Multilayer Thin Films -  - E-Book

Multilayer Thin Films E-Book

0,0
367,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

This second, comprehensive edition of the pioneering book in this fi eld has been completely revised and extended, now stretching to two
volumes. The result is a comprehensive summary of layer-by-layer assembled, truly hybrid nanomaterials and thin fi lms, covering organic,
inorganic, colloidal, macromolecular, and biological components, as well as the assembly of nanoscale fi lms derived from them on surfaces.
These two volumes are essential for anyone working in the field, as well as scientists and researchers active in materials development, who
needs the key knowledge provided herein for linking the field of molecular self-assembly with the bio- and materials sciences.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 2000

Veröffentlichungsjahr: 2012

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Contents

Cover

Related Titles

Title Page

Copyright

List of Contributors

Chapter 1: Layer-by-Layer Assembly (Putting Molecules to Work)

1.1 The Whole is More than the Sum of its Parts

1.2 From Self-Assembly to Directed Assembly

1.3 History and Development of the Layer-by-Layer Assembly Method

1.4 LbL-Assembly is the Synthesis of Fuzzy Supramolecular Objects

1.5 Reproducibility and Choice of Deposition Conditions

1.6 Monitoring Multilayer Build-up

1.7 Spray- and Spin-Assisted Multilayer Assembly

1.8 Recent Developments

1.9 Final Remarks

References

Part I: Preparation and Characterization

Chapter 2: Layer-by-Layer Processed Multilayers: Challenges and Opportunities

2.1 Introduction

2.2 Fundamental Challenges and Opportunities

2.3 Technological Challenges and Opportunities

2.4 The Path Forward

References

Chapter 3: Layer-by-Layer Assembly: from Conventional to Unconventional Methods

3.1 Introduction

3.2 Conventional LbL Methods

3.3 Unconventional LbL Methods

3.4 Summary and Outlook

References

Chapter 4: Novel Multilayer Thin Films: Hierarchic Layer-by-Layer (Hi-LbL) Assemblies

4.1 Introduction

4.2 Hi-LbL for Multi-Cellular Models

4.3 Hi-LbL for Unusual Drug Delivery Modes

4.4 Hi-LbL for Sensors

4.5 Future Perspectives

Acknowledgements

References

Chapter 5: Layer-by-Layer Assembly Using Host-Guest Interactions

5.1 Introduction

5.2 Supramolecular Layer-by-Layer Assembly

5.3 3D Patterned Multilayer Assemblies on Surfaces

5.4 3D Supramolecular Nanoparticle Crystal Structures

5.5 Porous 3D Supramolecular Assemblies in Solution

5.6 Conclusions

References

Chapter 6: LbL Assemblies Using van der Waals or Affinity Interactions and Their Applications

6.1 Introduction

6.2 Stereospecific Template Polymerization of Methacrylates by Stereocomplex Formation in Nanoporous LbL Films

6.3 Preparation and Properties of Hollow Capsules Composed of Layer-by-Layer Polymer Films Constructed through van der Waals Interactions

6.4 Fabrication of Three-Dimensional Cellular Multilayers Using Layer-by-Layer Protein Nanofilms Constructed through Affinity Interaction

6.5 Conclusion

References

Chapter 7: Layer-by-Layer Assembly of Polymeric Complexes

7.1 Introduction

7.2 Concept of LbL Assembly of Polymeric Complexes

7.3 Structural Tailoring of LbL-Assembled Films of Polymeric Complexes

7.4 LbL-Assembled Functional Films of Polymeric Complexes

7.5 Summary

References

Chapter 8: Making Aqueous Nanocolloids from Low Solubility Materials: LbL Shells on Nanocores

8.1 Introduction

8.2 Formation of Nanocores

8.3 Ultrasonication-Assisted LbL Assembly

8.4 Solvent-Assisted Precipitation Into Preformed LbL-Coated Soft Organic Nanoparticles

8.5 Washless (Titration) LbL Technique

8.6 Formation of LbL Shells on Nanocores

8.7 Drug Release Study

8.8 Conclusions

References

Chapter 9: Cellulose Fibers and Fibrils as Templates for the Layer-by-Layer (LbL) Technology

9.1 Background

9.2 Formation of LbLs on Cellulose Fibers

9.3 The use of LbL to Improve Adhesion between Wood Fibers

9.4 The Use of LbL to Prepare Antibacterial Fibers

9.5 The use of NFC/CNC to Prepare Interactive Layers Using the LbL Approach

9.6 Conclusions

Acknowledgements

References

Chapter 10: Freely Standing LbL Films

10.1 Introduction

10.2 Fabrication of Freely Standing Ultrathin LbL Films

10.3 Porous and Patterned Freely Standing LbL Films

10.4 Freely Standing LbL Films with Weak Interactions

Acknowledgements

References

Chapter 11: Neutron Reflectometry at Polyelectrolyte Multilayers

11.1 Introduction

11.2 Neutron Reflectometry

11.3 Preparation Techniques for Polyelectrolyte Multilayers

11.4 Types of Polyelectrolytes

11.5 Preparation Parameters

11.6 Influence of External Fields After PEM Assembly

11.7 PEM as a Structural Unit

11.8 Conclusion and Outlook

References

Chapter 12: Polyelectrolyte Conformation in and Structure of Polyelectrolyte Multilayers

12.1 Introduction

12.2 Results

12.3 Conclusion and Outlook

References

Chapter 13: Charge Balance and Transport in Ion-Paired Polyelectrolyte Multilayers

13.1 Introduction

13.2 Association Mechanism: Competitive Ion Pairing

13.3 Surface versus Bulk Polymer Charge

13.4 Polyelectrolyte Interdiffusion

13.5 Ion Transport Through Multilayers: the “Reluctant” Exchange Mechanism

13.6 Concluding Remarks

References

Chapter 14: Conductivity Spectra of Polyelectrolyte Multilayers Revealing Ion Transport Processes

14.1 Introduction to Conductivity Studies of LbL Films

14.2 PEM Spectra: Overview

14.3 DC Conductivities of PEMs

14.4 Modeling of PEM Spectra

14.5 Ion Conduction in Polyelectrolyte Complexes

14.6 Scaling Principles in Conductivity Spectra: From Time–Temperature to Time–Humidity Superposition

References

Chapter 15: Responsive Layer-by-Layer Assemblies: Dynamics, Structure and Function

15.1 Introduction

15.2 Chain Dynamics and Film Layering

15.3 Responsive Swellable LbL Films

15.4 Conclusion and Outlook

References

Chapter 16: Tailoring the Mechanics of Freestanding Multilayers

16.1 Introduction

16.2 Measurements of Mechanical Properties of Flat LbL Films

16.3 Mechanical Properties of LbL Microcapsules

16.4 Prospective Applications Utilizing Mechanical Properties

Acknowledgements

References

Chapter 17: Design and Translation of Nanolayer Assembly Processes: Electrochemical Energy to Programmable Pharmacies

17.1 Introduction

17.2 Controlling Transport and Storing Charge in Multilayer Thin Films: Ions, Electrons and Molecules

17.3 LbL Films for Multi-Agent Drug Delivery – Opportunities for Programmable Release

17.4 Automated Spray-LbL – Enabling Function and Translation

17.5 Concluding Remarks

References

Chapter 18: Surface-Initiated Polymerization and Layer-by-Layer Films

18.1 Introduction

18.2 Overview of Surface-Grafted Polymer Brushes

18.3 Layer-by-Layer (LbL) Self-Assembly

18.4 Combined LbL-SIP Approach

18.5 Applications of the Combined LbL-SIP Approach

18.6 Concluding Remarks

Acknowledgment

References

Chapter 19: Quartz Crystal Resonator as a Tool for Following the Build-up of Polyelectrolyte Multilayers

19.1 Introduction

19.2 Basic Concepts

19.3 Growth Processes

19.4 Experimental Techniques

19.5 Analysis of QCR Data

List of Abbreviations

References

Part II: Applications

Chapter 20: Electrostatic and Coordinative Supramolecular Assembly of Functional Films for Electronic Application and Materials Separation

20.1 Introduction

20.2 Polyelectrolyte Multilayer Membranes

20.3 Summary and Conclusions

Acknowledgment

References

Chapter 21: Optoelectronic Materials and Devices Incorporating Polyelectrolyte Multilayers

21.1 Introduction

21.2 Second Order Nonlinear Optics

21.3 Plasmonic Enhancement of Second Order Nonlinear Optical Response

21.4 Nonlinear Optical Fibers

21.5 Optical Fiber Biosensors

21.6 Antireflection Coatings

21.7 Electrochromic Devices

21.8 Electromechanical Actuators

Acknowledgements

References

Chapter 22: Nanostructured Electrodes Assembled from Metal Nanoparticles and Quantum Dots in Polyelectrolytes

22.1 Introduction

22.2 Nanostructured Pt Electrodes from Assemblies of Pt Nanoparticles in Polyelectrolytes

22.3 Nanostructured Photoelectrodes from Assemblies of Q-CdS in Polyelectrolytes

22.4 Conclusions

Acknowledgments

References

Chapter 23: Record Properties of Layer-by-Layer Assembled Composites

23.1 Introduction

23.2 LbL Assemblies of Clays

23.3 LBL Assemblies of Carbon Nanotubes

23.4 Conclusions and Perspectives

References

Chapter 24: Carbon Nanotube-Based Multilayers

24.1 Introduction

24.2 Characteristics of Carbon Nanotube Layer-by-Layer Assemblies

24.3 Applications of Carbon Nanotube Layer-by-Layer Assemblies

24.4 Conclusions

References

Chapter 25: Nanoconfined Polyelectrolyte Multilayers: From Nanostripes to Multisegmented Functional Nanotubes

25.1 Introduction

25.2 Estimation of the Size of Polyelectrolyte Chains in Dilute Solutions

25.3 Confining LbL Assembly on Flat Surfaces

25.4 Confining LbL Assembly in Nanopores

25.5 Conclusions

25.6 Acknowledgments

References

Chapter 26: The Design of Polysaccharide Multilayers for Medical Applications

26.1 Introduction

26.2 Polysaccharides as Multilayered film Components: An Overview of Their Structure and Properties

26.3 Multilayers Formed by Assembly of Weak Polyanions and Chitosan or Chitosan Derivatives

26.4 Multilayers Formed by Assembly of Strong Polyanions and Chitosan or Chitosan Derivatives

26.5 Cardiovascular Applications of Polysaccharide Multilayers

26.6 Conclusions

References

Chapter 27: Polyelectrolyte Multilayer Films Based on Polysaccharides: From Physical Chemistry to the Control of Cell Differentiation

27.1 Introduction

27.2 Film Internal Composition and Hydration

27.3 Film Cross-Linking: Relation Between Composition and Mechanical Properties

27.4 Cell Adhesion onto Cross-Linked Films: Cell Adhesion, Cytoskeletal Organization and Comparison with Other Model Materials

27.5 Cell Differentiation: ESC and Myoblasts

27.6 Conclusions

27.7 Acknowledgements

References

Chapter 28: Diffusion of Nanoparticles and Biomolecules into Polyelectrolyte Multilayer Films: Towards New Functional Materials

28.1 Introduction

28.2 LBL Films in Which Nanoparticles are Incorporated Step-By-Step

28.3 LBL Films Made Uniquely From Nanoparticles

28.4 Nanoparticles Produced by Post-treatment of Deposited Films

28.5 Diffusion of Colloids in Already Deposited Films

28.6 Emerging Properties of Films Filled with Nanoparticles by the Post-incubation Method

28.7 Conclusions and Perspectives

28.8 Acknowledgements

References

Chapter 29: Coupling Chemistry and Hybridization of DNA Molecules on Layer-by-Layer Modified Colloids

29.1 Introduction

29.2 Materials and Methods

29.3 Results

29.4 Summary

References

Chapter 30: A “Multilayered” Approach to the Delivery of DNA: Exploiting the Structure of Polyelectrolyte Multilayers to Promote Surface-Mediated Cell Transfection and Multi-Agent Delivery

30.1 Introduction

30.2 Surface-Mediated Delivery of DNA: Motivation and Context, Opportunities and Challenges

30.3 Films Fabricated Using Hydrolytically Degradable Cationic Polymers

30.4 Toward Spatial Control: Release of DNA from the Surfaces of Implants and Devices

30.5 Toward Temporal Control: Tunable Release and Sequential Release

30.6 Concluding Remarks

30.7 Acknowledgments

References

Chapter 31: Designing LbL Capsules for Drug Loading and Release

31.1 Introduction

31.2 Engineering Microparticulate Templates to Design LbL Capsules for Controlled Drug Release

31.3 Engineering the Shell to Design LbL Capsules for Controlled Drug Release

31.4 Interaction of LbL Capsules with Living Cells In Vitro and In Vivo

31.5 Conclusions

References

Chapter 32: Stimuli-Sensitive LbL Films for Controlled Delivery of Proteins and Drugs

32.1 Introduction

32.2 Avidin-Containing LbL Films

32.3 Concanavalin A-containing LbL Films

32.4 Dendrimer-Containing LbL Films

32.5 Insulin-Containing LbL Films

32.6 Conclusions

Acknowledgments

References

Chapter 33: Assembly of Multilayer Capsules for Drug Encapsulation and Controlled Release

33.1 Introduction

33.2 Magnetically Sensitive Release

33.3 Ultrasound-Stimulated Release

33.4 Photo-Stimulated Release

33.5 Thermo-Stimulated Release

33.6 pH-Sensitive Release

33.7 Redox-Controlled Release

33.8 Bio-Responsive Release

33.9 Extension

33.10 Concluding Remarks

Acknowledgments

References

Chapter 34: Engineered Layer-by-Layer Assembled Capsules for Biomedical Applications

34.1 Introduction

34.2 Template Selection

34.3 Material Assembly

34.4 Loading

34.5 Degradation and Release

34.6 Applications

34.7 Conclusions

References

Chapter 35: Assembly of Polymer Multilayers from Organic Solvents for Biomolecule Encapsulation

35.1 Introduction

35.2 Limitations of LbL-Based Biomolecule Encapsulation in Aqueous Phase

35.3 LbL Biomolecule Encapsulation in the Organic Phase

35.4 Conclusion and Outlook

References

Chapter 36: Stimuli-Responsive Polymer Composite Multilayer Microcapsules and Microchamber Arrays

Abbreviations

36.1 Introduction

36.2 Fabrication of Stimuli-Responsive LbL Microcapsules

36.3 Microchamber Arrays

36.4 Conclusion

References

Chapter 37: Domain-Containing Functional Polyelectrolyte Films: Applications to Antimicrobial Coatings and Energy Transfer

37.1 Introduction

37.2 Polyelectrolyte Films Incorporating Randomly Distributed Hydrophobic Nanodomains for Antimicrobial Applications

37.3 Multicompartmentalized Stratified Polyelectrolyte Films for Control of Energy Transfer

37.4 Conclusions and Perspectives

37.5 Acknowledgments

References

Chapter 38: Creating Functional Membranes Through Polyelectrolyte Adsorption

38.1 Introduction

38.2 Functionalization of the Interior of Membranes

38.3 LBL Films as Membrane Skins

38.4 Challenges

38.5 Acknowledgments

References

Chapter 39: Remote and Self-Induced Release from Polyelectrolyte Multilayer Capsules and Films

References

Chapter 40: Controlled Architectures in LbL Films for Sensing and Biosensing

40.1 Introduction

40.2 LbL-Based Sensors and Biosensors

40.3 Special Architectures for Sensing and Biosensing

40.4 Statistical and Computational Methods to Treat the Data

40.5 Conclusions and Perspectives

40.6 Acknowledgments

References

Chapter 41: Patterned Multilayer Systems and Directed Self-Assembly of Functional Nano-Bio Materials

41.1 New Approaches and Materials for Multilayer Film Patterning Techniques

41.2 Cell Adhesion and Patterning Using PEMs

41.3 PEMs Incorporating Proteins and Their Patterning

41.4 Metal/Graphene Conductive Patterning via PEM Films

41.5 Ordered and Disordered Particles on PEMs

41.6 Mechanical Aspects of PEM Films and Degradable Films

41.7 Acknowledgment

References

Chapter 42: Electrochemically Active LbL Multilayer Films: From Biosensors to Nanocatalysts

42.1 Introduction

42.2 Electrochemical Response

42.3 Dynamics of Charge Exchange

42.4 Conclusions

References

Chapter 43: Multilayer Polyelectrolyte Assembly in Feedback Active Coatings and Films

43.1 Introduction. The Concept of Feedback Active Coatings

43.2 Polyelectrolyte-Based Self-Healing Anticorrosion Coatings

43.3 Coatings with Antibacterial Activity

43.4 Conclusions and Outlook

References

Index

Related Titles

Pacchioni, G., Valeri, S. (eds.)

Oxide Ultrathin Films

Science and Technology

2012

ISBN: 978-3-527-33016-4

Friedbacher, G., Bubert, H. (eds.)

Surface and Thin Film Analysis

A Compendium of Principles, Instrumentation, and Applications

2011

ISBN: 978-3-527-32047-9

Knoll, W., Advincula, R. C. (eds.)

Functional Polymer Films

2 Volume Set

2011

ISBN: 978-3-527-32190-2

Kumar, C. S. S. R. (ed.)

Polymeric Nanomaterials

2011

ISBN: 978-3-527-32170-4

Urban, M. W. (ed.)

Handbook of Stimuli-Responsive Materials

2011

ISBN: 978-3-527-32700-3

Fernandez-Nieves, A., Wyss, H., Mattsson, J., Weitz, D. A. (eds.)

Microgel Suspensions

Fundamentals and Applications

2011

ISBN: 978-3-527-32158-2

Samori, P., Cacialli, F. (eds.)

Functional Supramolecular Architectures

for Organic Electronics and Nanotechnology

2011

ISBN: 978-3-527-32611-2

Chujo, Y. (ed.)

Conjugated Polymer Synthesis

Methods and Reactions

2011

ISBN: 978-3-527-32267-1

Leclerc, M., Morin, J.-F. (eds.)

Design and Synthesis of Conjugated Polymers

2010

ISBN: 978-3-527-32474-3

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2012 Wiley-VCH Verlag & Co. KGaA,

Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Composition Thomson Digital, Noida, India

Printing and Binding betz-druck GmbH, Darmstadt

Cover Design Schulz Grafik-Design, Fußgönheim

Print ISBN: 978-3-527-31648-9

ePDF ISBN: 978-3-527-64677-7

oBook ISBN: 978-3-527-64674-6

ePub ISBN: 978-3-527-64676-0

List of Contributors

Rigoberto C. Advincula

University of Houston

Departments of Chemistry and Chemical and Biomolecular Engineering

136 Fleming Building

Houston, TX 77204-5003

USA

Hioharu Ajiro

Osaka University

Department of Applied Chemistry

2-1 Yamada-oka

Suita, Osaka 565-0871

Japan

Mitsuro Akashi

Osaka University

Department of Applied Chemistry

2-1 Yamada-oka

Suita, Osaka 565-0871

Japan

Maria N. Antipina

Agency for Science, Technology and Research (A*STAR)

Institute of Materials Research and Engineering

3 Research Link

Singapore 117602

Singapore

Jun-ichi Anzai

Tohoku University

Graduate School of Pharmaceutical Sciences

Aramaki, Aoba-ku

Sendai 980-8578

Japan

Pedro H.B. Aoki

Universidade Estadual Paulista (UNESP)

Faculdade de Ciências e Tecnologia

19060-900 Presidente Prudente, SP

Brazil

Katsuhiko Ariga

National Institute for Materials Science (NIMS)

World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)

1-1 Namiki

Tsukuba 305-0044

Japan

and

JST

CREST

1-1 Namiki

Tsukuba 305-0044

Japan

Jianhao Bai

National University of Singapore

Division of Bioengineering

Singapore 117576

Singapore

Vincent Ball

Centre de Recherche Public Henri Tudor

Department of Advanced Materials and Structures

66 rue de Luxembourg

4002 Esch-sur-Alzette

Luxembourg

Sebastian Beyer

National University of Singapore

Division of Bioengineering

Singapore 117576

Singapore

and

National University of Singapore

Graduate School for Integrative Sciences and Engineering

Singapore 11756

Singapore

Stephan Block

Ernst-Moritz-Arndt Universität

Institut für Physik

Felix-Hausdorff-Str. 6

17487 Greifswald

Germany

Thomas Boudou

Grenoble Institute of Technology and Centre National de la Recherche Scientifique

CNRS UMR 5628, LMGP, MINATEC

3 Parvis Louis Néel

38016 Grenoble

France

Merlin L. Bruening

Michigan State University

Department of Chemistry

East Lansing, MI 48824

USA

Cédric C. Buron

Université Catholique de Louvain

Institute of Condensed Matter and Nanosciences – Bio & Soft Matter

Croix du Sud 1

1348 Louvain-la-Neuve

Belgium

Ernesto J. Calvo

Universidad de Buenos Aires

Departamento de Química Inorgánica

Electrochemistry Group, INQUIMAE

Pabellón 2, Ciudad Universitária

Buenos Aires 1428

Argentina

Frank Caruso

The University of Melbourne

Department of Chemical and Biomolecular Engineering

Building 173

Melbourne, Victoria 3010

Australia

Chloe Chevigny

TU Berlin

Department of Chemistry

Straße des 17. Juni 124

10623 Berlin

Germany

Robert E. Cohen

Massachusetts Institute of Technology

Departments of Materials Science and Engineering and Chemical Engineering

77 Massachusetts Avenue

Cambridge, MA 02139

USA

Carlos J.L. Constantino

Universidade Estadual Paulista (UNESP)

Faculdade de Ciências e Tecnologia

19060-900 Presidente Prudente, SP

Brazil

Cornelia Cramer

University of Münster

Institute of Physical Chemistry

Corrensstr. 28/30

48149 Münster

Germany

Thomas Crouzier

Grenoble Institute of Technology and Centre National de la Recherche Scientifique

CNRS UMR 5628, LMGP, MINATEC

3 Parvis Louis Néel

38016 Grenoble

France

Yue Cui

Chinese Academy of Sciences

Institute of Chemistry

Beijing National Laboratory for Molecular Sciences (BNLMS)

Zhongguancun North First Street 2

Beijing 100190

China

Chalongrat Daengngam

Virginia Polytechnic Institute and State University

Department of Physics

Robeson Hall (0435)

Blacksburg, VA 24061-0435

USA

Bruno G. De Geest

Ghent University

Department of Pharmaceutics

Harelbekestraat 72

9000 Ghent

Belgium

Sophie Demoustier-Champagne

Université Catholique de Louvain

Institute of Condensed Matter and Nanosciences – Bio & Soft Matter

Croix du Sud 1

1348 Louvain-la-Neuve

Belgium

Stefaan C. De Smedt

Ghent University

Department of Pharmaceutics

Harelbekestraat 72

9000 Ghent

Belgium

Wang Dong

Virginia Polytechnic Institute and State University

Department of Physics

Robeson Hall (0435)

Blacksburg, VA 24061-0435

USA

Ashraf El-Hashani

University of Cologne

Department of Chemistry

Luxemburger Str. 116

50939 Köln

Germany

Nicel Estillore

University of Houston

Departments of Chemistry and Chemical and Biomolecular Engineering

136 Fleming Building

Houston, TX 77204-5003

USA

Jinbo Fei

Chinese Academy of Sciences

Institute of Chemistry

Beijing National Laboratory for Molecular Sciences (BNLMS)

Zhongguancun North First Street 2

Beijing 100190

China

Andreas Fery

University of Bayreuth

Department of Physical Chemistry II

95440 Bayreuth

Germany

Karine Glinel

Université de Rouen, CNRS

Laboratoire Polymères, Biopolymères, Surfaces

Bd M. de Broglie

7681 Mont Saint Aignan

France

and

Université Catholique de Louvain

Institute of Condensed Matter and Nanosciences – Bio & Soft Matter

Croix du Sud 1

1348 Louvain-la-Neuve

Belgium

Jaime C. Grunlan

Texas A&M University

Department of Mechanical Engineering

College Station, TX 77843-3123

USA

Aurélie Guyomard

Université de Rouen, CNRS

Laboratoire Polymères, Biopolymères, Surfaces

Bd M. de Broglie

7681 Mont Saint Aignan

France

Lara Halaoui

American University of Beirut

Department of Chemistry

Beirut

Lebanon

Paula T. Hammond

Massachusetts Institute of Technology

Department of Chemical Engineering

77 Massachusetts Avenue

Cambridge, MA 02139

USA

Qiang He

Harbin Institute of Technology

Micro/Nano Technology Research Centre

Harbin 150080

China

Randy Heflin

Virginia Polytechnic Institute and State University

Department of Physics

Robeson Hall (0435)

Blacksburg, VA 24061-0435

USA

Christiane A. Helm

Ernst-Moritz-Arndt Universität

Institut für Physik

Felix-Hausdorff-Str. 6

17487 Greifswald

Germany

Jonathan P. Hill

National Institute for Materials Science (NIMS)

World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)

1-1 Namiki

Tsukuba 305-0044

Japan

and

JST

CREST

1-1 Namiki

Tsukuba 305-0044

Japan

Kristina Hoffmann

University of Cologne

Department of Chemistry

Luxemburger Str. 116

50939 Köln

Germany

Jurriaan Huskens

University of Twente

MESA+ Institute for Nanotechnology

Molecular Nanofabrication Group

7500 AE Enschede

The Netherlands

Md Nasim Hyder

Massachusetts Institute of Technology

Department of Chemical Engineering

77 Massachusetts Avenue

Cambridge, MA 02139

USA

Qingmin Ji

National Institute for Materials Science (NIMS)

World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)

1-1 Namiki

Tsukuba 305-0044

Japan

Chaoyang Jiang

University of South Dakota

Chemistry Department

414 East Clark Street

Vermillion, SD 57069

USA

Alain M. Jonas

Université Catholique de Louvain

Institute of Condensed Matter and Nanosciences – Bio & Soft Matter

Croix du Sud 1

1348 Louvain-la-Neuve

Belgium

Jouko Kankare

University of Turku

Department of Chemistry

Laboratory of Materials Chemistry and Chemical Analysis

20014 Turku

Finland

Toshiyuki Kida

Osaka University

Department of Applied Chemistry

2-1 Yamada-oka

Suita, Osaka 565-0871

Japan

Maxim V. Kiryukhin

Agency for Science, Technology and Research (A*STAR)

Institute of Materials Research and Engineering

3 Research Link

Singapore 117602

Singapore

Ralf Köhler

TU Berlin

Department of Chemistry

Straße des 17. Juni 124

10623 Berlin

Germany

Nicholas A. Kotov

University of Michigan

Departments of Chemical Engineering, Materials Science and Engineering, and Biomedical Engineering

2300 Hayward Street

Ann Arbor, MI 48109

USA

Ilsoon Lee

Michigan State University

Department of Chemical Engineering and Materials Science

2527 Engineering Building

East Lansing, MI 48824

USA

Junbai Li

Chinese Academy of Sciences

Institute of Chemistry

Beijing National Laboratory for Molecular Sciences (BNLMS)

Zhongguancun North First Street 2

Beijing 100190

China

Xiaokong Liu

Jilin University

College of Chemistry

State Key Laboratory of Supramolecular Structure and Materials

Changchun 130012

China

Yuri Lvov

Louisiana Tech University

Institute for Micromanufacturing

911 Hergot Avenue

Ruston, LA 71272

USA

David M. Lynn

University of Wisconsin – Madison

Department of Chemical and Biological Engineering

1415 Engineering Drive

Madison, WI 53706

USA

Dewang Ma

Université de Montréal

Faculté de Pharmacie

Succursale Centre-Ville

Montréal, Quebec H3C 3J7

Canada

Anna Maier

University of Cologne

Department of Chemistry

Luxemburger Str. 116

50939 Köln

Germany

Michiya Matsusaki

Osaka University

Department of Applied Chemistry

2-1 Yamada-oka

Suita, Osaka 565-0871

Japan

Jonathan Metzman

Virginia Polytechnic Institute and State University

Department of Materials Science and Engineering

Robeson Hall (0435)

Blacksburg, VA 24061-0435

USA

Marc Michel

Centre de Recherche Public Henri Tudor

Department of Advanced Materials and Structures

66 rue de Luxembourg

4002 Esch-sur-Alzette

Luxembourg

Helmuth Möhwald

Max-Planck Institute of Colloids and Interfaces

Fraunhofer Institute of Biomedical Technology

Research Campus Golm

Am Mühlenberg 1

14424 Potsdam-Golm

Germany

Reza Montazami

Virginia Polytechnic Institute and State University

Department of Materials Science and Engineering

Robeson Hall (0435)

Blacksburg, VA 24061-0435

USA

Peter Nestler

Ernst-Moritz-Arndt Universität

Institut für Physik

Felix-Hausdorff-Str. 6

17487 Greifswald

Germany

Bernard Nysten

Université Catholique de Louvain

Institute of Condensed Matter and Nanosciences – Bio & Soft Matter

Croix du Sud 1

1348 Louvain-la-Neuve

Belgium

Osvaldo N. Oliveira Jr.

Universidade de São Paulo

Instituto de Física de São Carlos

13560-970 São Carlos, SP

Brazil

Yong Tae Park

Texas A&M University

Department of Mechanical Engineering

College Station, TX 77843-3123

USA

Pravin Pattekari

Louisiana Tech University

Institute for Micromanufacturing

911 Hergot Avenue

Ruston, LA 71272

USA

Felippe J. Pavinatto

Universidade de São Paulo

Instituto de Física de São Carlos

13560-970 São Carlos, SP

Brazil

Catherine Picart

Grenoble Institute of Technology and Centre National de la Recherche Scientifique

CNRS UMR 5628, LMGP, MINATEC

3 Parvis Louis Néel

38016 Grenoble

France

Paul Podsiadlo

University of Michigan

Department of Chemical Engineering

2300 Hayward Street

Ann Arbor, MI 48109

USA

David N. Reinhoudt

University of Twente

MESA+ Institute for Nanotechnology

Molecular Nanofabrication Group

7500 AE Enschede

The Netherlands

Kefeng Ren

Grenoble Institute of Technology and Centre National de la Recherche Scientifique

CNRS UMR 5628, LMGP, MINATEC

3 Parvis Louis Néel

38016 Grenoble

France

H.D. Robinson

Virginia Polytechnic Institute and State University

Department of Physics

Robeson Hall (0435)

Blacksburg, VA 24061-0435

USA

Cécile J. Roy

Université Catholique de Louvain

Institute of Condensed Matter and Nanosciences – Bio & Soft Matter

Croix du Sud 1

1348 Louvain-la-Neuve

Belgium

Michael F. Rubner

Massachusetts Institute of Technology

Departments of Materials Science and Engineering and Chemical Engineering

77 Massachusetts Avenue

Cambridge, MA 02139

USA

Mikko Salomäki

University of Turku

Department of Chemistry

Laboratory of Materials Chemistry and Chemical Analysis

20014 Turku

Finland

Katsuhiko Sato

Tohoku University

Graduate School of Pharmaceutical Sciences

Aramaki, Aoba-ku

Sendai 980-8578

Japan

Joseph B. Schlenoff

Florida State University

Department of Chemistry and Biochemistry

95 Chieftan Way

Tallahassee, FL 32306-4390

USA

Monika Schönhoff

University of Münster

Institute of Physical Chemistry

Corrensstr. 28/30

48149 Münster

Germany

Takeshi Serizawa

University of Tokyo

Research Center for Advanced Science and Technology

4-6-1 Komaba, Meguro-ku

Tokyo 153-8904

Japan

Nisarg Shah

Massachusetts Institute of Technology

Department of Chemical Engineering

77 Massachusetts Avenue

Cambridge, MA 02139

USA

Dmitry G. Shchukin

Max-Planck Institute of Colloids and Interfaces

Research Campus Golm

Am Mühlenberg 1

14424 Potsdam-Golm

Germany

Jiacong Shen

Jilin University

College of Chemistry

State Key Laboratory of Supramolecular Structure and Materials

Changchun 130012

China

Bong Sup Shim

University of Michigan

Department of Chemical Engineering

2300 Hayward Street

Ann Arbor, MI 48109

USA

Tatsiana Shutava

Louisiana Tech University

Institute for Micromanufacturing

911 Hergot Avenue

Ruston, LA 71272

USA

Andre G. Skirtach

Max-Planck-Institute of Colloids and Interfaces

Fraunhofer Institute of Biomedical Technology

Research Campus Golm

Am Mühlenberg 1

14476 Potsdam-Golm

Germany

Olaf Soltwedel

Ernst-Moritz-Arndt Universität

Institut für Physik

Felix-Hausdorff-Str. 6

17487 Greifswald

Germany

Svetlana Sukhishvili

Stevens Institute of Technology

Department of Chemistry, Chemical Biology and Biomedical Engineering

1 Castle Point on Hudson

Hoboken, NJ 07030

USA

Gleb B. Sukhorukov

Queen Mary University of London

School of Engineering and Materials Science

Mile End Road

London E1 4NS

UK

Junqi Sun

Jilin University

College of Chemistry

State Key Laboratory of Supramolecular Structure and Materials

Changchun 130012

China

Shigehiro Takahashi

Tohoku University

Graduate School of Pharmaceutical Sciences

Aramaki, Aoba-ku

Sendai 980-8578

Japan

Benjamin Thierry

University of South Australia

Ian Wark Research Institute

Mawson Lakes Campus

Mawson Lakes, South Australia 5095

Australia

Bernd Tieke

University of Cologne

Department of Chemistry

Luxemburger Str. 116

50939 Köln

Germany

Dieter Trau

National University of Singapore

Division of Bioengineering

Singapore 117576

Singapore

and

National University of Singapore

Department of Chemical & Biomolecular Engineering

Singapore 11756

Singapore

Vladimir V. Tsukruk

Georgia Institute of Technology

Materials Science and Engineering

771 Ferst Drive N.W.

Atlanta, GA 30332-0245

USA

Janneke Veerbeek

University of Twente

MESA+ Institute for Nanotechnology

Molecular Nanofabrication Group

7500 AE Enschede

The Netherlands

Dmitry V. Volodkin

Max-Planck-Institute of Colloids and Interfaces

Fraunhofer Institute of Biomedical Technology

Research Campus Golm

Am Mühlenberg 1

14476 Potsdam-Golm

Germany

Regine von Klitzing

TU Berlin

Department of Chemistry

Straße des 17. Juni 124

10623 Berlin

Germany

Lars Wågberg

KTH – Royal Institute of Technology

School of Chemical Science and Engineering

Fibre and Polymer Technology and The Wallenberg Wood Science Centre

Teknikringen 56–58

10044 Stockholm

Sweden

Françoise M. Winnik

Université de Montréal

Faculté de Pharmacie and Département de Chimie

Succursale Centre-Ville

Montréal, Quebec H3C 3J7

Canada

and

National Institute for Materials Science (NIMS)

World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)

1-1 Namiki

Tsukuba 305-0044

Japan

Guanglu Wu

Tsinghua University

Department of Chemistry

116 Hetian Building

Beijing 100084

China

Ming Yang

University of Michigan

Department of Chemical Engineering

2300 Hayward Street

Ann Arbor, MI 48109

USA

Xi Zhang

Tsinghua University

Department of Chemistry

308 Hetian Building

Beijing 100084

China

Ziwei Zuo

Virginia Polytechnic Institute and State University

Department of Physics

Robeson Hall (0435)

Blacksburg, VA 24061-0435

USA

Chapter 1

Layer-by-Layer Assembly (Putting Molecules to Work)

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!