Photonics and Electronics with Germanium -  - E-Book

Photonics and Electronics with Germanium E-Book

0,0
142,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Representing a further step towards enabling the convergence of computing and communication, this handbook and reference treats germanium electronics and optics on an equal footing. Renowned experts paint the big picture, combining both introductory material and the latest results. The first part of the book introduces readers to the fundamental properties of germanium, such as band offsets, impurities, defects and surface structures, which determine the performance of germanium-based devices in conjunction with conventional silicon technology. The second part covers methods of preparing and processing germanium structures, including chemical and physical vapor deposition, condensation approaches and chemical etching. The third and largest part gives a broad overview of the applications of integrated germanium technology: waveguides, photodetectors, modulators, ring resonators, transistors and, prominently, light-emitting devices. An invaluable one-stop resource for both researchers and developers.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 654

Veröffentlichungsjahr: 2015

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



CONTENTS

Cover

Title page

Preface

List of Contributors

1 Defects in Germanium

1.1 Introduction

1.2 Methods for Studying Defects and Impurities

1.3 Impurities

1.4 Intrinsic Defects

1.5 Summary

References

2 Hydrogen in Ge

2.1 Introduction

2.2 Properties of Hydrogen in Ge

2.3 Hydrogen Passivation of Shallow Donors and Acceptors in Ge

2.4 Summary

Acknowledgments

References

3 Epitaxy of Ge Layers on Blanket and Patterned Si(001) for Nanoelectronics and Optoelectronics

3.1 General Introduction

3.2 Epitaxial Growth of Ge Thick Layers on Si(001)

3.3 Ge Surface Passivation with Si

3.4 SEG of Ge in Cavities at the End of Optical Waveguides

3.5 Fabrication, Structural, and Electrical Properties of Compressively Strained Ge-on-Insulator Substrates

3.6 Conclusion and Perspectives

References

4 Heavy Doping in Si

1−

x

Ge

x

Epitaxial Growth by Chemical Vapor Deposition

4.1 Introduction

4.2

In situ

Doping of B, P, and C in Si

1−

x

Ge

x

Epitaxial Growth

4.3 Atomic-Layer Doping in Si

1−

x

Ge

x

Epitaxial Growth

4.4 Conclusion and Future Trends

Acknowledgments

References

5 FEOL Integration of Silicon- and Germanium-Based Photonics in Bulk-Silicon, High-Performance SiGe: C-BiCMOS Processes

5.1 Introduction

5.2 Local SOI Technology

5.3 Passive Silicon Waveguide Technology

5.4 Modulator Technology

5.5 Photonics Integration in BiCMOS Flow

5.6 Germanium Photo Detector – Process Integration Challenges

5.7 Example Circuit – 10 Gbit s

−1

Modulator with Driver

5.8 Outlook

Acknowledgments

References

6 Ge Condensation and Its Device Application

6.1 Principle of Ge Condensation and Fabrication Process

6.2 GOI Film Characterization

6.3 Device Application

6.4 Summary

References

7 Waveguide Design, Fabrication, and Active Device Integration

7.1 Introduction

7.2 Design of Silicon Photonic Wire Waveguiding System

7.3 Fabrication

7.4 Propagation Performance of Waveguides

7.5 Integration of Si/Silica and Ge Photonic Devices

7.6 Summary

References

8 Detectors

8.1 Introduction

8.2 Historical Background

8.3 Fiber-Optics Revolution

8.4 Avalanche Devices

8.5 Si-Photonics

8.6 High-Performance Ge Detectors

8.7 Process Options and Challenges

8.8 Device Architectures

8.9 Ge on Si Detectors in Highly Integrated Systems

8.10 Reliability

8.11 Conclusions

References

9 Ge and GeSi Electroabsorption Modulators

9.1 Introduction

9.2 EAE in Ge and GeSi: Theoretical and Experimental

9.3 Waveguide Coupling

9.4 Current Progress in Ge and GeSi EAMs

9.5 Conclusions

References

10 Strained Ge for Si-Based Integrated Photonics

10.1 Introduction

10.2 Bandgap and Strain: Theory

10.3 Bandgap and Strain: Experiment

10.4 Strain-Engineered Tunability of Lasers

10.5 Conclusions

10.6 Acknowledgment

References

11 Ge Quantum Dots-Based Light Emitting Devices

11.1 Introduction

11.2 Formation of Ge Dots on Si Substrates and Their Luminescent Properties

11.3 Enhanced Light Emission from Ge QDs Embedded in Optical Cavities

11.4 Optically Excited Light Emission from Ge QDs

11.5 Electrically Excited Light Emission from Ge ODs

11.6 Conclusion

References

12 Ge-on-Si Lasers

12.1 Introduction

12.2 Modeling and Analyses of Band-Engineered Ge Optical Gain Media

12.3 Fabrication of Band-Engineered Ge-on-Si

12.4 Band-Engineered Ge-on-Si Light Emitters

12.5 Conclusions

Acknowledgments

References

Index

End User License Agreement

List of Tables

Chapter 1

Table 1.1 Bulk properties of silicon and germanium.

Table 1.2 Dopant ionization energies in silicon and germanium.

Table 1.3 Dopant solid solubility limits in silicon and germanium.

Table 1.4 Charge-state transition levels associated with the vacancies in silicon and germanium as calculated with hybrid density functional theory [51].

Table 1.5 Charge-state transition levels associated with the dangling bonds in silicon and germanium as calculated with hybrid density functional theory [51].

Chapter 3

Table 3.1 Benchmark of the structural properties and associated hole mobilities in various flavor GeOI substrates.

Chapter 4

Table 4.1 Equations in the Langmuir-type adsorption and reaction scheme for formulating deposition rate, Ge fraction, and

in situ

doping in Si

1−

x

Ge

x

.

Table 4.2 The fitting parameters

k

1

i

n

0

,

k

2

i

n

0

, and

k

Si

i

n

0

at 550 °C on the (100) surface, calculated from Eqs (4)–(4) in Table 4.1 using the experimental data.

Table 4.3 The fitting parameters

k

Di

,

k

−Di

,

K

SDi

on the (100) surface at 550 °C, calculated from Eqs in Table 4.1 and the fitting parameters in Table 4.2 using the experimental data in Figures 4.2–4.4.

Chapter 5

Table 5.1 BiCMOS yield monitor behavior

: bulk versus local-SOI.

Table 5.2 Comparison of threading dislocation density (TDD)

of germanium on silicon layers (full wafer deposition) before and after in-situ germanium etch.

Table 5.3 BiCMOS device parameters under several anneal conditions.

Table 5.4 Change of HBT DC and RF parameters, compared to the “RTA-only” baseline process, due to different annealing conditions.

Chapter 9

Table 9.1 Summary of Ge

and GeSi EAM performance

.

Chapter 10

Table 10.1 Elastic stiffness constants of Ge, Si, and GaAs.

Chapter 12

Table 12.1 Solubility of different n-type dopants in Ge [16].

List of Illustrations

Chapter 1

Figure 1.1 Temperature dependence of the diffusion constant of foreign atoms in Ge (thin lines) compared with self-diffusion (thick line). Solid lines represent diffusion data of elements that are mainly dissolved on substitutional lattice sites. Long-dashed lines (––) indicate hybrid elements, which are mainly dissolved on substitutional sites, but diffuse in an interstitial configuration via the dissociative mechanism. The short-dashed lines (- - - -) indicate elements that are mainly interstitially dissolved. The upper short-dashed line shows the diffusivity deduced for interstitial copper. Figure courtesy of Ref. [2]

Figure 1.2 Electronic structure of the vacancy in germanium. (a)

bonding orbitals in germanium. (b) Symmetric

and degenerate

defect states for the vacancy in germanium. (c) Symmetry breaking can split the

states due to strain, Jahn–Teller distortion, or nearby defects.

Figure 1.3 Formation energy of vacancies in silicon (a) and in germanium (b) as calculated with hybrid density functional theory [51]. Only the lowest energy charge state is shown for each value of the Fermi level.

Figure 1.4 Kohn–Sham states for the +2 to

charge states of the vacancy in germanium. These results were obtained through spin-polarized hybrid density functional theory calculations [51].

Figure 1.5 Atomic configuration for various types of self-interstitial defects in germanium. The types are defined as: (a) split interstitial, (b) hexagonal interstitial, (c) tetrahedral interstitial, and (d) open cage structure formed by a bond-center interstitial atom relaxing outward toward the hexagonal site (distorted hexagonal structure). Black atoms indicate bulk-like atoms. Gray atoms indicate the interstitial atom(s).

Figure 1.6 Configuration-coordinate diagram for the self-interstitial in germanium.

D

denotes the split-interstitial,

H

the hexagonal interstitial, and

T

the tetrahedral interstitial.

Figure 1.7 Schematic representation of a dangling bond at a germanium/germanium-oxide interface. Gray atoms represent germanium, black atoms oxygen, and the white atom the germanium atom with the DB.

Figure 1.8 Charge-state transition levels for dangling bonds in silicon and germanium as calculated with hybrid density functional theory [51]. The connected bottom lines indicate the VBM for silicon and germanium, while the connected top lines indicate the CBM for these materials. The alignment of the band structures is based on the calculated valence-band offset of 0.6 eV [70]. The short lines indicate the charge-state transition levels associated with the dangling bonds [51].

Chapter 2

Figure 2.1 The local positions for the hydrogen ground state in the diamond lattice: the bond-center site (BC) for H

+

and the anti-bonding site (AB) for H

.

Figure 2.2 Band-alignment diagram of the Mu donor- and acceptor-levels in Si

1−

x

Ge

x

alloys. The occupancy-level Mu[±] was determined from the experimental donor and acceptor energies.

Figure 2.3 Position of the freely rotating H

2

-molecule on the interstitial T-site in the diamond lattice.

Figure 2.4 Raman spectra of interstitial H

2

-molecules in Ge and the corresponding reference spectra of the as-received sample. The p-type (100)-Ge sample was exposed for 8 h at 175 °C to a D-, H:D(50 : 50)-, or H-plasma. The temperature within the laser excitation area was approximately 80 K. Integration time was 30 h.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!