1 Introduction

4.2 The Initial Step: π-Coordination of the Substrate

4.3 The Nucleophilic Addition: Vinylgold and Alkylgold Intermediates

4.4 The Reaction of the Organogold Intermediates with Electrophiles

4.5 “Vinylidene” Gold(I) Intermediates

4.6 Protons and Hydride in Gold Catalysis

4.7 Future Perspectives

References

Chapter 5: Diastereoselectivity in Alkene Metathesis

5.1 Introduction

5.2 Stereoselective Alkene Metathesis Catalysts

5.3 Combining Catalytic Activity and Stereoselectivity in Ruthenium Carbenes: an Antagonism?

5.4 Stereoselectivity in Ring-Opening Metathesis Polymerization (ROMP)

5.5 Outlook

5.6 Summary

References

Part II: New Catalysts – New and Old Reactions

Chapter 6: Oxidation Catalysis with High-Valent Nonheme Iron Complexes

6.1 Introduction

6.2 Bispidine Ligands

6.3 Oxidation of the Ferrous Precursors

6.4 Spin States of the Ferryl Catalysts

6.5 Redox Properties of the Ferryl Oxidants

6.6 Reactivity of the Ferryl Compounds

6.7 Conclusion

Acknowledgment

References

Chapter 7: Single-Site Organochromium Catalysts for High Molecular Weight Polyolefins

7.1 Introduction

7.2 Ligand Design

7.3 Chromium Complexes of Non-Cp Ligands

7.4 Chromium Complexes Based on Cp

7.5 Polymerization Behavior of Donor-Functionalized Cp Chromium Complexes Developed in Heidelberg

7.6 En Route to Tunable Catalysts

7.7 Conclusion

References

Chapter 8: Ligand Design and Mechanistic Studies for Ni-Catalyzed Hydrocyanation and 2-Methyl-3-Butenenitrile Isomerization Based upon Rh-Hydroformylation Research

8.1 Introduction

8.2 Recent Advances in Ni-Catalyzed Hydrocyanation and Isomerization Reactions

8.3 Recent Advances in Ni-Catalyzed Hydrocyanation and Isomerization Reactions Employing the TTP-Ligand Family

Acknowledgments

References

Chapter 9: Strongly Electron Donating Tridentate N-Heterocyclic Biscarbene Ligands for Rhodium and Iridium Catalysts

9.1 Introduction

9.2 Ligand Systems

9.3 Synthesis and Reactivity of the Complexes

9.4 Catalytic Activities of the Rh Complexes

9.5 Catalytic Activities of the Ir Complexes

9.6 Discussion

9.7 Summary, Conclusion, and Outlook

References

Chapter 10: NHCP Ligands for Catalysis

10.1 Introduction

10.2 Recent Advances in Catalysis with NHCP Ligands

10.3 Recent Advances in Asymmetric Catalysis with Chiral NHCP Ligands

10.4 Recent Advances in NHCP Chemistry Featuring Bulky, Electron-Rich, Small-Bite-Angle Ligands

References

Part III: Catalysts in Synthesis

Chapter 11: Ir-Catalyzed Asymmetric Allylic Substitution Reactions – Fundamentals and Applications in Natural Products Synthesis

11.1 Introduction

11.2 Background on Reaction Mechanism

11.3 Dibenzocyclooctatetraene (dbcot) as Ancillary Ligand

11.4 Applications in Organic Synthesis

11.5 Conclusions

Acknowledgments

References

Chapter 12: Sequential Catalysis Involving Metal-Catalyzed Cycloisomerizations and Cyclizations

12.1 Introduction

12.2 Sequences Initiated by Cycloisomerizations

12.3 Sequences Initiated by Ring-Closing Olefin Metathesis

12.4 Sequences Initiated by Alkynylation and Carbopalladative Insertions

12.5 Sequences Intercepted by Cyclizations

12.6 Conclusion

Acknowledgment

Abbreviations

References

Chapter 13: C–N-Coupling Reactions in Catalytic One-Pot Syntheses Using Molecular Group 4 Catalysts

13.1 Introduction

13.2 Group 4 Metal Catalysts for the Hydroamination and Hydrohydrazination of C–C Multiple Bonds as well as Complex Reaction Sequences Based Thereon

13.3 Case Histories

References

Chapter 14: Sequential Catalysis for the Stereoselective Synthesis of Complex Polyketides

14.1 Complex Polyketides

14.2 Domino Nucleophilic Addition–Tsuji–Trost Reaction

14.3 Sequential Diyne Cyclization and Regioselective Opening of Zirconacyclopentadienes

14.4 Conclusion and Perspectives

References

Chapter 15: Modular Assembly of Chiral Catalysts with Polydentate Stereodirecting Ligands

15.1 Introduction

15.2 A Modular Synthesis of

C

3

- and

C

1

-Chiral 1,1,1-Tris(oxazolyl)ethanes (“Trisox”)

15.3 The

Boxmi

Pincer System: a Highly Efficient Modular Stereodirecting Ligand for a Broad Range of Catalytic Reactions

15.4 Bidentate N-Heterocyclic Carbene Ligands Incorporating Oxazoline Units

15.5 New Modular Di- and Tridentate Phospholane Ligands

References

Part IV: Structures and Mechanisms in Biological Systems

Chapter 16: Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins

16.1 Introduction

16.2 Cytochrome P450 Enzymes

16.3 Photoelectrons – Friend and Foe

16.4 X-ray Free-Electron Lasers

References

Chapter 17: The Catalytic Strategy of P–O Bond-Cleaving Enzymes: Comparing EcoRV and Myosin

17.1 Introduction

17.2 Results

17.3 Conclusions

17.4 Methods

References

Chapter 18: Selective Hybrid Catalysts Based on Nucleic Acids

18.1 Introduction

18.2 Hybrid Catalysis

18.3 DNA-Based Hybrid Catalysis

18.4 Organometallic Chemistry with Nucleic Acids

18.5 Combinatorial Selections of Catalysts from Nucleic Acid Libraries

18.6 Site-Specific Internal Functionalization of Nucleic Acids with Transition-Metal Ligands and Other Moieties

18.7 Metallation of DNA–Ligand Conjugates

18.8 Site-Specific Terminal Functionalization of Nucleic Acids with Substrates

18.9 Allylic Aminations by DNA-Based Hybrid Catalysts

18.10 Summary and Outlook

References

Part V: Studies of Immobilized Catalysts – Introduction

V.1 Introduction

V.2 Covalent Immobilization of Catalysts

V.3 Support Materials

V.4 Examples of Immobilized Catalyst Systems

References

Chapter 19: Dendrimers as Platforms for Stereoselective Catalysis

19.1 Introduction

19.2 Fixation of Chiral Catalysts on Dendrimers and Hyperbranched Polymers

19.3 Case Histories

19.4 Conclusion and Outlook

References

Chapter 20: Solid Phases as Protective Environments for Biomimetic Catalysts

20.1 Introduction

20.2 Site Isolation Experienced by Matrix-Bound Transition-Metal Complexes

20.3 Immobilized Structural and Spectroscopic Active Site Models

20.4 Elementary Reaction Steps Performed by Solid-Phase Supported Complexes

20.5 Immobilized Functional Active Site Models

20.6 Final Remarks

Abbreviations

References

Chapter 21: High-Throughput Screening of Catalysts and Reactions

21.1 Introduction

21.2 Technical Requirements for On-Column Reaction Chromatography

21.3 Determination of Kinetic Data

21.4 Determination of Activation Parameters

21.5 On-Column Reaction Chromatography for the Investigation of Catalytic Reactions

21.6 Outlook

References

Index

End User License Agreement

Pages

XV

XVI

XVII

XVIII

XIX

XX

XXI

XXII

XXIII

XXIV

XXV

XXVI

XXVII

XXIV

XXX

XXXI

XXXII

5

6

7

8

9

11

10

12

13

15

16

17

18

19

20

14

21

22

23

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

98

97

100

99

101

102

103

104

105

107

108

109

110

111

112

113

114

115

116

117

118

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

147

148

149

150

151

152

153

155

154

157

156

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

284

285

283

286

287

288

289

290

291

292

293

294

295

296

297

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

442

441

443

444

446

445

447

448

449

450

451

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

1

2

3

119

120

121

235

236

237

238

343

344

345

393

394

395

396

397

398

399

400

401

402

403

404

405

Guide

Cover

Table of Contents

Foreword

Introduction

Part I: Mechanisms of Elementary Reactions in Catalytic Processes

Chapter 1: Quantum Dynamics of Molecular Elementary Processes in Catalytic Transformations

List of Illustrations

Figure 1

Figure 2

Figure 3

Scheme 1.1

Scheme 1.2

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.7

Figure 1.8

Figure 1.9

Figure 1.10

Figure 1.11

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Scheme 2.1

Scheme 2.2

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Scheme 4.1

Figure 4.2

Figure 4.1

Scheme 4.2

Scheme 4.3

Scheme 4.4

Scheme 4.5

Scheme 4.6

Scheme 4.7

Figure 4.3

Scheme 4.8

Scheme 4.9

Scheme 4.10

Scheme 4.11

Figure 4.4

Scheme 4.12

Scheme 4.13

Scheme 4.14

Scheme 4.15

Scheme 4.16

Scheme 4.17

Scheme 4.18

Scheme 4.19

Scheme 4.20

Scheme 4.21

Scheme 5.1

Figure 5.1

Scheme 5.2

Scheme 5.3

Scheme 5.4

Scheme 5.5

Scheme 5.6

Scheme 5.7

Scheme 5.8

Figure 5.2

Scheme 5.9

Scheme 5.10

Scheme 5.11

Figure 5.3

Scheme 5.12

Scheme 5.13

Scheme 5.14

Scheme 5.15

Scheme 6.1

Figure 6.1

Scheme 6.2

Figure 6.2

Figure 6.3

Scheme 6.3

Scheme 6.4

Scheme 6.5

Scheme 6.6

Figure 6.4

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Scheme 8.1

Scheme 8.2

Scheme 8.3

Scheme 8.4

Scheme 8.5

Scheme 8.6

Scheme 8.7

Scheme 8.8

Figure 8.1

Figure 8.2

Figure 8.3

Scheme 8.9

Scheme 8.10

Figure 8.4

Scheme 8.11

Scheme 8.12

Figure 9.1

Figure 9.2

Figure 9.3

Figure 9.4

Scheme 9.2

Scheme 9.1

Scheme 9.3

Scheme 9.4

Scheme 9.5

Scheme 9.6

Scheme 9.7

Scheme 9.8

Figure 9.5

Figure 9.6

Figure 9.7

Figure 9.8

Figure 9.9

Figure 9.10

Figure 9.11

Figure 9.12

Figure 9.13

Figure 9.14

Figure 10.1

Scheme 10.1

Scheme 10.2

Scheme 10.3

Scheme 10.4

Figure 10.2

Scheme 10.5

Figure 10.3

Scheme 10.6

Figure 10.4

Figure 10.5

Scheme 10.7

Scheme 10.8

Scheme 10.9

Scheme 10.10

Scheme 10.11

Scheme 10.12

Scheme 10.13

Scheme 10.14

Scheme 11.1

Scheme 11.2

Scheme 11.3

Figure 11.1

Figure 11.2

Scheme 11.4

Scheme 11.5

Scheme 11.6

Scheme 11.7

Scheme 11.8

Figure 11.3

Scheme 11.9

Scheme 11.10

Scheme 11.11

Scheme 11.12

Scheme 11.13

Schemes 11.14

Figure 11.15

Scheme 11.16

Scheme 12.1

Scheme 12.2

Scheme 12.3

Scheme 12.4

Scheme 12.5

Scheme 12.6

Scheme 12.7

Scheme 12.8

Scheme 12.9

Scheme 12.10

Scheme 12.11

Scheme 12.12

Scheme 12.13

Scheme 12.14

Scheme 12.15

Scheme 12.16

Scheme 12.17

Scheme 12.18

Scheme 12.19

Scheme 12.20

Scheme 12.21

Scheme 12.22

Scheme 12.23

Scheme 12.24

Scheme 12.25

Scheme 12.26

Scheme 12.27

Scheme 12.28

Scheme 12.29

Scheme 13.1

Scheme 13.2

Scheme 13.3

Scheme 13.4

Scheme 13.5

Figure 13.1

Scheme 13.6

Scheme 13.7

Scheme 13.8

Scheme 13.9

Figure 13.2

Figure 13.3

Scheme 13.10

Scheme 13.11

Figure 13.4

Figure 13.5

Figure 14.1

Scheme 14.1

Scheme 14.2

Scheme 14.3

Scheme 14.4

Scheme 14.5

Scheme 14.6

Scheme 14.7

Scheme 14.8

Scheme 14.9

Scheme 14.10

Scheme 14.11

Scheme 14.12

Figure 15.1

Scheme 15.1

Scheme 15.2

Scheme 15.3

Figure 15.2

Scheme 15.4

Scheme 15.5

Figure 15.3

Scheme 15.6

Scheme 15.7

Scheme 15.8

Scheme 15.9

Scheme 15.10

Scheme 15.11

Scheme 15.12

Scheme 15.13

Scheme 15.14

Scheme 15.15

Figure 15.4

Figure 15.5

Scheme 15.16

Figure 15.6

Scheme 15.17

Figure 15.7

Scheme 15.18

Scheme 15.19

Figure 15.8

Figure 16.1

Figure 16.2

Figure 16.3

Figure 17.1

Figure 17.2

Figure 17.3

Figure 17.4

Figure 17.5

Figure 17.6

Figure 17.7

Figure 18.1

Figure 18.2

Figure 18.3

Scheme 18.1

Figure 18.4

Figure 18.5

Figure 18.6

Figure 18.7

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 19.1

Scheme 19.1

Scheme 19.2

Figure 19.2

Figure 19.3

Scheme 19.3

Figure 19.4

Scheme 19.4

Figure 19.5

Figure 19.6

Scheme 19.5

Scheme 19.6

Figure 19.7

Figure 19.8

Figure 19.9

Figure 20.1

Figure 20.2

Figure 20.3

Figure 20.4

Figure 20.5

Figure 20.6

Figure 20.7

Figure 20.8

Figure 20.9

Figure 20.10

Figure 20.11

Figure 20.12

Figure 20.13

Figure 21.1

Figure 21.2

Figure 21.3

Figure 21.4

Figure 21.5

Figure 21.6

Figure 21.7

Figure 21.8

Scheme 21.1

Figure 21.9

Figure 21.10

Figure 21.11

Figure 21.12

Scheme 21.2

Figure 21.13

List of Tables

Table 5.1

Table 6.1

Table 6.2

Table 6.3

Table 8.1

Table 8.2

Table 10.1

Table 10.2

Table 15.1

Table 15.2

Table 15.3

Table 15.4

Table 15.5

Table V.1

Table 19.1

Table 19.2

Table 21.1

Table 21.2

Related Titles

Cornils, B., Herrmann, W.A., Beller, M., Paciello, R. (eds.)

Applied Homogeneous Catalysis with Organometallic Compounds

A Comprehensive Handbook in Three Volumes

3 Edition

2015

Print ISBN: 978-3-527-32897-0, also available in digital formats

Wilson, K., Lee, A.F. (eds.)

Heterogeneous Catalysts for Clean Technology

Spectroscopy, Design, and Monitoring

2014

Print ISBN: 978-3-527-33213-7, also available in digital formats

Kamer, P.P., van Leeuwen, P.P. (eds.)

Phosphorus(III) Ligands in Homogeneous Catalysis – Design and Synthesis

2012

Print ISBN: 978-0-470-66627-2, also available in digital formats

Hashmi, A.S., Toste, F.D. (eds.)

Modern Gold Catalyzed Synthesis

2012

Print ISBN: 978-3-527-31952-7, also available in digital formats

Che, M., Vedrine, J.C. (eds.)

Characterization of Solid Materials and Heterogeneous Catalysts

From Structure to Surface Reactivity

2012

Print ISBN: 978-3-527-32687-7, also available in digital formats

Beller, M., Renken, A., van Santen, R.A. (eds.)

Catalysis

From Principles to Applications

2012

Print ISBN: 978-3-527-32349-4

Itsuno, S. (ed.)

Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis

2011

Print ISBN: 978-0-470-56820-0, also available in digital formats

van Leeuwen, P.W., Chadwick, J.C.

Homogeneous Catalysts

Activity – Stability – Deactivation

2011

Print ISBN: 978-3-527-32329-6, also available in digital formats

Zhou, Q. (ed.)

Privileged Chiral Ligands and Catalysts

2011

Print ISBN: 978-3-527-32704-1, also available in digital formats

Edited by Lutz H. Gade and Peter Hofmann

Molecular Catalysts

Structure and Functional Design

The Editors

Prof. Dr. Lutz H. Gade

Ruprecht-Karls-Universität Heidelberg

Anorganisch-Chem. Institut (ACI)

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Prof. Dr. Peter Hofmann

Ruprecht-Karls-Universität Heidelberg

Organisch-Chemisches Institut (OCI)

Im Neuenheimer Feld 270

69120 Heidelberg

Germany

Cover picture

Source: BASF Pressefoto

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33521-3

ePDF ISBN: 978-3-527-67330-8

ePub ISBN: 978-3-527-67329-2

Mobi ISBN: 978-3-527-67328-5

oBook ISBN: 978-3-527-67327-8

List of Contributors

Marcel Brill

Ruprecht-Karls-Universität Heidelberg

Organisch-Chemisches Institut (OCI)

Im Neuenheimer Feld 270

Heidelberg

Germany

Dominik Brox

Ruprecht-Karls-Universität Heidelberg

Physikalisch-Chemisches Institut (PCI)

Im Neuenheimer Feld 229

Heidelberg

Germany

Peter Comba

Ruprecht-Karls-Universität Heidelberg

Anorganisch-Chemisches Institut (ACI)

Im Neuenheimer Feld 270

Heidelberg

Germany

Thomas Debnar

Rheinische Friedrich-Wilhelms-University of Bonn

Department of Organic Chemistry and Biochemistry

Gerhard-Domagk-Street 1

Bonn

Germany

Markus Enders

Ruprecht-Karls Universität Heidelberg

Anorganisch-Chemisches Institut (ACI)

Im Neuenheimer Feld 270

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!