237,99 €
POWER CONVERTERS, DRIVES AND CONTROLS FOR SUSTAINABLE OPERATIONS Written and edited by a group of experts in the field, this groundbreaking reference work sets the standard for engineers, students, and professionals working with power converters, drives, and controls, offering the scientific community a way towards combating sustainable operations. The future of energy and power generation is complex. Demand is increasing, and the demand for cleaner energy and electric vehicles (EVs) is increasing with it. With this increase in demand comes an increase in the demand for power converters. Part one of this book is on switched-mode converters and deals with the need for power converters, their topologies, principles of operation, their steady-state performance, and applications. Conventional topologies like buck, boost, buck-boost converters, inverters, multilevel inverters, and derived topologies are covered in part one with their applications in fuel cells, photovoltaics (PVs), and EVs. Part two is concerned with electrical machines and converters used for EV applications. Standards for EV, charging infrastructure, and wireless charging methodologies are addressed. The last part deals with the dynamic model of the switched-mode converters. In any DC-DC converter, it is imperative to control the output voltage as desired. Such a control may be achieved in a variety of ways. While several types of control strategies are being evolved, the popular method of control is through the duty cycle of the switch at a constant switching frequency. This part of the book briefly reviews the conventional control theory and builds on the same to develop advanced techniques in the closed-loop control of switch mode power converters (SMPC), such as sliding mode control, passivity-based control, model predictive control (MPC), fuzzy logic control (FLC), and backstepping control. A standard reference work for veteran engineers, scientists, and technicians, this outstanding new volume is also a valuable introduction to new hires and students. Useful to academics, researchers, engineers, students, technicians, and other industry professionals, it is a must-have for any library.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 943
Veröffentlichungsjahr: 2023
Scrivener Publishing100 Cummings Center, Suite 541JBeverly, MA 01915-6106
Publishers at ScrivenerMartin Scrivener ([email protected])Phillip Carmical ([email protected])
Edited by
S. Ganesh KumarMarco Rivera AbarcaandS. K. Patnaik
This edition first published 2023 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA© 2023 Scrivener Publishing LLCFor more information about Scrivener publications please visit www.scrivenerpublishing.com.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.
Wiley Global Headquarters111 River Street, Hoboken, NJ 07030, USA
For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.
Limit of Liability/Disclaimer of WarrantyWhile the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchant-ability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.
Library of Congress Cataloging-in-Publication Data
ISBN 9781119791911
Front cover images supplied by WikiMedia CommonsCover design by Russell Richardson
With an increasing demand for power production, along with demand for power conversion and motor control in electric vehicles (EVs), there is a great demand for power converters and related technologies. Similarly, a related field, “drives and controls,” is gaining prominence due to the increasing use of linear motors, actuators, robots, pneumatics and hydraulic cylinders. Such a rapid growth is in compliance with sustainable development goals (SDGs) and Industry 4.0.
Considering the above facts, we, the editors, deemed it necessary to put together this much needed book, Power Converters, Drives and Controls for Sustainable Operations. This book has been aptly divided into three parts.
As in any conversion process, the efficiency of power conversion is the most important issue. Part I of the book is on switched-mode converters and deals with the need for power converters, their topologies, principles of operation, their steady-state performance, and applications. Conventional topologies like buck, boost, buck-boost converters, inverters, multilevel inverters and derived topologies (such as high gain, bridge converters, and resonant converters) are covered in Part I with features and their applications in fuel cells, photovoltaic (PV) and EVs. Switching inverters have been gaining in popularity over linear inverters, due to their inherent higher efficiency. Over the past decade, a variety of strategies to switch the inverter switches have been evolved for various applications.