129,99 €
Written by renowned experts in the field of photon management in solar cells, this one-stop reference gives an introduction to the physics of light management in solar cells, and discusses the different concepts and methods of applying photon management.
The authors cover the physics, principles, concepts, technologies, and methods used, explaining how to increase the efficiency of solar cells by splitting or modifying the solar spectrum before they absorb the sunlight. In so doing, they present novel concepts and materials allowing for the cheaper, more flexible manufacture of solar cells and systems.
For educational purposes, the authors have split the reasons for photon management into spatial and spectral light management.
Bridging the gap between the photonics and the photovoltaics communities, this is an invaluable reference for materials scientists, physicists in industry, experimental physicists, lecturers in physics, Ph.D. students in physics and material sciences, engineers in power technology, applied and surface physicists.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 744
Veröffentlichungsjahr: 2015
Cover
Title Page
Related Titles
Copyright
Preface
List of Contributors
Chapter 1: Current Concepts for Optical Path Enhancement in Solar Cells
1.1 Introduction
1.2 Planar Antireflection Coatings
1.3 Optical Path Enhancement in the Ray Optical Limit
1.4 Scattering Structures for Optical Path Enhancement
1.5 Resonant Structures for Optical Path Enhancement
1.6 Ultra-Light Trapping
1.7 Energy-Selective Structures as Intermediate Reflectors for Optical Path Enhancement in Tandem Solar Cells
1.8 Comparison of the Concepts
1.9 Conclusion
References
Chapter 2: The Principle of Detailed Balance and the Opto-Electronic Properties of Solar Cells
2.1 Introduction
2.2 Opto-Electronic Reciprocity
2.3 Connection to Other Reciprocity Theorems
2.4 Applications of the Opto-Electronic Reciprocity Theorem
2.5 Limitations to the Opto-Electronic Reciprocity Theorem
2.6 Conclusions
References
Chapter 3: Rear Side Diffractive Gratings for Silicon Wafer Solar Cells
3.1 Introduction
3.2 Principle of Light Trapping with Gratings
3.3 Fundamental Limits of Light Trapping with Gratings
3.4 Simulation of Gratings in Solar Cells
3.5 Realization
3.6 Topographical Characterization
3.7 Summary
References
Chapter 4: Randomly Textured Surfaces
4.1 Introduction
4.2 Methodology
4.3 Properties of an Isolated Interface
4.4 Single-Junction Solar Cell
4.5 Intermediate Layer in Tandem Solar Cells
4.6 Conclusions
Acknowledgments
References
Chapter 5: Black Silicon Photovoltaics
5.1 Introduction
5.2 Optical Properties and Light Trapping Possibilities
5.3 Surface Passivation of Black Silicon
5.4 Black Silicon Solar Cells
References
Chapter 6: Concentrator Optics for Photovoltaic Systems
6.1 Fundamentals of Solar Concentration
6.2 Optical Designs
6.3 Silicone on Glass Fresnel Lenses
6.4 Considerations on Concentrators in HCPV Systems
6.5 Conclusions
References
Chapter 7: Light-Trapping in Solar Cells by Directionally Selective Filters
7.1 Introduction
7.2 Theory
7.3 Filter Systems
7.4 Experimental Realization
7.5 Summary and Outlook
References
Chapter 8: Linear Optics of Plasmonic Concepts to Enhance Solar Cell Performance
8.1 Introduction
8.2 Metal Nanoparticles
8.3 Surface-Plasmon Polaritons
8.4 Front-Side Plasmonic Nanostructures
8.5 Rear-Side Plasmonic Nanostructures
8.6 Further Concepts
8.7 Summary
Acknowledgments
References
Chapter 9: Up-conversion Materials for Enhanced Efficiency of Solar Cells
9.1 Introduction
9.2 Up-Conversion in Er
3+
-Doped ZBLAN Glasses
9.3 Up-Conversion in Er
3+
-Doped β-NaYF
4
9.4 Simulating Up-Conversion with a Rate Equation Model
9.5 Increasing Up-Conversion Efficiencies
9.6 Conclusion
Acknowledgments
References
Chapter 10: Down-Conversion in Rare-Earth Doped Glasses and Glass Ceramics
10.1 Introduction
10.2 Physical Background
10.3 Down-Conversion in ZBLAN Glasses and Glass Ceramics
10.4 Down-Conversion in Sm-Doped Borate Glasses for High-Efficiency CdTe Solar Cells
10.5 Summary
Acknowledgment
References
Chapter 11: Fluorescent Concentrators for Photovoltaic Applications
11.1 Introduction
11.2 The Theoretical Description of Fluorescent Concentrators
11.3 Materials for Fluorescent Concentrators
11.4 Experimentally Realized Fluorescent Concentrator Systems
11.5 Conclusion
Acknowledgments
References
Chapter 12: Light Management in Solar Modules
12.1 Introduction
12.2 Fundamentals of Light Management in Solar Modules
12.3 Technological Solutions for Minimized Optical Losses in Solar Modules
12.4 Outlook
References
Index
End User License Agreement
xiii
xv
xvi
xvii
xviii
xix
xx
xxi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
Cover
Table of Contents
Preface
Begin Reading
Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9
Figure 1.10
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7
Figure 9.8
Figure 9.9
Figure 9.10
Figure 9.11
Figure 9.12
Figure 9.13
Figure 9.14
Figure 9.15
Figure 9.16
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7
Figure 10.8
Figure 10.9
Figure 10.10
Figure 10.11
Figure 10.12
Figure 10.13
Figure 10.14
Figure 10.15
Figure 10.16
Figure 10.17
Figure 10.18
Figure 10.19
Figure 10.20
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8
Figure 11.9
Figure 11.10
Figure 11.11
Figure 11.12
Figure 11.13
Figure 11.14
Figure 11.15
Figure 11.16
Figure 11.17
Figure 11.18
Figure 11.19
Figure 11.20
Figure 11.21
Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4
Figure 12.5
Table 1.1
Table 5.1
Table 5.2
Table 9.1
Table 10.1
Edited byRalf B. Wehrspohn, Uwe Rau, and Andreas Gombert
Wehrspohn, R.B., Kitzerow, H., Busch, K. (eds.)
Nanophotonic Materials
Photonic Crystals, Plasmonics, and Metamaterials
2008
Print ISBN: 978-3-527-40858-0; also available in electronic formats
Abou-Ras, D., Kirchartz, T., Rau, U. (eds.)
Advanced Characterization Techniques for Thin Film Solar Cells
2011
Print ISBN: 978-3-527-41003-3; also available in electronic formats
Quaschning, V.V.
Renewable Energy and Climate Change
2010
Print ISBN: 978-0-470-74707-0; also available in electronic formats
Würfel, P.
Physics of Solar Cells
From Basic Principles to Advanced Concepts
Second Edition
2009
Print ISBN: 978-3-527-40857-3; also available in electronic formats
Pagliaro, M., Palmisano, G., Ciriminna, R.
Flexible Solar Cells
2008
Print ISBN: 978-3-527-32375-3; also available in electronic formats
The Editors
Prof. Dr. Ralf B. Wehrspohn
Martin Luther University
Institute of Physics
Heinrich-Damerow-Str. 4
06120 Halle
Germany
and
Fraunhofer-Institute for Mechanics of Materials IWM
Walter-Hülse-Strasse 1
06120 Halle
Germany
Prof. Dr. Uwe Rau
Research Center Jülich
IEF5-Photovoltaics
Leo-Brandt-Straße
52428 Jülich
Germany
Dr. Andreas Gombert
Soitec Solar GmbH
Bötzinger Str. 31
79111 Freiburg
Germany
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is ox{available} from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
© 2015 Wiley-VCH Verlag GmbH & Co.
KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-41175-7
ePDF ISBN: 978-3-527-66569-3
ePub ISBN: 978-3-527-66568-6
Mobi ISBN: 978-3-527-66567-9
oBook ISBN: 978-3-527-66566-2
Cover Design Grafik-Design Schulz,
Fußgönheim, Germany
Printing and Binding Markono Print Media Pte Ltd., Singapore
Printed on acid-free paper
This edition on photon management in solar cells gives a comprehensive overview of the current state-of-the-art of the tricks in optics and photonics to increase the absorption of light in a solar cell. The ultimate aim is to have a really black solar cell. If we currently look around in the landscape, we still see reddish thin-film solar cell based on amorphous silicon or bluish solar cells based on multi-crystalline silicon. So there is still plenty of work to do to improve the current solar cell technology. And this becomes even more important for future silicon solar cells where the thickness of indirect band-gap absorber silicon shrinks to less than 100 µm. However, the spectrum that we see with our eye is not equivalent to the spectrum of the sun. There are, for example, about 20% of the photons in the infrared spectral range. If our eyes would see only the infrared spectral range of the sun below the band-gap of silicon, all the current silicon solar cells would look white! Thus, we are still far away from having really black silicon solar cells. The educated reader might ask if it is theoretically possible to have a completely black silicon solar cell and we would have to answer – no. We have to allow for a little bit of light by the radiative emission of the silicon solar cell. However, this can be managed in principle so that it only sees the small angle of the sun. Then, the solar cell radiative emission “sees” only itself and the sun. This is, in principle, the thermodynamic limit of the system solar cell and of the really black solar cell.
With the following contribution we wish to provide the reader with a lot of insights in the concept of photon management in solar cells, technical help for their current work, or just fun reading how a really black solar cell could be made. We like to thank A.N. Sprafke for helping us to edit the book.
Ralf B. Wehrspohn, Andreas Gombert, U. Rau
Bernd Ahrens
Fraunhofer Center for Silicon Photovoltaics CSP
Walter-Hülse-Str. 1
06120 Halle (Saale)
Germany
and
Martin Luther University of Halle-Wittenberg
Centre for Innovation Competence SiLi-nano®
Karl-Freiherr-von-Fritsch-Str. 3
06120 Halle (Saale)
Germany
Katharina Baumgartner
Forschungszentrum Jülich GmbH
Institut für Energie- und Klimaforschung (IEK-5)
52425 Jülich
Germany
Thomas Beckers
Imperial College London
Department of Physics and Center for Plastic Electronics
South Kensington Campus
SW7 2AZ London
United Kingdom
Pablo Benitez
Universidad Politecnica de Madrid
E.T.S. de Ingenieros de Telecomunicacion
Cedint, Campus de Montegancedo
28233, Pozuelo
Madrid
Spain
Astrid Bingel
Friedrich Schiller University Jena
Abbe Center of Photonics
Institute of Applied Physics
Max-Wien-Platz 1
07743 Jena
Germany
Karsten Bittkau
Forschungszentrum Jülich GmbH
Institut für Energie- und Klimaforschung (IEK-5)
52425 Jülich
Germany
Benedikt Bläsi
Fraunhofer Institute for Solar Energy Systems
Solar Thermal and Optics
Heidenhofstraße 2
79110 Freiburg
Germany
Andreas Büchtemann
Fraunhofer-Institut für Angewandte Polymerforschung IAP
Postfach 600 651
14406 Potsdam
Germany
Reinhard Carius
Forschungszentrum Jülich GmbH
Institut für Energie- und Klimaforschung
(IEK-5)
52425 Jülich
Germany
Dmitry N. Chigrin
RWTH Aachen University
Institute of Physics (IA)
Department of Physics
Templergraben 55
52056 Aachen
Germany
Marcel Dyrba
Fraunhofer Center for Silicon Photovoltaics CSP
Walter-Hülse-Str. 1
06120 Halle (Saale)
Germany
and
Martin Luther University of Halle-Wittenberg
Centre for Innovation
Competence SiLi-nano®
Karl-Freiherr-von-Fritsch-Strasse 3
06120 Halle (Saale)
Germany
Markus Ermes
Forschungszentrum Jülich GmbH
Institut für Energie- und Klimaforschung (IEK-5)
52425 Jülich
Germany
Stephan Fahr
Friedrich-Schiller-Universität Jena
Institute of Condensed Matter Theory and
Solid State Optics
Abbe Center of Photonics
Max-Wien-Platz 1
07743 Jena
Germany
Stefan Fischer
Fraunhofer Institute for Solar Energy Systems
Solar Thermal and Optics
Heidenhofstraße 2
79110 Freiburg
Germany
Kevin Füchsel
Friedrich-Schiller-Universität Jena
Institute of Condensed Matter Theory and
Solid State Optics
Abbe Center of Photonics
Max-Wien-Platz 1
07743 Jena
Germany
and
Fraunhofer Institute of Applied Optics and Precision Engineering IOF
Albert-Einstein-Strasse 7
07745 Jena
Germany
Andreas Gerber
Forschungszentrum Jülich GmbH
Institut für Energie- und Klimaforschung (IEK-5)
52425 Jülich
Germany
Jan Christoph Goldschmidt
Fraunhofer Institute for Solar Energy Systems
Solar Thermal and Optics
Heidenhofstraße 2
79110 Freiburg
Germany
Andreas Gombert
Soitec Solar GmbH
Bötzinger Str. 31
79111 Freiburg
Germany
Johannes Gutmann
Fraunhofer Institute for Solar Energy Systems
Solar Thermal and Optics
Heidenhofstraße 2
79110 Freiburg
Germany
Florian Hallermann
RWTH Aachen University
Institute of Physics (IA)
Department of Physics
Templergraben 55
52056 Aachen
Germany
Hubert Hauser
Fraunhofer Institute for Solar Energy Systems
Solar Thermal and Optics
Heidenhofstraße 2
79110 Freiburg
Germany
Christian Helgert
Friedrich-Schiller-Universität Jena
Abbe Center of Photonics
Institute of Applied Physics
Max-Wien-Platz 1
07743 Jena
Germany
Barbara Herter
Fraunhofer Institute for Solar Energy Systems
Solar Thermal and Optics
Heidenhofstraße 2
79110 Freiburg
Germany
Thorsten Hornung
Fraunhofer Institute for Solar Energy Systems
Solar Thermal and Optics
Heidenhofstraße 2
79110 Freiburg
Germany
Jacqueline Anne Johnson
University of Tennessee Space Institute
Department of Mechanical
Aerospace and Biomedical Engineering
411 B.H. Goethert Parkway
Tullahoma, TN 37388
USA
Thomas Käsebier
Friedrich Schiller University Jena
Abbe Center of Photonics
Institute of Applied Physics
Max-Wien-Platz 1
07743 Jena
Germany
Thomas Kirchartz
Imperial College London
Department of Physics and Center for Plastic Electronics
South Kensington Campus
SW7 2AZ London
United Kingdom
Ernst-Bernhard Kley
Friedrich Schiller University Jena
Abbe Center of Photonics
Institute of Applied Physics
Max-Wien-Platz 1
07743 Jena
Germany
Matthias Kroll
Friedrich Schiller University Jena
Abbe Center of Photonics
Institute of Applied Physics
Max-Wien-Platz 1
07743 Jena
Germany
Deepu Kumar
RWTH Aachen University
Institute of Physics (IA)
52056 Aachen
Germany
Falk Lederer
Friedrich-Schiller-Universität Jena
Institute of Condensed Matter Theory and Solid State Optics
Abbe Center of Photonics
Max-Wien-Platz 1
07743 Jena
Germany
Alexander Mellor
Universidad Politécnica de Madrid
Institúto de Energıa Solar
Avenida Complutense 30
28040 Madrid
Spain
Paul-Tiberiu Miclea
Fraunhofer Center for Silicon Photovoltaics CSP
Walter-Hülse-Str. 1
06120 Halle (Saale)
Germany
Juan C. Miñano
light prescriptions innovators (LPI)
2400 Lincoln Ave,
Altadena, CA 91001
USA
Martin Otto
Martin-Luther-Universität Halle-Wittenberg
Institute of Physics
Heinrich-Damerow-Str. 4
06120 Halle
Germany
Christian Paßlick
Martin Luther University of Halle-Wittenberg
Centre for Innovation Competence SiLi-nano®
Karl-Freiherr-von-Fritsch-Str. 3
06120 Halle (Saale)
Germany
Thomas Pertsch
Friedrich Schiller University Jena
Abbe Center of Photonics
Institute of Applied Physics
Max-Wien-Platz 1
07743 Jena
Germany
Marius Peters
Fraunhofer Institute for Solar Energy Systems
Solar Thermal and Optics
Heidenhofstraße 2
79110 Freiburg
Germany
Liv Prönneke
Universität Stuttgart
Institut für Photovoltaik
Pfaffenwaldring 47
70569 Stuttgart
Germany
Uwe Rau
Institut für Energie- und Klimaforschung 5 - Photovoltaik
Forschungszentrum Jülich GmbH
Wilhelm-Johnen-Straße
52425 Jülich
Germany
Carsten Rockstuhl
Karlsruher Institut för Technologie
Institut für Theoretische Festkörperphysik
Wolfgang-Gaede-Str. 1
76128 Karlsruhe
Germany
Jens Schneider
Fraunhofer Center for Silicon Photovoltaics CSP
Otto-Eißfeldt-Street 12
06120 Halle
Germany
Isolde Schwedler
Fraunhofer Center for Silicon Photovoltaics CSP
Otto-Eißfeldt-Street 12
06120 Halle
Germany
Stefan Schweizer
Fraunhofer Center for Silicon Photovoltaics CSP
Walter-Hülse-Str. 1
06120 Halle (Saale)
Germany
and
South Westphalia University of Applied Sciences
Department of Electrical
Engineering
Lübecker Ring 2
59494 Soest
Germany
and
Fraunhofer Application Center for Inorganic Phosphors
Branch Lab of Fraunhofer Institute for Mechanics of Materials IWM
Lübecker Ring 2
59494 Soest
Germany
Gerhard Seifert
Fraunhofer Center for Silicon Photovoltaics CSP
Otto-Eißfeldt-Street 12
06120 Halle
Germany
Alexander N. Sprafke
Martin Luther University Halle-Wittenberg
Institute of Physics
Heinrich-Damerow-Str. 4
06120 Halle
Germany
Martin Steglich
Friedrich Schiller University Jena
Abbe Center of Photonics
Institute of Applied Physics
Max-Wien-Platz 1
07743 Jena
Germany
Lorenz Steidl
Johannes Gutenberg University Mainz
Institute of Organic Chemistry
Duesbergweg 10-14
55099 Mainz
Germany
Heiko Steinkemper
Fraunhofer Institute for Solar Energy Systems
Solar Thermal and Optics
Heidenhofstraße 2
79110 Freiburg
Germany
Franziska Steudel
Fraunhofer Center for Silicon Photovoltaics CSP
Walter-Hülse-Strasse 1
06120 Halle (Saale)
Germany
Andreas Tünnermann
Friedrich Schiller University Jena
Abbe Center of Photonics
Institute of Applied Physics
Max-Wien-Platz 1
07743 Jena
Germany
and
Fraunhofer Institute of Applied Optics and Precision Engineering IOF, Albert-Einstein-Strasse 7
07745 Jena
Germany
Carolin Ulbrich
Forschungszentrum Jülich GmbH
Institut für Energie- und Klimaforschung (IEK-5)
52425 Jülich
Germany
Johannes Üpping
Martin-Luther-University Halle-Wittenberg
Institute of Physics
Heinrich-Damerow-Str. 4
06120 Halle
Germany
Gero von Plessen
Physikalisches Institut
RWTH Aachen
52056 Aachen
Germany
Armin Wedel
Fraunhofer-Institut für Angewandte Polymerforschung IAP
Postfach 600 651
14406 Potsdam
Germany
Ralf B. Wehrspohn
Martin Luther Universität Halle-Wittenberg
Institute of Physics
Heinrich-Damerow-Str. 4
06120 Halle
Germany
and
Fraunhofer Institute for Mechanics of Materials (IWMH)
Walter-Hülse-Strasse 1
06120 Halle
Germany
Marie-Christin Wiegand
Fraunhofer-Center für Silizium-Photovoltaik CSP
Walter-Hülse-Str. 1
06120 Halle (Saale)
Germany
Samuel Wiesendanger
Friedrich-Schiller-Universität Jena
Institut für Festkörpertheorie und -optik
Max-Wien-Platz 1
07743 Jena
Germany
Sebastian Wolf
Fraunhofer Institute for Solar Energy Systems
Solar Thermal and Optics
Heidenhofstraße 2
79110 Freiburg
Germany
Rudolf Zentel
Johannes Gutenberg University Mainz
Institute of Organic Chemistry
Duesbergweg 10-14
55099 Mainz
Germany
Alexander N. Sprafke and Ralf B. Wehrspohn
The conversion efficiency of a solar cell, that is, the ratio of electrical power extracted from the cell to the power of solar photons flowing into the cell, is directly connected to the number of photons absorbed in the absorber material of the cell. Therefore, it is of critical importance to insert as many photons as possible into the cell and keep them inside the cell until they are finally absorbed. While achieving the first aspect is referred to as antireflection, the second aspect is commonly called optical path enhancement, also known as light Trapping, which is the focus of this chapter.
Because of its fundamental significance to the solar-to-electrical conversion mechanism, light trapping should be considered for any solar absorber material. However, light trapping is of particular importance for solar cells based on crystalline silicon (c-Si). Owing to its abundance and to the long-existing mature technologies in the electronic industry, commercial c-Si based solar cells are widely available and dominate the PV market today [1]. But since c-Si is an indirect semiconductor, it is actually a relatively bad light absorber. Figure 1.1 shows the absorption depth of c-Si. of an absorbing material is defined as the distance at which the intensity of light decreases to after it enters the material. For wavelengths , most of the light energy is absorbed within a micron. For longer wavelengths, increases rapidly (note the logarithmic y-axis) and reaches values in the range of centimeters for wavelengths in the spectral range of the bandgap of c-Si at around .
Figure 1.1 Absorption depth of crystalline silicon plotted against the wavelength of light. The optical properties to calculate were taken from Ref. [2].
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!