367,99 €
This second, comprehensive edition of the pioneering book in this fi eld has been completely revised and extended, now stretching to two
volumes. The result is a comprehensive summary of layer-by-layer assembled, truly hybrid nanomaterials and thin fi lms, covering organic,
inorganic, colloidal, macromolecular, and biological components, as well as the assembly of nanoscale fi lms derived from them on surfaces.
These two volumes are essential for anyone working in the field, as well as scientists and researchers active in materials development, who
needs the key knowledge provided herein for linking the field of molecular self-assembly with the bio- and materials sciences.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 2000
Veröffentlichungsjahr: 2012
Contents
Cover
Related Titles
Title Page
Copyright
List of Contributors
Chapter 1: Layer-by-Layer Assembly (Putting Molecules to Work)
1.1 The Whole is More than the Sum of its Parts
1.2 From Self-Assembly to Directed Assembly
1.3 History and Development of the Layer-by-Layer Assembly Method
1.4 LbL-Assembly is the Synthesis of Fuzzy Supramolecular Objects
1.5 Reproducibility and Choice of Deposition Conditions
1.6 Monitoring Multilayer Build-up
1.7 Spray- and Spin-Assisted Multilayer Assembly
1.8 Recent Developments
1.9 Final Remarks
References
Part I: Preparation and Characterization
Chapter 2: Layer-by-Layer Processed Multilayers: Challenges and Opportunities
2.1 Introduction
2.2 Fundamental Challenges and Opportunities
2.3 Technological Challenges and Opportunities
2.4 The Path Forward
References
Chapter 3: Layer-by-Layer Assembly: from Conventional to Unconventional Methods
3.1 Introduction
3.2 Conventional LbL Methods
3.3 Unconventional LbL Methods
3.4 Summary and Outlook
References
Chapter 4: Novel Multilayer Thin Films: Hierarchic Layer-by-Layer (Hi-LbL) Assemblies
4.1 Introduction
4.2 Hi-LbL for Multi-Cellular Models
4.3 Hi-LbL for Unusual Drug Delivery Modes
4.4 Hi-LbL for Sensors
4.5 Future Perspectives
Acknowledgements
References
Chapter 5: Layer-by-Layer Assembly Using Host-Guest Interactions
5.1 Introduction
5.2 Supramolecular Layer-by-Layer Assembly
5.3 3D Patterned Multilayer Assemblies on Surfaces
5.4 3D Supramolecular Nanoparticle Crystal Structures
5.5 Porous 3D Supramolecular Assemblies in Solution
5.6 Conclusions
References
Chapter 6: LbL Assemblies Using van der Waals or Affinity Interactions and Their Applications
6.1 Introduction
6.2 Stereospecific Template Polymerization of Methacrylates by Stereocomplex Formation in Nanoporous LbL Films
6.3 Preparation and Properties of Hollow Capsules Composed of Layer-by-Layer Polymer Films Constructed through van der Waals Interactions
6.4 Fabrication of Three-Dimensional Cellular Multilayers Using Layer-by-Layer Protein Nanofilms Constructed through Affinity Interaction
6.5 Conclusion
References
Chapter 7: Layer-by-Layer Assembly of Polymeric Complexes
7.1 Introduction
7.2 Concept of LbL Assembly of Polymeric Complexes
7.3 Structural Tailoring of LbL-Assembled Films of Polymeric Complexes
7.4 LbL-Assembled Functional Films of Polymeric Complexes
7.5 Summary
References
Chapter 8: Making Aqueous Nanocolloids from Low Solubility Materials: LbL Shells on Nanocores
8.1 Introduction
8.2 Formation of Nanocores
8.3 Ultrasonication-Assisted LbL Assembly
8.4 Solvent-Assisted Precipitation Into Preformed LbL-Coated Soft Organic Nanoparticles
8.5 Washless (Titration) LbL Technique
8.6 Formation of LbL Shells on Nanocores
8.7 Drug Release Study
8.8 Conclusions
References
Chapter 9: Cellulose Fibers and Fibrils as Templates for the Layer-by-Layer (LbL) Technology
9.1 Background
9.2 Formation of LbLs on Cellulose Fibers
9.3 The use of LbL to Improve Adhesion between Wood Fibers
9.4 The Use of LbL to Prepare Antibacterial Fibers
9.5 The use of NFC/CNC to Prepare Interactive Layers Using the LbL Approach
9.6 Conclusions
Acknowledgements
References
Chapter 10: Freely Standing LbL Films
10.1 Introduction
10.2 Fabrication of Freely Standing Ultrathin LbL Films
10.3 Porous and Patterned Freely Standing LbL Films
10.4 Freely Standing LbL Films with Weak Interactions
Acknowledgements
References
Chapter 11: Neutron Reflectometry at Polyelectrolyte Multilayers
11.1 Introduction
11.2 Neutron Reflectometry
11.3 Preparation Techniques for Polyelectrolyte Multilayers
11.4 Types of Polyelectrolytes
11.5 Preparation Parameters
11.6 Influence of External Fields After PEM Assembly
11.7 PEM as a Structural Unit
11.8 Conclusion and Outlook
References
Chapter 12: Polyelectrolyte Conformation in and Structure of Polyelectrolyte Multilayers
12.1 Introduction
12.2 Results
12.3 Conclusion and Outlook
References
Chapter 13: Charge Balance and Transport in Ion-Paired Polyelectrolyte Multilayers
13.1 Introduction
13.2 Association Mechanism: Competitive Ion Pairing
13.3 Surface versus Bulk Polymer Charge
13.4 Polyelectrolyte Interdiffusion
13.5 Ion Transport Through Multilayers: the “Reluctant” Exchange Mechanism
13.6 Concluding Remarks
References
Chapter 14: Conductivity Spectra of Polyelectrolyte Multilayers Revealing Ion Transport Processes
14.1 Introduction to Conductivity Studies of LbL Films
14.2 PEM Spectra: Overview
14.3 DC Conductivities of PEMs
14.4 Modeling of PEM Spectra
14.5 Ion Conduction in Polyelectrolyte Complexes
14.6 Scaling Principles in Conductivity Spectra: From Time–Temperature to Time–Humidity Superposition
References
Chapter 15: Responsive Layer-by-Layer Assemblies: Dynamics, Structure and Function
15.1 Introduction
15.2 Chain Dynamics and Film Layering
15.3 Responsive Swellable LbL Films
15.4 Conclusion and Outlook
References
Chapter 16: Tailoring the Mechanics of Freestanding Multilayers
16.1 Introduction
16.2 Measurements of Mechanical Properties of Flat LbL Films
16.3 Mechanical Properties of LbL Microcapsules
16.4 Prospective Applications Utilizing Mechanical Properties
Acknowledgements
References
Chapter 17: Design and Translation of Nanolayer Assembly Processes: Electrochemical Energy to Programmable Pharmacies
17.1 Introduction
17.2 Controlling Transport and Storing Charge in Multilayer Thin Films: Ions, Electrons and Molecules
17.3 LbL Films for Multi-Agent Drug Delivery – Opportunities for Programmable Release
17.4 Automated Spray-LbL – Enabling Function and Translation
17.5 Concluding Remarks
References
Chapter 18: Surface-Initiated Polymerization and Layer-by-Layer Films
18.1 Introduction
18.2 Overview of Surface-Grafted Polymer Brushes
18.3 Layer-by-Layer (LbL) Self-Assembly
18.4 Combined LbL-SIP Approach
18.5 Applications of the Combined LbL-SIP Approach
18.6 Concluding Remarks
Acknowledgment
References
Chapter 19: Quartz Crystal Resonator as a Tool for Following the Build-up of Polyelectrolyte Multilayers
19.1 Introduction
19.2 Basic Concepts
19.3 Growth Processes
19.4 Experimental Techniques
19.5 Analysis of QCR Data
List of Abbreviations
References
Part II: Applications
Chapter 20: Electrostatic and Coordinative Supramolecular Assembly of Functional Films for Electronic Application and Materials Separation
20.1 Introduction
20.2 Polyelectrolyte Multilayer Membranes
20.3 Summary and Conclusions
Acknowledgment
References
Chapter 21: Optoelectronic Materials and Devices Incorporating Polyelectrolyte Multilayers
21.1 Introduction
21.2 Second Order Nonlinear Optics
21.3 Plasmonic Enhancement of Second Order Nonlinear Optical Response
21.4 Nonlinear Optical Fibers
21.5 Optical Fiber Biosensors
21.6 Antireflection Coatings
21.7 Electrochromic Devices
21.8 Electromechanical Actuators
Acknowledgements
References
Chapter 22: Nanostructured Electrodes Assembled from Metal Nanoparticles and Quantum Dots in Polyelectrolytes
22.1 Introduction
22.2 Nanostructured Pt Electrodes from Assemblies of Pt Nanoparticles in Polyelectrolytes
22.3 Nanostructured Photoelectrodes from Assemblies of Q-CdS in Polyelectrolytes
22.4 Conclusions
Acknowledgments
References
Chapter 23: Record Properties of Layer-by-Layer Assembled Composites
23.1 Introduction
23.2 LbL Assemblies of Clays
23.3 LBL Assemblies of Carbon Nanotubes
23.4 Conclusions and Perspectives
References
Chapter 24: Carbon Nanotube-Based Multilayers
24.1 Introduction
24.2 Characteristics of Carbon Nanotube Layer-by-Layer Assemblies
24.3 Applications of Carbon Nanotube Layer-by-Layer Assemblies
24.4 Conclusions
References
Chapter 25: Nanoconfined Polyelectrolyte Multilayers: From Nanostripes to Multisegmented Functional Nanotubes
25.1 Introduction
25.2 Estimation of the Size of Polyelectrolyte Chains in Dilute Solutions
25.3 Confining LbL Assembly on Flat Surfaces
25.4 Confining LbL Assembly in Nanopores
25.5 Conclusions
25.6 Acknowledgments
References
Chapter 26: The Design of Polysaccharide Multilayers for Medical Applications
26.1 Introduction
26.2 Polysaccharides as Multilayered film Components: An Overview of Their Structure and Properties
26.3 Multilayers Formed by Assembly of Weak Polyanions and Chitosan or Chitosan Derivatives
26.4 Multilayers Formed by Assembly of Strong Polyanions and Chitosan or Chitosan Derivatives
26.5 Cardiovascular Applications of Polysaccharide Multilayers
26.6 Conclusions
References
Chapter 27: Polyelectrolyte Multilayer Films Based on Polysaccharides: From Physical Chemistry to the Control of Cell Differentiation
27.1 Introduction
27.2 Film Internal Composition and Hydration
27.3 Film Cross-Linking: Relation Between Composition and Mechanical Properties
27.4 Cell Adhesion onto Cross-Linked Films: Cell Adhesion, Cytoskeletal Organization and Comparison with Other Model Materials
27.5 Cell Differentiation: ESC and Myoblasts
27.6 Conclusions
27.7 Acknowledgements
References
Chapter 28: Diffusion of Nanoparticles and Biomolecules into Polyelectrolyte Multilayer Films: Towards New Functional Materials
28.1 Introduction
28.2 LBL Films in Which Nanoparticles are Incorporated Step-By-Step
28.3 LBL Films Made Uniquely From Nanoparticles
28.4 Nanoparticles Produced by Post-treatment of Deposited Films
28.5 Diffusion of Colloids in Already Deposited Films
28.6 Emerging Properties of Films Filled with Nanoparticles by the Post-incubation Method
28.7 Conclusions and Perspectives
28.8 Acknowledgements
References
Chapter 29: Coupling Chemistry and Hybridization of DNA Molecules on Layer-by-Layer Modified Colloids
29.1 Introduction
29.2 Materials and Methods
29.3 Results
29.4 Summary
References
Chapter 30: A “Multilayered” Approach to the Delivery of DNA: Exploiting the Structure of Polyelectrolyte Multilayers to Promote Surface-Mediated Cell Transfection and Multi-Agent Delivery
30.1 Introduction
30.2 Surface-Mediated Delivery of DNA: Motivation and Context, Opportunities and Challenges
30.3 Films Fabricated Using Hydrolytically Degradable Cationic Polymers
30.4 Toward Spatial Control: Release of DNA from the Surfaces of Implants and Devices
30.5 Toward Temporal Control: Tunable Release and Sequential Release
30.6 Concluding Remarks
30.7 Acknowledgments
References
Chapter 31: Designing LbL Capsules for Drug Loading and Release
31.1 Introduction
31.2 Engineering Microparticulate Templates to Design LbL Capsules for Controlled Drug Release
31.3 Engineering the Shell to Design LbL Capsules for Controlled Drug Release
31.4 Interaction of LbL Capsules with Living Cells In Vitro and In Vivo
31.5 Conclusions
References
Chapter 32: Stimuli-Sensitive LbL Films for Controlled Delivery of Proteins and Drugs
32.1 Introduction
32.2 Avidin-Containing LbL Films
32.3 Concanavalin A-containing LbL Films
32.4 Dendrimer-Containing LbL Films
32.5 Insulin-Containing LbL Films
32.6 Conclusions
Acknowledgments
References
Chapter 33: Assembly of Multilayer Capsules for Drug Encapsulation and Controlled Release
33.1 Introduction
33.2 Magnetically Sensitive Release
33.3 Ultrasound-Stimulated Release
33.4 Photo-Stimulated Release
33.5 Thermo-Stimulated Release
33.6 pH-Sensitive Release
33.7 Redox-Controlled Release
33.8 Bio-Responsive Release
33.9 Extension
33.10 Concluding Remarks
Acknowledgments
References
Chapter 34: Engineered Layer-by-Layer Assembled Capsules for Biomedical Applications
34.1 Introduction
34.2 Template Selection
34.3 Material Assembly
34.4 Loading
34.5 Degradation and Release
34.6 Applications
34.7 Conclusions
References
Chapter 35: Assembly of Polymer Multilayers from Organic Solvents for Biomolecule Encapsulation
35.1 Introduction
35.2 Limitations of LbL-Based Biomolecule Encapsulation in Aqueous Phase
35.3 LbL Biomolecule Encapsulation in the Organic Phase
35.4 Conclusion and Outlook
References
Chapter 36: Stimuli-Responsive Polymer Composite Multilayer Microcapsules and Microchamber Arrays
Abbreviations
36.1 Introduction
36.2 Fabrication of Stimuli-Responsive LbL Microcapsules
36.3 Microchamber Arrays
36.4 Conclusion
References
Chapter 37: Domain-Containing Functional Polyelectrolyte Films: Applications to Antimicrobial Coatings and Energy Transfer
37.1 Introduction
37.2 Polyelectrolyte Films Incorporating Randomly Distributed Hydrophobic Nanodomains for Antimicrobial Applications
37.3 Multicompartmentalized Stratified Polyelectrolyte Films for Control of Energy Transfer
37.4 Conclusions and Perspectives
37.5 Acknowledgments
References
Chapter 38: Creating Functional Membranes Through Polyelectrolyte Adsorption
38.1 Introduction
38.2 Functionalization of the Interior of Membranes
38.3 LBL Films as Membrane Skins
38.4 Challenges
38.5 Acknowledgments
References
Chapter 39: Remote and Self-Induced Release from Polyelectrolyte Multilayer Capsules and Films
References
Chapter 40: Controlled Architectures in LbL Films for Sensing and Biosensing
40.1 Introduction
40.2 LbL-Based Sensors and Biosensors
40.3 Special Architectures for Sensing and Biosensing
40.4 Statistical and Computational Methods to Treat the Data
40.5 Conclusions and Perspectives
40.6 Acknowledgments
References
Chapter 41: Patterned Multilayer Systems and Directed Self-Assembly of Functional Nano-Bio Materials
41.1 New Approaches and Materials for Multilayer Film Patterning Techniques
41.2 Cell Adhesion and Patterning Using PEMs
41.3 PEMs Incorporating Proteins and Their Patterning
41.4 Metal/Graphene Conductive Patterning via PEM Films
41.5 Ordered and Disordered Particles on PEMs
41.6 Mechanical Aspects of PEM Films and Degradable Films
41.7 Acknowledgment
References
Chapter 42: Electrochemically Active LbL Multilayer Films: From Biosensors to Nanocatalysts
42.1 Introduction
42.2 Electrochemical Response
42.3 Dynamics of Charge Exchange
42.4 Conclusions
References
Chapter 43: Multilayer Polyelectrolyte Assembly in Feedback Active Coatings and Films
43.1 Introduction. The Concept of Feedback Active Coatings
43.2 Polyelectrolyte-Based Self-Healing Anticorrosion Coatings
43.3 Coatings with Antibacterial Activity
43.4 Conclusions and Outlook
References
Index
Related Titles
Pacchioni, G., Valeri, S. (eds.)
Oxide Ultrathin Films
Science and Technology
2012
ISBN: 978-3-527-33016-4
Friedbacher, G., Bubert, H. (eds.)
Surface and Thin Film Analysis
A Compendium of Principles, Instrumentation, and Applications
2011
ISBN: 978-3-527-32047-9
Knoll, W., Advincula, R. C. (eds.)
Functional Polymer Films
2 Volume Set
2011
ISBN: 978-3-527-32190-2
Kumar, C. S. S. R. (ed.)
Polymeric Nanomaterials
2011
ISBN: 978-3-527-32170-4
Urban, M. W. (ed.)
Handbook of Stimuli-Responsive Materials
2011
ISBN: 978-3-527-32700-3
Fernandez-Nieves, A., Wyss, H., Mattsson, J., Weitz, D. A. (eds.)
Microgel Suspensions
Fundamentals and Applications
2011
ISBN: 978-3-527-32158-2
Samori, P., Cacialli, F. (eds.)
Functional Supramolecular Architectures
for Organic Electronics and Nanotechnology
2011
ISBN: 978-3-527-32611-2
Chujo, Y. (ed.)
Conjugated Polymer Synthesis
Methods and Reactions
2011
ISBN: 978-3-527-32267-1
Leclerc, M., Morin, J.-F. (eds.)
Design and Synthesis of Conjugated Polymers
2010
ISBN: 978-3-527-32474-3
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.
© 2012 Wiley-VCH Verlag & Co. KGaA,
Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Composition Thomson Digital, Noida, India
Printing and Binding betz-druck GmbH, Darmstadt
Cover Design Schulz Grafik-Design, Fußgönheim
Print ISBN: 978-3-527-31648-9
ePDF ISBN: 978-3-527-64677-7
oBook ISBN: 978-3-527-64674-6
ePub ISBN: 978-3-527-64676-0
List of Contributors
Rigoberto C. Advincula
University of Houston
Departments of Chemistry and Chemical and Biomolecular Engineering
136 Fleming Building
Houston, TX 77204-5003
USA
Hioharu Ajiro
Osaka University
Department of Applied Chemistry
2-1 Yamada-oka
Suita, Osaka 565-0871
Japan
Mitsuro Akashi
Osaka University
Department of Applied Chemistry
2-1 Yamada-oka
Suita, Osaka 565-0871
Japan
Maria N. Antipina
Agency for Science, Technology and Research (A*STAR)
Institute of Materials Research and Engineering
3 Research Link
Singapore 117602
Singapore
Jun-ichi Anzai
Tohoku University
Graduate School of Pharmaceutical Sciences
Aramaki, Aoba-ku
Sendai 980-8578
Japan
Pedro H.B. Aoki
Universidade Estadual Paulista (UNESP)
Faculdade de Ciências e Tecnologia
19060-900 Presidente Prudente, SP
Brazil
Katsuhiko Ariga
National Institute for Materials Science (NIMS)
World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)
1-1 Namiki
Tsukuba 305-0044
Japan
and
JST
CREST
1-1 Namiki
Tsukuba 305-0044
Japan
Jianhao Bai
National University of Singapore
Division of Bioengineering
Singapore 117576
Singapore
Vincent Ball
Centre de Recherche Public Henri Tudor
Department of Advanced Materials and Structures
66 rue de Luxembourg
4002 Esch-sur-Alzette
Luxembourg
Sebastian Beyer
National University of Singapore
Division of Bioengineering
Singapore 117576
Singapore
and
National University of Singapore
Graduate School for Integrative Sciences and Engineering
Singapore 11756
Singapore
Stephan Block
Ernst-Moritz-Arndt Universität
Institut für Physik
Felix-Hausdorff-Str. 6
17487 Greifswald
Germany
Thomas Boudou
Grenoble Institute of Technology and Centre National de la Recherche Scientifique
CNRS UMR 5628, LMGP, MINATEC
3 Parvis Louis Néel
38016 Grenoble
France
Merlin L. Bruening
Michigan State University
Department of Chemistry
East Lansing, MI 48824
USA
Cédric C. Buron
Université Catholique de Louvain
Institute of Condensed Matter and Nanosciences – Bio & Soft Matter
Croix du Sud 1
1348 Louvain-la-Neuve
Belgium
Ernesto J. Calvo
Universidad de Buenos Aires
Departamento de Química Inorgánica
Electrochemistry Group, INQUIMAE
Pabellón 2, Ciudad Universitária
Buenos Aires 1428
Argentina
Frank Caruso
The University of Melbourne
Department of Chemical and Biomolecular Engineering
Building 173
Melbourne, Victoria 3010
Australia
Chloe Chevigny
TU Berlin
Department of Chemistry
Straße des 17. Juni 124
10623 Berlin
Germany
Robert E. Cohen
Massachusetts Institute of Technology
Departments of Materials Science and Engineering and Chemical Engineering
77 Massachusetts Avenue
Cambridge, MA 02139
USA
Carlos J.L. Constantino
Universidade Estadual Paulista (UNESP)
Faculdade de Ciências e Tecnologia
19060-900 Presidente Prudente, SP
Brazil
Cornelia Cramer
University of Münster
Institute of Physical Chemistry
Corrensstr. 28/30
48149 Münster
Germany
Thomas Crouzier
Grenoble Institute of Technology and Centre National de la Recherche Scientifique
CNRS UMR 5628, LMGP, MINATEC
3 Parvis Louis Néel
38016 Grenoble
France
Yue Cui
Chinese Academy of Sciences
Institute of Chemistry
Beijing National Laboratory for Molecular Sciences (BNLMS)
Zhongguancun North First Street 2
Beijing 100190
China
Chalongrat Daengngam
Virginia Polytechnic Institute and State University
Department of Physics
Robeson Hall (0435)
Blacksburg, VA 24061-0435
USA
Bruno G. De Geest
Ghent University
Department of Pharmaceutics
Harelbekestraat 72
9000 Ghent
Belgium
Sophie Demoustier-Champagne
Université Catholique de Louvain
Institute of Condensed Matter and Nanosciences – Bio & Soft Matter
Croix du Sud 1
1348 Louvain-la-Neuve
Belgium
Stefaan C. De Smedt
Ghent University
Department of Pharmaceutics
Harelbekestraat 72
9000 Ghent
Belgium
Wang Dong
Virginia Polytechnic Institute and State University
Department of Physics
Robeson Hall (0435)
Blacksburg, VA 24061-0435
USA
Ashraf El-Hashani
University of Cologne
Department of Chemistry
Luxemburger Str. 116
50939 Köln
Germany
Nicel Estillore
University of Houston
Departments of Chemistry and Chemical and Biomolecular Engineering
136 Fleming Building
Houston, TX 77204-5003
USA
Jinbo Fei
Chinese Academy of Sciences
Institute of Chemistry
Beijing National Laboratory for Molecular Sciences (BNLMS)
Zhongguancun North First Street 2
Beijing 100190
China
Andreas Fery
University of Bayreuth
Department of Physical Chemistry II
95440 Bayreuth
Germany
Karine Glinel
Université de Rouen, CNRS
Laboratoire Polymères, Biopolymères, Surfaces
Bd M. de Broglie
7681 Mont Saint Aignan
France
and
Université Catholique de Louvain
Institute of Condensed Matter and Nanosciences – Bio & Soft Matter
Croix du Sud 1
1348 Louvain-la-Neuve
Belgium
Jaime C. Grunlan
Texas A&M University
Department of Mechanical Engineering
College Station, TX 77843-3123
USA
Aurélie Guyomard
Université de Rouen, CNRS
Laboratoire Polymères, Biopolymères, Surfaces
Bd M. de Broglie
7681 Mont Saint Aignan
France
Lara Halaoui
American University of Beirut
Department of Chemistry
Beirut
Lebanon
Paula T. Hammond
Massachusetts Institute of Technology
Department of Chemical Engineering
77 Massachusetts Avenue
Cambridge, MA 02139
USA
Qiang He
Harbin Institute of Technology
Micro/Nano Technology Research Centre
Harbin 150080
China
Randy Heflin
Virginia Polytechnic Institute and State University
Department of Physics
Robeson Hall (0435)
Blacksburg, VA 24061-0435
USA
Christiane A. Helm
Ernst-Moritz-Arndt Universität
Institut für Physik
Felix-Hausdorff-Str. 6
17487 Greifswald
Germany
Jonathan P. Hill
National Institute for Materials Science (NIMS)
World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)
1-1 Namiki
Tsukuba 305-0044
Japan
and
JST
CREST
1-1 Namiki
Tsukuba 305-0044
Japan
Kristina Hoffmann
University of Cologne
Department of Chemistry
Luxemburger Str. 116
50939 Köln
Germany
Jurriaan Huskens
University of Twente
MESA+ Institute for Nanotechnology
Molecular Nanofabrication Group
7500 AE Enschede
The Netherlands
Md Nasim Hyder
Massachusetts Institute of Technology
Department of Chemical Engineering
77 Massachusetts Avenue
Cambridge, MA 02139
USA
Qingmin Ji
National Institute for Materials Science (NIMS)
World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)
1-1 Namiki
Tsukuba 305-0044
Japan
Chaoyang Jiang
University of South Dakota
Chemistry Department
414 East Clark Street
Vermillion, SD 57069
USA
Alain M. Jonas
Université Catholique de Louvain
Institute of Condensed Matter and Nanosciences – Bio & Soft Matter
Croix du Sud 1
1348 Louvain-la-Neuve
Belgium
Jouko Kankare
University of Turku
Department of Chemistry
Laboratory of Materials Chemistry and Chemical Analysis
20014 Turku
Finland
Toshiyuki Kida
Osaka University
Department of Applied Chemistry
2-1 Yamada-oka
Suita, Osaka 565-0871
Japan
Maxim V. Kiryukhin
Agency for Science, Technology and Research (A*STAR)
Institute of Materials Research and Engineering
3 Research Link
Singapore 117602
Singapore
Ralf Köhler
TU Berlin
Department of Chemistry
Straße des 17. Juni 124
10623 Berlin
Germany
Nicholas A. Kotov
University of Michigan
Departments of Chemical Engineering, Materials Science and Engineering, and Biomedical Engineering
2300 Hayward Street
Ann Arbor, MI 48109
USA
Ilsoon Lee
Michigan State University
Department of Chemical Engineering and Materials Science
2527 Engineering Building
East Lansing, MI 48824
USA
Junbai Li
Chinese Academy of Sciences
Institute of Chemistry
Beijing National Laboratory for Molecular Sciences (BNLMS)
Zhongguancun North First Street 2
Beijing 100190
China
Xiaokong Liu
Jilin University
College of Chemistry
State Key Laboratory of Supramolecular Structure and Materials
Changchun 130012
China
Yuri Lvov
Louisiana Tech University
Institute for Micromanufacturing
911 Hergot Avenue
Ruston, LA 71272
USA
David M. Lynn
University of Wisconsin – Madison
Department of Chemical and Biological Engineering
1415 Engineering Drive
Madison, WI 53706
USA
Dewang Ma
Université de Montréal
Faculté de Pharmacie
Succursale Centre-Ville
Montréal, Quebec H3C 3J7
Canada
Anna Maier
University of Cologne
Department of Chemistry
Luxemburger Str. 116
50939 Köln
Germany
Michiya Matsusaki
Osaka University
Department of Applied Chemistry
2-1 Yamada-oka
Suita, Osaka 565-0871
Japan
Jonathan Metzman
Virginia Polytechnic Institute and State University
Department of Materials Science and Engineering
Robeson Hall (0435)
Blacksburg, VA 24061-0435
USA
Marc Michel
Centre de Recherche Public Henri Tudor
Department of Advanced Materials and Structures
66 rue de Luxembourg
4002 Esch-sur-Alzette
Luxembourg
Helmuth Möhwald
Max-Planck Institute of Colloids and Interfaces
Fraunhofer Institute of Biomedical Technology
Research Campus Golm
Am Mühlenberg 1
14424 Potsdam-Golm
Germany
Reza Montazami
Virginia Polytechnic Institute and State University
Department of Materials Science and Engineering
Robeson Hall (0435)
Blacksburg, VA 24061-0435
USA
Peter Nestler
Ernst-Moritz-Arndt Universität
Institut für Physik
Felix-Hausdorff-Str. 6
17487 Greifswald
Germany
Bernard Nysten
Université Catholique de Louvain
Institute of Condensed Matter and Nanosciences – Bio & Soft Matter
Croix du Sud 1
1348 Louvain-la-Neuve
Belgium
Osvaldo N. Oliveira Jr.
Universidade de São Paulo
Instituto de Física de São Carlos
13560-970 São Carlos, SP
Brazil
Yong Tae Park
Texas A&M University
Department of Mechanical Engineering
College Station, TX 77843-3123
USA
Pravin Pattekari
Louisiana Tech University
Institute for Micromanufacturing
911 Hergot Avenue
Ruston, LA 71272
USA
Felippe J. Pavinatto
Universidade de São Paulo
Instituto de Física de São Carlos
13560-970 São Carlos, SP
Brazil
Catherine Picart
Grenoble Institute of Technology and Centre National de la Recherche Scientifique
CNRS UMR 5628, LMGP, MINATEC
3 Parvis Louis Néel
38016 Grenoble
France
Paul Podsiadlo
University of Michigan
Department of Chemical Engineering
2300 Hayward Street
Ann Arbor, MI 48109
USA
David N. Reinhoudt
University of Twente
MESA+ Institute for Nanotechnology
Molecular Nanofabrication Group
7500 AE Enschede
The Netherlands
Kefeng Ren
Grenoble Institute of Technology and Centre National de la Recherche Scientifique
CNRS UMR 5628, LMGP, MINATEC
3 Parvis Louis Néel
38016 Grenoble
France
H.D. Robinson
Virginia Polytechnic Institute and State University
Department of Physics
Robeson Hall (0435)
Blacksburg, VA 24061-0435
USA
Cécile J. Roy
Université Catholique de Louvain
Institute of Condensed Matter and Nanosciences – Bio & Soft Matter
Croix du Sud 1
1348 Louvain-la-Neuve
Belgium
Michael F. Rubner
Massachusetts Institute of Technology
Departments of Materials Science and Engineering and Chemical Engineering
77 Massachusetts Avenue
Cambridge, MA 02139
USA
Mikko Salomäki
University of Turku
Department of Chemistry
Laboratory of Materials Chemistry and Chemical Analysis
20014 Turku
Finland
Katsuhiko Sato
Tohoku University
Graduate School of Pharmaceutical Sciences
Aramaki, Aoba-ku
Sendai 980-8578
Japan
Joseph B. Schlenoff
Florida State University
Department of Chemistry and Biochemistry
95 Chieftan Way
Tallahassee, FL 32306-4390
USA
Monika Schönhoff
University of Münster
Institute of Physical Chemistry
Corrensstr. 28/30
48149 Münster
Germany
Takeshi Serizawa
University of Tokyo
Research Center for Advanced Science and Technology
4-6-1 Komaba, Meguro-ku
Tokyo 153-8904
Japan
Nisarg Shah
Massachusetts Institute of Technology
Department of Chemical Engineering
77 Massachusetts Avenue
Cambridge, MA 02139
USA
Dmitry G. Shchukin
Max-Planck Institute of Colloids and Interfaces
Research Campus Golm
Am Mühlenberg 1
14424 Potsdam-Golm
Germany
Jiacong Shen
Jilin University
College of Chemistry
State Key Laboratory of Supramolecular Structure and Materials
Changchun 130012
China
Bong Sup Shim
University of Michigan
Department of Chemical Engineering
2300 Hayward Street
Ann Arbor, MI 48109
USA
Tatsiana Shutava
Louisiana Tech University
Institute for Micromanufacturing
911 Hergot Avenue
Ruston, LA 71272
USA
Andre G. Skirtach
Max-Planck-Institute of Colloids and Interfaces
Fraunhofer Institute of Biomedical Technology
Research Campus Golm
Am Mühlenberg 1
14476 Potsdam-Golm
Germany
Olaf Soltwedel
Ernst-Moritz-Arndt Universität
Institut für Physik
Felix-Hausdorff-Str. 6
17487 Greifswald
Germany
Svetlana Sukhishvili
Stevens Institute of Technology
Department of Chemistry, Chemical Biology and Biomedical Engineering
1 Castle Point on Hudson
Hoboken, NJ 07030
USA
Gleb B. Sukhorukov
Queen Mary University of London
School of Engineering and Materials Science
Mile End Road
London E1 4NS
UK
Junqi Sun
Jilin University
College of Chemistry
State Key Laboratory of Supramolecular Structure and Materials
Changchun 130012
China
Shigehiro Takahashi
Tohoku University
Graduate School of Pharmaceutical Sciences
Aramaki, Aoba-ku
Sendai 980-8578
Japan
Benjamin Thierry
University of South Australia
Ian Wark Research Institute
Mawson Lakes Campus
Mawson Lakes, South Australia 5095
Australia
Bernd Tieke
University of Cologne
Department of Chemistry
Luxemburger Str. 116
50939 Köln
Germany
Dieter Trau
National University of Singapore
Division of Bioengineering
Singapore 117576
Singapore
and
National University of Singapore
Department of Chemical & Biomolecular Engineering
Singapore 11756
Singapore
Vladimir V. Tsukruk
Georgia Institute of Technology
Materials Science and Engineering
771 Ferst Drive N.W.
Atlanta, GA 30332-0245
USA
Janneke Veerbeek
University of Twente
MESA+ Institute for Nanotechnology
Molecular Nanofabrication Group
7500 AE Enschede
The Netherlands
Dmitry V. Volodkin
Max-Planck-Institute of Colloids and Interfaces
Fraunhofer Institute of Biomedical Technology
Research Campus Golm
Am Mühlenberg 1
14476 Potsdam-Golm
Germany
Regine von Klitzing
TU Berlin
Department of Chemistry
Straße des 17. Juni 124
10623 Berlin
Germany
Lars Wågberg
KTH – Royal Institute of Technology
School of Chemical Science and Engineering
Fibre and Polymer Technology and The Wallenberg Wood Science Centre
Teknikringen 56–58
10044 Stockholm
Sweden
Françoise M. Winnik
Université de Montréal
Faculté de Pharmacie and Département de Chimie
Succursale Centre-Ville
Montréal, Quebec H3C 3J7
Canada
and
National Institute for Materials Science (NIMS)
World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)
1-1 Namiki
Tsukuba 305-0044
Japan
Guanglu Wu
Tsinghua University
Department of Chemistry
116 Hetian Building
Beijing 100084
China
Ming Yang
University of Michigan
Department of Chemical Engineering
2300 Hayward Street
Ann Arbor, MI 48109
USA
Xi Zhang
Tsinghua University
Department of Chemistry
308 Hetian Building
Beijing 100084
China
Ziwei Zuo
Virginia Polytechnic Institute and State University
Department of Physics
Robeson Hall (0435)
Blacksburg, VA 24061-0435
USA
Chapter 1
Layer-by-Layer Assembly (Putting Molecules to Work)
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!