99,99 €
NMR is one of the most powerful methods for imaging of biomolecules. This book is the ultimate NMR guide for researchers in the biomedical community and gives not only background and practical tips but also a forward looking view on the future of NMR in systems biology.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1670
Veröffentlichungsjahr: 2012
Contents
Cover
Related Titles
Title Page
Copyright
Preface
List of Contributors
List of Abbreviations
Part One: Introduction
Chapter 1: NMR and its Place in Mechanistic Systems Biology
Chapter 2: Structure of Biomolecules: Fundamentals
2.1 Structural Features of Proteins
2.2 Nucleic Acids
Chapter 3: What Can be Learned About the Structure and Dynamics of Biomolecules from NMR
3.1 Proteins Studied by NMR
3.2 Nucleic Acids Studied by NMR
Part Two: Role of NMR in the Study of the Structure and Dynamics of Biomolecules
Chapter 4: Determination of Protein Structure and Dynamics
4.1 Determination of Protein Structures
4.2 NMR Restraints
4.3 Structure Calculations
4.5 Protein Dynamics and NMR Observables
4.6 Protocols
4.7 Troubleshooting
Further Reading
Chapter 5: DNA
5.1 NMR studies of DNA
5.2 Assessment of the Folding Topology
5.3 Resonance Assignment through Sequential and Interstrand Interactions
5.4 Pseudorotation of Deoxyribofuranose Rings
5.5 Backbone Conformation
5.6 Natural Abundance Nucleobase Substitutions
5.7 Natural Abundance Heteronuclear Experiments
5.8 Site-Specific Low Isotopic Enrichment
5.9 Translational Diffusion Coefficients
5.10 Determination of Three-Dimensional Structure
5.11 Search for Transient Structures
5.12 Protocols
5.13 Example Experiments and Troubleshooting
Acknowledgments
Further Reading
Chapter 6: RNA
6.1 NMR Spectroscopy of RNA
6.2 Preparation of RNA Samples for NMR
6.3 Probing of the RNA Fold
6.4 Assessment of the Spectral Resolution
6.5 Strategy for the Resonance Assignment
6.6 Collection of Structural Information
6.7 Structural Calculation of RNA
6.8 Assessment of Quality of NMR Structures
6.9 Protocols
6.10 Troubleshooting
Acknowledgments
Further Reading
Chapter 7: Intrinsically Disordered Proteins
7.1 Intrinsically Disordered Proteins
7.2 Importance of NMR to Study IDPs
7.3 Structural and Dynamic Information on IDPs – NMR Observables
7.4 Protocols
7.5 Troubleshooting
Further Reading
Chapter 8: Paramagnetic Molecules
8.1 Paramagnetism-Assisted NMR
8.2 Scalar and Dipolar Electron Spin–Nuclear Spin Interactions: Hyperfine Shift
8.3 Scalar and Dipolar Electron Spin–Nuclear Spin Interactions: PRE
8.4 Indirect Electron Spin–Nuclear Spin Effects: Paramagnetism-Induced RDCs
8.5 Cross-Correlation Between Curie and Dipolar Relaxation
8.6 “Good” Metal Ions and “Bad” Metal Ions
8.7 Paramagnetism-Based Drug Discovery
8.8 Protocols
8.9 Troubleshooting
Further Reading
Part Three: Role of NMR in the Study of the Structure and Dynamicsof Biomolecular Interactions
Chapter 9: NMR Methodologies for the Analysis of Protein–Protein Interactions
9.1 Introduction
9.2 Dynamics and Ligand Binding
9.3 General Strategy
9.4 Overview of Methods
9.5 Outlook
9.6 Protocols for the Analysis of Protein Complexes
9.7 Troubleshooting
Further Reading
Chapter 10: Metal-Mediated Interactions
10.1 Theoretical Background
10.2 Protocol for the Structural Determination of a Metal-Mediated Complex
10.3 Example Experiment
10.4 Troubleshooting
Further Reading
Chapter 11: Protein–Paramagnetic Protein Interactions
11.1 Paramagnetic Sources in Protein Complexes
11.2 Types of NMR Restraints Obtained from Paramagnetic Centers
11.4 Protocols
11.5 Example Experiment
11.6 Troubleshooting
Acknowledgments
Further Reading
Chapter 12: Protein–RNA Interactions
12.1 Introduction
12.2 NMR Methodology
12.5 Protocols and Troubleshooting
Acknowledgments
Further Reading
Chapter 13: Protein–DNA Interactions
13.1 State of the Art
13.2 Conclusions and Perspectives
13.3 Protocols
13.4 Troubleshooting
Further Reading
Part Four: NMR in Drug Discovery
Chapter 14: High-Throughput Screening and Fragment-Based Design: General Considerations for Lead Discovery and Optimization
14.1 High-Throughput Screening and Fragment-Based Design
14.2 General Aspects of NMR Spectroscopy in Hit Identification and Optimization Processes
14.3 Chemical Shift Perturbation as a Screening Method
Acknowledgments
Further Reading
Chapter 15: Ligand-Observed NMR in Fragment-Based Approaches
15.1 Ligand-Observed NMR Spectroscopy
15.2 On the Transient Binding of Small Molecules to the Protein
15.3 Questions Asked by Ligand-Based Fragment Screening
15.4 Summary
15.5 Protocols
15.6 Example Experiments
15.7 Troubleshooting
Further Readings
Chapter 16: Interactions of Metallodrugs with DNA
16.1 Metallodrugs and DNA Interactions
16.2 Coordinative Binding
16.3 Groove Binding
16.4 Intercalation and Insertion
16.5 Dual Binding (Coordination and Intercalation)
16.6 Protocols
16.7 Tricks and Troubleshooting
Further Reading
Chapter 17: RNA as a Drug Target
17.1 RNA as a Target for Small Molecules
17.2 Chemical Shift Perturbation and Paramagnetic Relaxation Enhancement
17.3 Nuclear Overhauser Effect-Based Methods
17.4 Fluorine Labeling of RNA
17.5 Ligand-Based Methods
17.6 Protocols
Further Reading
Chapter 18: Fluorine NMR Spectroscopy for Biochemical Screening in Drug Discovery
18.1 Enzymatic Inhibition Mechanisms
18.2 n-FABS
18.3 Comparison of n-FABS with Other Biophysical Techniques
18.4 Outlook
18.5 Protocols
18.6 Troubleshooting
Acknowledgments
Further Reading
Chapter 19: NMR of Peptides
19.1 Introduction
19.2 Resonance Assignment
19.3 Stereostructure and Conformational Restraints
19.4 Structure Calculation
19.5 Importance of Peptide Conformations for Biological Activity
19.6 Protocols
19.7 Troubleshooting
Further Reading
Part Five: Solid-State NMR
Chapter 20: Biomolecular Solid-State NMR/Basics
20.1 Introduction
20.2 NMR Hamiltonian
20.3 Magic Angle Spinning
20.4 Cross-Polarization
20.5 Heteronuclear 1H Decoupling
20.6 Dipolar Recoupling
20.7 Recent Progress: New Probes – Ultrafast MAS – High Magnetic Fields
20.8 Protocols
20.9 Troubleshooting
Acknowledgments
Further Reading
Chapter 21: Protein Dynamics in the Solid State
21.1 Introduction
21.2 Basic Concepts
21.3 Coherent versus Incoherent Processes: Decay is not Always Relaxation
21.4 Deuterium as a Probe of Dynamics
21.5 15N and 13C T1 – Spin-Lattice Relaxation
21.6 Protocols
Acknowledgments
Further Reading
Chapter 22: Microcrystalline Proteins – An Ideal Benchmark for Methodology Development
22.1 Microcrystalline Protein Sample Preparation
22.2 Sequential Assignment of Proteins
22.3 Structural Restraints
22.4 Paramagnetic Systems
22.5 Benchmarking of the Solid-State NMR Structure Determination Methodology: Comparison of Structure Calculation Protocols and Accuracy of Structures
22.6 Protocols
22.7 Troubleshooting
Further Reading
Chapter 23: Structural Studies of Protein Fibrils by Solid-State NMR
23.1 Background
23.2 NMR Spectra of Fibrils
23.3 Outlook
23.4 Protocols and Examples
23.5 Troubleshooting
Further Reading
Chapter 24: Solid-State NMR on Membrane Proteins: Methods and Applications
24.1 Solid-State NMR of Membrane Proteins
24.2 MAS Applied to Ion Channels and Retinal Proteins
24.3 Protocols
24.4 Troubleshooting
Acknowledgments
Further Reading
Part Six: Frontiers in NMR Spectroscopy
Chapter 25: Dynamic Nuclear Polarization
25.1 Dynamic Nuclear Polarization at High Magnetic Fields
25.2 Theoretical Background
25.3 Protocols
25.4 Example Experiment
25.5 Perspectives
Further Reading
Chapter 26: 13C Direct Detection NMR
26.1 13C Direct Detection NMR for Biomolecular Applications
26.2 Protocols for Experimental Setup
26.3 Troubleshooting
Further Reading
Chapter 27: Speeding Up Multidimensional NMR Data Acquisition
27.1 Multidimensional NMR: Basic Concepts and Features
27.2 Fast Methods in N-Dimensional NMR
27.3 Protocols for Fast N-Dimensional NMR and Troubleshooting
Further Reading
Chapter 28: Metabolomics
28.1 Metabolomics in Systems Biology
28.2 NMR and Metabolomics
28.3 Data Analysis
28.4 Success in the Application of Metabolomics
28.5 Protocols
28.6 Troubleshooting
Further Reading
Chapter 29: In-Cell Protein NMR Spectroscopy
29.1 Background
29.2 Specific Applications
29.3 Conclusions and Future Directions
29.4 Protocols and Example Experiments
29.5 Troubleshooting
Acknowledgments
Further Reading
Chapter 30: Structural Investigation of Cell-Free Expressed Membrane Proteins
30.1 Introduction
30.2 Cell-Free Expression of Membrane Proteins
30.3 Cell-Free Expression in Membrane-Mimetic Environments
30.4 Strategies for Functional Protein Expression
30.5 Cell-Free Approaches for Structural Studies
30.6 Cell-Free Labeling Strategies for Backbone Assignment
30.7 Structure Determination with Limited Nuclear Overhauser Effect Long-Distance Restraints
30.8 Protocols
30.9 Troubleshooting
Further Reading
Part Seven: Computational Aspects
Chapter 31: Grid Computing
31.1 Grid Infrastructure
31.2 e-NMR Web Platform
31.3 Protocols
31.4 Troubleshooting
Acknowledgments
Further Reading
Chapter 32: Protein–Protein Docking with HADDOCK
32.1 Protein–Protein Docking: General Concepts
32.2 Gathering Experimental Information for Data-Driven Docking
32.3 How Does HADDOCK Use the Information?
32.4 Protocol: A Guided Tour of the HADDOCK Web Interface
32.5 Troubleshooting
Further Reading
Chapter 33: Automated Protein Structure Determination Methods
33.1 NMR Experiment-Driven Protein Modeling
33.2 NOE-Based Structure Determination
33.3 Sequence-Specific Resonance Assignment
33.4 NMR Signal Identification
33.5 Perspectives
33.6 Protocols
33.7 Example Structure Determination and Troubleshooting
Further Reading
Chapter 34: NMR Structure Determination of Protein–Ligand Complexes
34.1 Protein–Ligand Complex Structure Determination by NMR
34.2 Methods for High-Affinity Binders
34.3 Methods for Low-Affinity Binders
34.4 Protocols and Troubleshooting
Further Reading
Chapter 35: Small Angle X-Ray Scattering/Small Angle Neutron Scattering as Methods Complementary to NMR
35.1 Introduction
35.2 Invariants
35.3 Ab Initio Shape Determination
35.4 Validation of Atomic Models
35.5 Rigid-Body Modeling of Quaternary Structure
35.6 Equilibrium Mixtures and Flexible Systems
35.7 Protocols
35.8 Troubleshooting
Further Reading
References
Index
Related Titles
Keeler, J.Understanding NMR Spectroscopy 2010 ISBN: 978-0-470-74608-0
de Graaf, R.In Vivo NMR Spectroscopy Principles and Techniques 2007 ISBN: 978-0-470-02670-0
Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty can be created or extended by sales representatives or written sales materials. The Advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication DataA catalogue record for this book is available from theBritish Library.
Bibliographic information published by the Deutsche NationalbibliothekThe Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.
© 2012 Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley's global Scientific, Technical, and Medical business with Blackwell Publishing.
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-32850-5
ePDF ISBN: 978-3-527-64452-0
oBook ISBN: 978-3-527-64450-6
ePub ISBN: 978-3-527-64451-3
Mobi ISBN: 978-3-527-64453-7
Preface
The use of NMR to solve protein structures has a tradition that dates back to 1984 (M.P. Williamson, T.F. Havel, and K. Wüthrich (1985) J. Mol. Biol. 182, 295). Since that time, the role of NMR in structural biology has constantly increased in terms of the number of researchers involved and the scientific relevance of the results. Spectrometers are becoming more and more powerful, with magnetic fields that currently reach 22 T, and high-temperature superconducting materials raise the possibility that this value can be surpassed. The investment required for a magnet of the above intensity is currently around 10 million (US$14.3 million) and an estimate of 18 million (US$25.7 million) is reasonable for new-generation magnets. It is clear that NMR is a technology that deserves a special place in research infrastructures, as individual schools may find it difficult to have a battery of machines, all at the forefront of the technology, dedicated to various types of experiments. In 1994, the European Commission (EC) began financing transnational access to NMR instrumentation at some research infrastructures, which have continued and grown in number until the present with the EC-funded Bio-NMR1 project. In Europe, the recent European Strategy Forum for Research Infrastructures (ESFRI) Roadmap identifies NMR as a fundamental node in the Integrated Structural Biology Infrastructure (INSTRUCT),2 while it also plays a role in the EU-OPENSCREEN (European Infrastructure of Open Screening Platforms for Chemical Biology)3 infrastructure, Euro-BioImaging,4 and Biobanking and Biomolecular Resources Research Infrastructure (BBMRI).5
The EC-funded electronic infrastructures (e-NMR6 and WeNMR7) provide nonspecialists with tools for automatic data handling, structure calculations, molecular dynamics simulations, and the creation of interaction models in such a way that the potential of the NMR technology can blossom in favor of the progress of science.
Much of this reasoning was debated during the FP6-funded Coordination Action NMR-Life8 and resulted in a booklet entitled NMR in Mechanistic Systems Biology,9 which ultimately served as the spark for this volume. We were pleased when Gregor Cicchetti from Wiley-VCH noticed this booklet and proposed that we edit a book on the very same subject, and we gathered a number of outstanding contributors to fulfill the task.
Our intention, which we hope pervades the book, was to provide a text for graduate students, junior post-docs, and other newcomers that would serve as an introduction to the field, addressing classical NMR approaches from solution to the solid state, providing some tips and tricks not available in journal articles, and providing perspectives on future developments. It is our hope that the Protocols and Troubleshooting sections will be of assistance and guidance when choosing experiments and overcoming difficulties.
However, everyone who has experience in editing books knows how difficult a task it is – obtaining the manuscripts on time, convincing everyone to adhere to a template and write for students and not for their fellow professors, and even drawing the line on what content to include and when to call an end to the editorial process, including substitution of recalcitrant contributors. We editors have tried our best to overcome these difficulties, but we are aware that much more could have been done. For example, the development of isotopic labeling has been fundamental for the development of NMR, but we decided not to address it here. The reader should therefore be aware that the field of NMR is even broader and more exciting than it appears from our efforts!
Part I of the book (Introduction) explains NMR's role in Mechanistic Systems Biology and provides a broad overview of biomolecular structure before identifying what NMR can teach us about the structure and dynamics of biomolecules. Parts II–VII address a series of relevant topics in NMR-driven biological research: the role of NMR in the study of the structure and dynamics of biomolecules, its role in the study of the structure and dynamics of biomolecular interactions, NMR in drug discovery, solid-state NMR, frontiers in NMR spectroscopy, and computational aspects.
We would like to take the opportunity to thank, in addition to Gregor, Dr. Marco Fragai of the Center for Magnetic Resonance (CERM) at the University of Florence for his assistance in editing some chapters of the book, and Professor Claudio Luchinat, who consistently demonstrates his friendship and his willingness to support any initiative of CERM, and the scientific personnel of CERM who have contributed to discussions and sustained the work.
It is our sincere hope that this book will find a home not only in NMR facilities, but also in biomedical laboratories around the world, where it can be of use to the broader scientific community and help diffuse NMR as a technique for the study of biological systems.
Ivano BertiniKathleen S. McGreevyGiacomo Parigi
Florence, January 2012
Notes
1.http://www.bio-nmr.net.
2.http://www.structuralbiology.eu.
3.http://www.eu-openscreen.eu.
4.http://www.eurobioimaging.eu.
5.http://www.bbmri.eu.
6.http://www.enmr.eu.
7.http://www.wenmr.eu.
8.http://www.postgenomicnmr.net.
9.http://www.postgenomicnmr.net/NMRLife/docs/NMR_in_MSB.pdf.
List of Contributors
Chris Abell University of Cambridge University Chemical Laboratory Lensfield Road Cambridge CB2 1EW UK
Marc Baldus Utrecht University Bijvoet Center for Biomolecular Research Padualaan 8 3584 CH Utrecht The Netherlands
Lucia Banci University of Florence Department of Chemistry and Magnetic Resonance Center (CERM) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
Emeline Barbet-Massin Université de Lyon Institut de Sciences Analitiques Centre de RMN à Très Hauts Champs 5 rue de la Doua 69100 Villeurbanne France
Benjamin Bardiaux Leibniz-Institut für Molekulare Pharmakologie NMR-Supported Structural Biology Robert-Rössle-Strasse 10 13125 Berlin Germany
Johannes G. Beck Technische Universität München Department Chemie Lichtenbergstrasse 4 85747 Garching Germany
Frank Bernhard Goethe University Frankfurt Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ) Max-von-Laue-Strasse 9 60438 Frankfurt am Main Germany
Ivano Bertini University of Florence Department of Chemistry and Magnetic Resonance Center (CERM) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
Anja Böckmann Université de Lyon IBCP UMR 5086 CNRS 7 passage du Vercors 69367 Lyon France
Rolf Boelens Utrecht University Bijvoet Center for Biomolecular Research Padualaan 8 3584 CH Utrecht The Netherlands
Alexandre M.J.J. Bonvin Utrecht University Bijvoet Center for Biomolecular Research Padualaan 8 3584 CH Utrecht The Netherlands
Bernhard Brutscher Institut de Biologie Structurale – Jean-Pierre Ebel UMR5075 CNRS-CEA-UJF 41 rue Jules Horowitz 38027 Grenoble Cedex France
Janina Buck Goethe University Frankfurt Center for Biomolecular Magnetic Resonance (BMRZ) and Institute of Organic Chemistry and Chemical Biology Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
David S. Burz University at Albany Department of Chemistry 1400 Washington Avenue Albany, NY 12222 USA
Francesca Cantini University of Florence Department of Chemistry and Magnetic Resonance Center (CERM) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
Mirko Cevec Goethe University Frankfurt Center for Biomolecular Magnetic Resonance (BMRZ) and Institute of Organic Chemistry and Chemical Biology Max-von-Laue-Straße 7 60438 Frankfurt Germany
Simone Ciofi-Baffoni University of Florence Department of Chemistry and Magnetic Resonance Center (CERM) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
Alessio Ciulli University of Cambridge University Chemical Laboratory Lensfield Road Cambridge CB2 1EW UK
David Cowburn Yeshiva University Albert Einstein College of Medicine 1300 Morris Park Avenue Bronx, NY 10461 USA
Abhishek A. Cukkemane Utrecht University Bijvoet Center for Biomolecular Research Padualaan 8 3584 CH Utrecht The Netherlands
Claudio Dalvit University of Neuchâtel Department of Chemistry Avenue de Bellevaux 51 2000 Neuchâtel Switzerland
Marc van Dijk Utrecht University Bijvoet Center for Biomolecular Research Padualaan 8 3584 CH Utrecht The Netherlands
Volker Dötsch Goethe University Frankfurt Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ) Max-von-Laue-Strasse 9 60438 Frankfurt am Main Germany
Elke Duchardt-Ferner Goethe University Frankfurt Center for Biomolecular Magnetic Resonance (BMRZ) and Institute of Molecular Biosciences Max-von-Laue-Straße 9 60438 Frankfurt am Main Germany
Kaushik Dutta New York Structural Biology Center New York, NY 10027 USA
Lyndon Emsley Université de Lyon CNRS/ENS Lyon/UCB-Lyon 1 Centre de RMN à Très Hauts Champs 5 rue de la Doua 69100 Villeurbanne France
Isabella C. Felli University of Florence Department of Chemistry and Magnetic Resonance Center (CERM) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
Lucio Ferella University of Florence Magnetic Resonance Center (CERM) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
Jan-Peter Ferner Goethe University Frankfurt Center for Biomolecular Magnetic Resonance (BMRZ) and Institute of Organic Chemistry and Chemical Biology Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
Andreas O. Frank Vanderbilt University School of Medicine Department of Biochemistry 802 Robinson Research Building Nashville, TN 37232-0146 USA
W. Trent Franks Leibniz-Institut für Molekulare Pharmakologie NMR-Supported Structural Biology Robert-Rössle-Strasse 10 13125 Berlin Germany
Lucio Frydman Weizmann Institute of Science Department of Chemical Physics Chemical Science Building Rehovot 76100 Israel
Paul Guerry Université de Lyon CNRS/ENS Lyon/UCB-Lyon 1 Centre de RMN à Très Hauts Champs 5 rue de la Doua 69100 Villeurbanne France
Torsten Herrmann Université de Lyon CNRS/ENS Lyon/UCB-Lyon 1 Centre de RMN à Très Hauts Champs 5 rue de la Doua 69100 Villeurbanne France
Yoshitaka Hiruma Leiden University Leiden Institute of Chemistry Gorlaeus Laboratories Einsteinweg 55 2333 CC Leiden The Netherlands
Hendrik R.A. Jonker Goethe University Frankfurt Johann Wolfgang Goethe-University Center for Biomolecular Magnetic Resonance (BMRZ) and Institute of Organic Chemistry and Chemical Biology Max-von-Laue-Straße 7 60438 Frankfurt Germany
Ezgi Karaca Utrecht University Bijvoet Center for Biomolecular Research Padualaan 8 3584 CH Utrecht The Netherlands
Panagiotis L. Kastritis Utrecht University Bijvoet Center for Biomolecular Research Padualaan 8 3584 CH Utrecht The Netherlands
Peter H.J. Keizers Leiden University Leiden Institute of Chemistry Gorlaeus Laboratories Einsteinweg 55 2333 CC Leiden The Netherlands
Horst Kessler Technische Universität München Department Chemie Lichtenbergstrasse 4 85747 Garching Germany
Lidija Kovai University of Utrecht Bijvoet Center for Biomolecular Research Padualaan 8 3584 CH Utrecht The Netherlands
and
Jožef Stefan Institute Department of Molecular and Biomedical Sciences Jamova cesta 39 1000 Ljubljana Slovenia
Józef R. Lewandowski Université de Lyon CNRS/ENS Lyon/UCB-Lyon 1 Centre de RMN à Très Hauts Champs 5 rue de la Doua 69100 Villeurbanne France
Hong-Ke Liu Nanjing Normal University College of Chemistry and Materials Science Jiangsu Key Laboratory of Biofunctional Materials Wenyuan Road 1, Nanjing 210046 China
Frank Löhr Goethe University Frankfurt Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ) Max-von-Laue-Strasse 9 60438 Frankfurt am Main Germany
Claudio Luchinat University of Florence Department of Chemistry and Magnetic Resonance Center (CERM) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
Tobias Madl Helmholtz Zentrum München Institute of Structural Biology Ingolstädter Landstrasse 1 85764 Neuherberg Germany
and
Technische Universität München Biomolecular NMR and Munich Center for Integrated Protein Science Department Chemie Lichtenbergstrasse 4 85747 Garching Germany
Vijayalaxmi Manoharan Medical Research Council National Institute for Medical Research Molecular Structure Division The Ridgeway Mill Hill London NW7 1AA UK
Dominique Marion Institut de Biologie Structurale – Jean-Pierre Ebel UMR5075 CNRS-CEA-UJF 41 rue Jules Horowitz 38027 Grenoble Cedex France
Kathleen S. McGreevy University of Florence Department of Chemistry and Magnetic Resonance Center (CERM) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
Beat H. Meier ETH Zurich Laboratory of Physical Chemistry Wolfgang-Pauli-Strasse 10 8093 Zurich Switzerland
Adrien S.J. Melquiond Utrecht University Bijvoet Center for Biomolecular Research Padualaan 8 3584 CH Utrecht The Netherlands
Senada Nozinovic Goethe University Frankfurt Center for Biomolecular Magnetic Resonance (BMRZ) and Institute of Organic Chemistry and Chemical Biology Max-von-Laue-Straße 7 60438 Frankfurt Germany
Hartmut Oschkinat Leibniz-Institut für Molekulare Pharmakologie NMR-Supported Structural Biology Robert-Rössle-Strasse 10 13125 Berlin Germany
Giacomo Parigi University of Florence Department of Chemistry and Magnetic Resonance Center (CERM) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
Maurizio Pellecchia Sanford-Burnham Medical Research Institute 10901 North Torrey Pines Road La Jolla, CA 92037 USA
Jose Manuel Perez-Canadillas Consejo Superior de Investigaciones Científicas (CSIC) Instituto de Quimica Fisica “Rocasolano” Serrano 119 28006 Madrid Spain
Maxim V. Petoukhov European Molecular Biology Laboratory Hamburg Outstation Notkestrasse 85 22607 Hamburg Germany
Roberta Pierattelli University of Florence Department of Chemistry and Magnetic Resonance Center (CERM) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
Guido Pintacuda Université de Lyon Institut de Sciences Analitiques Centre de RMN à Très Hauts Champs 5 rue de la Doua 69100 Villeurbanne France
Janez Plavec National Institute of Chemistry Slovenian NMR Center Hajdrihova 19 1000 Ljubljana Slovenia
and
EN-FIST Center of Excellence Dunajska 156 1000 Ljubljana Slovenia
and
University of Ljubljana Faculty of Chemistry and Chemical Technology Askerceva cesta 5 1000 Ljubljana Slovenia
Thomas F. Prisner Goethe University Frankfurt Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ) Max-von-Laue-Strasse 7 60438 Frankfurt Germany
Andres Ramos Medical Research Council National Institute for Medical Research Molecular Structure Division The Ridgeway Mill Hill London NW7 1AA UK
Enrico Ravera University of Florence Department of Chemistry and Magnetic Resonance Center (CERM) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
Sina Reckel Goethe University Frankfurt Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ) Max-von-Laue-Strasse 9 60438 Frankfurt am Main Germany
Marie Renault Utrecht University Bijvoet Center for Biomolecular Research Padualaan 8 3584 CH Utrecht The Netherlands
Christian Richter Johann Wolfgang Goethe-University Center for Biomolecular Magnetic Resonance (BMRZ) and Institute of Organic Chemistry and Chemical Biology Max-von-Laue-Straße 7 60438 Frankfurt Germany
Jörg Rinnenthal Goethe University Frankfurt Center for Biomolecular Magnetic Resonance (BMRZ) and Institute of Organic Chemistry and Chemical Biology Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
Antonio Rosato University of Florence Department of Chemistry and Magnetic Resonance Center (CERM) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
Barth-Jan van Rossum Leibniz-Institut für Molekulare Pharmakologie NMR-Supported Structural Biology Robert-Rössle-Strasse 10 13125 Berlin Germany
Peter J. Sadler University of Warwick Department of Chemistry Gibbet Hill Road Coventry CV4 7AL UK
Michael Sattler Helmholtz Zentrum München Institute of Structural Biology Ingolstädter Landstrasse 1 85764 Neuherberg Germany
and
Technische Universität München Biomolecular NMR and Munich Center for Integrated Protein Science Department Chemie Lichtenbergstrasse 4 85747 Garching Germany
Ulrich Schieborr Goethe University Frankfurt Center for Biomolecular Magnetic Resonance (BMRZ) and Institute of Organic Chemistry and Chemical Biology Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
Christophe Schmitz Utrecht University Bijvoet Center for Biomolecular Research Science Faculty Padualaan 8 3584 CH Utrecht The Netherlands
Harald Schwalbe Goethe University Frankfurt Center for Biomolecular Magnetic Resonance (BMRZ) and Institute of Organic Chemistry and Chemical Biology Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
Alexander Shekhtman University at Albany Department of Chemistry 1400 Washington Avenue Albany, NY 12222 USA
Vladimír Sklená Masaryk University National Center for Biomolecular Research Faculty of Science and Central European Institute of Technology (CEITEC) Kamenice 5 625 00 Brno Czech Republic
Pawel led University of Cambridge University Chemical Laboratory Lensfield Road Cambridge CB2 1EW UK
Solmaz Sobhanifar Goethe University Frankfurt Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ) Max-von-Laue-Strasse 9 60438 Frankfurt am Main Germany
Sridhar Sreeramulu Goethe University Frankfurt Center for Biomolecular Magnetic Resonance (BMRZ) and Institute of Organic Chemistry and Chemical Biology Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
Richard Štefl Masaryk University National Center for Biomolecular Research Faculty of Science and Central European Institute of Technology (CEITEC) Kamenice 5 625 00 Brno Czech Republic
Dimitri I. Svergun European Molecular Biology Laboratory Hamburg Outstation Notkestrasse 85 22607 Hamburg Germany
Leonardo Tenori University of Florence Magnetic Resonance Center (CERM) and FiorGen Foundation Via L. Sacconi 6 50019 Sesto Fiorentino Italy
Peter Tompa VIB Department of Structural Biology Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
and
Hungarian Academy of Sciences Institute of Enzymology Biological Research Center Karolina út 29 1113 Budapest Hungary
Paola Turano University of Florence Department of Chemistry and Magnetic Resonance Center (CERM) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
Marcellus Ubbink Leiden University Leiden Institute of Chemistry Gorlaeus Laboratories Einsteinweg 55 2333 CC Leiden The Netherlands
Sjoerd J. de Vries Utrecht University Bijvoet Center for Biomolecular Research Padualaan 8 3584 CH Utrecht The Netherlands
and
Technische Universität München Physik-Department T38 James Franck Straße 1 85748 Garching Germany
Jens Wöhnert Goethe University Frankfurt Center for Biomolecular Magnetic Resonance (BMRZ) and Institute of Molecular Biosciences Max-von-Laue-Straße 9 60438 Frankfurt am Main Germany
List of Abbreviations
Aβamyloid beta9-AA9-aminoacridineABCATP-binding cassetteAcPacetyl phosphateACRAMTUacridinylthioureaACSautomatic sample changerADME-Tadsorption, distribution, metabolism, excretion, and toxicityA-Ealanine-glutamic acidAFMatomic force microscopyahaz3-aminohexahydroazepineAIRambiguous interaction restraintAKTserine/threonine protein kinaseAmpampicillinAOacridine orangeAPHHadiabatic passage through the Hartman-Hahn conditionAPSYautomated projection spectroscopyATPadenosine triphosphateAtx1antioxidant protein 1AUIMataxin 3 ubiquitin interacting motifbenbenzeneBESTband-selective excitation short-transientbipbiphenylBMRBbiological magnetic resonance data bankBPback-projectionBPTIbovine pancreatic trypsin inhibitorbpybipyridinebRbacteriorhodopsinBRCTbreast cancer 1 C-terminalBSAburied surface areaBSAbovine serum albuminBSEbovine spongiform encephalopathyBURPband-selective uniform-response pure-phaseBUSIproteinase inhibitor from bull seminal plasma1C31-[(3-aminopropyl)amino]-anthracene-9,10-dioneCAcertification authorityCA150coactivator of 150 kDaCamchloramphenicolcAMPcyclic adenosine monophosphateCAPcatabolite activator proteinCAPcAMP-binding proteinCASDcritical assessment of automatic structure determinationCATHclass, architecture, topology, homologous superfamilyCBPCREB-binding proteinCcc2adomain a of Ca2+-sensitive cross-complementer2CCPNcollaborative computing project for NMRCCRcross correlation rateCdk2cyclin-dependent kinase 2CEcomputing elementCECFcontinuous exchange cell-freeLesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!