Role of Nanotechnology in Cancer Therapy -  - E-Book

Role of Nanotechnology in Cancer Therapy E-Book

0,0
72,24 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

The Role of Nanotechnology in Cancer Therapy gives an overview of the innovative nanocarrier-based approaches for managing various cancers such as gastric, skin, lung, and prostate cancers. The book also explores the evolving targeting approaches specific to cancer and the immunotherapy-based nanomedicine approach. Several drug-delivery systems that reduce the overall toxicity of cytotoxic drugs and increase their effectiveness and selectivity are also discussed in this book.Key Features- Discusses the potential benefits and therapeutic applications of nanoparticles in cancer management
- Provides information about therapy in a range of cancers- Discusses recent developments in cancer nanomedicine including targeted therapy, immunotherapy nanoparticles and dual drug delivery- Includes safety and toxicity considerations- Provides references for advanced readers
This book will inform a broad range of readers including undergraduate and postgraduate students, oncologists, pharmacists, and researchers involved in nanomedicine and nano-drug delivery about current advancements in cancer nanomedicine.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB

Seitenzahl: 599

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents
BENTHAM SCIENCE PUBLISHERS LTD.
End User License Agreement (for non-institutional, personal use)
Usage Rules:
Disclaimer:
Limitation of Liability:
General:
FOREWORD
PREFACE
List of Contributors
Cancer Pathophysiology
Abstract
INTRODUCTION
Etiopathogenesis
Aetiology
Pathogenesis
CHARACTERISTICS OF CANCER CELLS
Concept of Heterogeneity
Uncontrolled Proliferation
EMT and Tumor Proliferation
Autophagy
Cancer Stem Cells
Cell Cycle Transducers
Cellular Metabolism
Hormone Signalling
Telomerase Expression
Angiogenesis
De-differentiation and Loss of Function
Metastasis
Separation of Tumor Cell, Invasion and Cell Migration
Intravasation into the Vasculature or Lymphatic System
Survival in the Circulation
Extravasation from the Vasculature to Secondary Tissue
Metastatic Colonization
CURRENT CHALLENGES AND OPPORTUNITIES IN CANCER TREATMENT
Nanomedicine
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENT
REFERENCES
Recent Advances of Multifunctional Nanomedicine
Abstract
INTRODUCTION
DENDRIMERS
NANOPARTICLES
MICELLES
DRUG CONJUGATES
SILICA NANOPARTICLES
METALLIC NANOPARTICLES
QUANTUM DOTS
CARBON NANOTUBES
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENT
REFERENCES
Dendrimers in Anticancer Drug Delivery
Abstract
INTRODUCTION
STRUCTURE AND PROPERTIES
METHODS FOR PREPARATION OF DENDRIMERS
Divergent Growth
Convergent Growth
Growth using Hypercore and Branched Monomers
Click Chemistry
Double- Exponential and Mixed Growth
Factors Affecting Dendrimers Synthesis [15]
TYPES OF DENDRIMERS
PAMAM (Poly Amido Amine) Dendrimer
PPI (Poly Propylene Imine) Dendrimer
Chiral Dendrimer
Multilingual Dendrimers
Tecto Dendrimers
Hybrid Dendrimers
Peptide Dendrimers
Frechet-Type Dendrimers
PAMAMOS (Poly Amidoamine Organosilicon) Dendrimers
Multiple Antigen Peptide Dendrimers
DENDRIMERS IN ANTICANCER DRUG DELIVERY
Mechanism of Dendrimer-Drug Interaction
Physical Encapsulation
Electrostatic Interaction
Covalent Conjugation
Mechanism of Drug Delivery through Dendrimers
Advantages of Dendrimers Over Conventional Anticancer Agents- [2]
CHARACTERIZATION OF DENDRIMERS
APPLICATIONS
Dendrimers in Anti Cancer Treatment
Dendrimers as Magnetic Resonance Imaging (MRI) Contrast Agents
Dendrimers in Photo Dynamic Therapy
Dendrimers in Photo Thermal Therapy
Dendrimers in Transdermal Delivery
Dendrimers in Gene Delivery and Transfection
Dendrimers in Vaccine Development
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENT
REFERENCES
Nanomedicine-based use of SiRNA in Cancer
Abstract
INTRODUCTION
TYPES OF NANOPARTICLES
Lipid-based Nanoparticles Topic
Cyclodextrin Nanoparticles
Dendrimers
Metal-based Nanoparticles
ANTICANCER THERAPEUTICS AND NANOPARTICLE-BASED DELIVERY AGENTS
Chemotherapeutics and Drug Delivery using Various Nanoparticles
Small Molecule Inhibitors
Nucleic Acid Agents in Cancer Therapy
Sirna Delivery
CO-DELIVERY OF DRUGS AND GENES
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENT
REFERENCES
Ligands for Tumor Targeting
Abstract
INTRODUCTION
TUMOR-TARGETED DRUG DELIVERY SYSTEM
Passive Targeting
Nanoparticle Characteristics Affect Passive Targeting
Active Targeting (By Steering Moieties)
Targeting Tumor Cells
Targeting Endothelial Cells
Targeting the Mild Acidic Environment of a Tumor
Targeting Nucleus
Different Target Receptors Overexpressed over Tumor Cells
Folic Acid Receptor (FARs)
Transferrin Receptor (TfR)
Epidermal Growth Factor Receptor (EGFR)
Hyaluronic Acid Receptor
Lectins
Cell-penetrating Peptides (CPPs)
BIOLOGICAL LIGANDS USED FOR TARGETING DIFFERENT RECEPTORS OVEREXPRESSED ON TUMOR CELLS
Protein and Polysaccharide-assisted Active Targeting
Peptide-assisted Active Targeting
Aptamer-assisted Active Targeting
Small Molecules-assisted Active Targeting
CONCLUSION AND FUTURE OUTLOOKS
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENT
REFERENCES
Nanotechnology-Based Inhalation Approach for Lung Cancer
Abstract
INTRODUCTION
INHALED CHEMOTHERAPY
Advantages and Challenges Involved in the Delivery of Inhalation Therapeutic Drugs
Challenges for Nanoparticle-based Drug Delivery in Lung Cancer Therapy
Rationale for the Development of an Inhalable Nanoparticle-Based Drug For Lung Cancer
Size of Nanoparticles
Enhanced Permeability and Retention (EPR)
Surface Properties
Application of Nanotechnology for the Delivery of Inhaled Chemotherapeutic Drugs
Polymeric Nanoparticles
Polymeric Micelles
Lipid Nanocarriers
Liposomes
Solid Lipid Nanoparticles
Nanostructured Lipid Carriers
Lipid Nanocapsules (LNC)
AEROSOLIZED DRUG DELIVERY
Pressurized Meter Dose Inhaler
Breath-actuated Metered Dose Inhaler
Recent Advances in Bamdi
Dry Powder Inhaler
Liposomal and Lipid-based DPI
DPI Devices
Capsule Based Devices
Blister Based Device
Reservoir/Cartridge-Based Device
Soft Mist Inhaler
Nebulizers
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENT
References
Mesoporous Based Drug Delivery: A Smart and Promising Approach for Prostate Cancer
Abstract
INTRODUCTION
PROSTATE CANCER
Nanotechnology-Based Drug Delivery Systems for Prostate Cancer
Mesoporous Silica-based Nanoparticulate Drug Delivery System
Physicochemical Properties and Synthesis Strategies of Mesoporous Materials
Functionalization of Mesoporous Material
Applications of Mesoporous Material in Prostate Cancer
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENT
REFERENCES
Abridgment of Nanotechnology in Skin Cancer Treatment: Current Trends and Future Outlook
Abstract
INTRODUCTION TO CANCER
Cause of Cancer Development
INTRODUCTION TO SKIN
INTRODUCTION TO SKIN CANCER
TYPES OF SKIN CANCER
Melanoma
Superficial Melanoma
Nodular Melanoma
Lentigo Maligna Melanoma
Acral Lentiginous Melanoma
Non – Melanoma
Basal Cell Carcinoma
Nodular Basal Cell Carcinoma
Superficial Basal Cell Carcinoma
Morpheaform Basal Cell Carcinoma
Squamous Cell Carcinoma
CHALLENGES OF SKIN CANCER THERAPY
Biological Barrier
Multidrug Resistance
THERAPEUTIC APPROACHES IN THE TREATMENT OF SKIN CANCER
Surgery or Excision Biopsy
Pharmacological Interventions
Targeted Therapy
Immunotherapy
Topical Immunotherapy
Radiotherapy
Therapeutic Hyperthermia using NPs
Nanotechnology
Nano-material and its Characteristics
Mechanism of Drug Release from Nanomaterials
A. Molecular Biology Methodology
B. pH Controlled Drug Release
C. Temperature Controlled Drug Release
D. Redox Potential Control
E. Biomechanical Triggering
F. Light Triggering
G. Magnetic Activation
Common Nanoparticulate Systems
Liposomes
Nanospheres
Dendrimers
Nanotubes
Nanoparticles
Nanoparticles (NPs)
Lipid-based NPs
Solid-lipid Nanoparticles (SLNs)
Polymer-based NPs
Inorganic NPs
Gold Nanoparticles
Superparamagnetic Ferrous Oxide Nanoparticles
Silica Nanoparticles
Other NPs
Chemotherapies with NPs
Immunotherapy with NPs
Quantum Dots
PREVENTION APPROACH FOR SKIN CANCER
POSSIBLE INFLUENCE OF NANO TECHNOLOGY ON SKIN CANCER TREATMENT IN FUTURE
CONCLUDING REMARKS
CONSENT OF PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENTS
REFERENCES
Nanofibers Approach for Gastro Retentive Cancer
Abstract
INTRODUCTION
Nanofibers
Electrospinning Technology
Components of Nanofibers (Polymers + Drugs)
Polymers
Drugs Loaded into Electrospun Nanofibers
GASTRIC CANCER
Approaches in Gastro-Retentive Drug Delivery Systems
High-Density Systems/Non-Floating System
Low-Density System/Floating System
Bio-Adhesive Systems
Swelling Systems/Expandable Systems
Nanofiber as Gastro-Retentive Dosage Form
Density
Surface Area
Mucoadhesion
Swelling Index
Porosity
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENTS
REFERENCES
Regulatory Aspects of Nanomaterials: Current and Future Perspective
Abstract
INTRODUCTION
Potential Benefits Of Nanomaterials
Potential Hazardousness Of Nanomaterials
General Consideration Of Nanomaterials Containing Products
Characterization Of Nanoparticle Containing Nanomedicine
Safety
REGULATION OF NANOPARTICLES
Past Failure To Regulate The New Substance
Nanoparticle Testing Standards Considerations
TSCA Testing Standard
Regulatory Challenges Of Nanoparticles
Global Strategies Of Nanoparticles Regulations
USA
UK
EU
Canada
Japan
Others
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENT
REFERENCES
Recent Development and Advancement in Microneedle-Assisted Drug Delivery System Used in the Treatment of Cancer
Abstract
INTRODUCTION
Stages of Cancer
Types of Cancer
Types of Cancer Treatments
The Drawback of Cancer Treatment
The Drawback of Chemotherapeutic Agents
Limitations of Oral and Parenteral Route
Comparison of Different Formulations Which are Administered Through the Skin Barrier
INTRODUCTION TO TRANSDERMAL DRUG DELIVERY SYSTEMS (TDDS)
Structure of Skin
Transdermal Enhancement Technologies
Microneedle Drug Delivery System
Advantages of the Microneedle Patch Over Other Drug Administration Techniques
Types of Microneedles (MNs)
Microneedle Production Method
Microelectromechanical Systems (MEMS)
Laser Cutting
Laser Ablation
Micro Molding (Solvent Casting) Method
Atomized Spraying Method
Droplet-Born Air Blowing Method (DAB)
Pulling Pipettes
Microneedle Fabrication Materials [100]
Evaluation Parameters
Characterization Method
Dimensional Evaluation
Insertion Force or Mechanical Properties
Flow Rate Estimation
In-vitro Skin Permeation Studies
In-vivo Animal Model Studies
Review of Literature
Limitations and Safety Concerns of MNs in the Treatment of Cancer
3D PRINTING-AN INDUSTRIAL REVOLUTION OF THE 21ST CENTURY
History
Differentiation Between Two Different Kinds of Technologies
Steps Involved in 3D Printed Dosage Form [133, 134]
Various Techniques Used in 3D Printing
3D Printing Technologies Used to Fabricate Microneedle Patch
Inkjet Printing
Material Extrusion
Fused Deposition Modeling (FDM)
Pen-Based 3D Printing
Vat Polymerization
Stereolithography
Digital Light Processing (DLP)
Powder-Based 3D Printing
Selective Laser Sintering
Two-Photon-Polymerization (2PP)
Recently Published Articles Related to Anticancer Microneedle Patches by Using 3D Printing Technology
Future Prospects
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENT
REFERENCES
Role of Nanotechnology in Cancer Therapy
Edited by
Priya Patel
Department of Pharmaceutical Sciences
Saurashtra University, Rajkot – 360005
Gujarat,
India

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the book/echapter/ejournal (“Work”). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: [email protected].

Usage Rules:

All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).Your rights under this License Agreement will automatically terminate without notice and without the need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd. 80 Robinson Road #02-00 Singapore 068898 Singapore Email: [email protected]

FOREWORD

It gives me immense pleasure to write the foreword for the book “Role of Nanotechnology in cancer therapy” brought by expert academicians and researchers.

Pharmacy is the field where novel concepts arise by researchers frequently. Nanotechnology and nanocarriers have emerged as a big Iceland of good prospects in the pharmaceutical sector. A foundation of nanotechnology knowledge is one of the necessary aspects for building adequate knowledge, critical thinking, and problem-solving skills for pharmacy students, researchers, and educators to be successful in their careers.

Nanotechnology has lately created a buzz in the world, embracing the study and application of nanomaterials in the medical field. Nanotechnology and new drug delivery systems are becoming increasingly important in pharmacy curriculum, making it difficult for students to understand the concepts thoroughly in a short period of time.

Primarily aims at carrying out research on finding innovative nanotechnological solutions for a disease state like Cancer. Besides, it also endeavors to provide a platform to represent the experience and advanced knowledge of researchers and academicians across the globe.

Each chapter of this book includes the formulation approach of different nanocarriers and recent nano formulation developments in various cancers. The content of each chapter would be beneficial to all the readers, including students, faculty members and other persons working in the field of nanocarriers.

I wish this book to be a vital asset not only for the experts but also its effective resource for all researchers.

Dr. Pranav Shah Maliba Pharmacy College Uka Tarsadia University Bardoli, India

PREFACE

Nanotechnology has advanced at such a quick pace that major changes have been witnessed in recent years. In the early 2000s, there was a boost in public awareness and discussion around nanotechnology, which led to the first commercial applications of the technology. Nanotechnologies contribute to almost every field of science, including physics, materials science, chemistry, biology, computer science, and engineering.

On a global level, Cancer is a primary cause of death and poor quality of life. Despite the fact that various ways have been established to reduce mortality, chronic pain and improve quality of life, there is still a gap in the adequacy of cancer medicines. Early diagnosis of cancer cells and drug application with high specificity to prevent toxicities are two critical stages toward assuring optimal cancer treatment. Other techniques, such as nanotechnology, are being used to improve diagnosis and attenuate disease severity due to increased systemic toxicities and refractoriness with current cancer diagnostic and therapeutic tools. Nanoparticles are rapidly being developed and tested to circumvent various limitations of existing drug delivery systems, and they are emerging as unique cancer treatments. Nanotechnology has opened a new era of cancer targeting.

Cancer nanotechnology is being eagerly investigated and utilised in cancer treatment, signifying a significant advancement in the disease's detection, diagnosis, and treatment.

With the use of nanotechnology in medicine, scientists hope to prevent illness and more quickly diagnose, control and treat disease with fewer side effects. The current trend in nanoparticle research parallels these goals and concentrates on issues associated with drug delivery. As the area of nanoscience, nanotechnology and nanomaterials is a fast-developing one, an approach that equips the large volume of information is essential. With this view, while providing a broad perspective, the book emphasizes the basics of nanoscience and nanoscale materials and also introduces several different types of nanoparticles and their utility in various types of Cancer.

This report presents guidelines for enhancing nanotechnology's utility in cancer research in order to improve the understanding of cancer biology, prevention, detection, and treatment. The book Nanotechnology for Cancer Therapy focuses on the most promising nanoscientific and nanotechnological solutions for cancer imaging and treatment. Nanotechnology, among the several options examined, has significant promise for the targeted delivery of medications and genes to tumour areas, as well as the eventual replacement of chemotherapeutic agents plagued by side effects.

This collection brings together the knowledge of world-renowned academics and researchers to produce a complete treatise. The book is structured into eight sections and consists of 11 chapters.

Basic cancer pathophysiology, includes the current challenges and opportunities in cancer treatment.Recent advances in multifunctional Nanomedicine include the development and advancement in microneedle-assisted drug delivery systems used in cancer treatment.Nanotechnology-Based Inhalation approach for the treatment of lung cancer along with their opportunities And challenges.Mesoporous Based Drug Delivery along with their methods and characterization for the Prostate Cancer.Current opportunities and challenges of Nanotechnology in Skin Cancer Treatment along with future outlook.Nanofibre approach and its applicability in Gastric Cancer.Fundamentals of targeting strategies, Nanomedicine-based use of siRNA in Cancer along with the role of ligand and dendrimer in the tumour targeting.Various regulatory aspects of Nanoformulations, including past failure, current challenges and standards, along with the global strategies for nanoparticle regulation.

This book was written to provide comprehensive knowledge to all readers involved in pharmaceutical and nanotechnology sciences. Students, research scholars and research scientists may benefit from the material available in this book for the use of this knowledge in more advanced research that could be financially and socially advantageous.

Priya Patel Department of Pharmaceutical Sciences Saurashtra University, Rajkot – 360005 Gujarat India

List of Contributors

Akashdeep SinghDepartment of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala- 147002 (Punjab), IndiaArjun JoshiDepartment of Pharmaceutics, Anand Pharmacy College, Anand- 388001, Gujarat, IndiaAnand J. PatelTarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli- 394620 Surat, Gujarat, IndiaBhavin R. PatelTarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli- 394620 Surat, Gujarat, IndiaChirag A. PatelDepartment of Pharmacology, L M College of Pharmacy, Navrangpura, Ahmedabad-380009, Gujarat, IndiaChetna ModiDepartment of Pharmaceutics, Anand Pharmacy College, Anand- 388001, Gujarat, IndiaDevang B. ShethDepartment of Pharmacology, L M College of Pharmacy, Navrangpura, Ahmedabad-380009, Gujarat, IndiaDevyani DaveDepartment of Pharmaceutical Sciences, Saurashtra University, Rajkot-360005, Gujarat, IndiaJay M. NimavatGujarat Biotechnology University, Gandhinagar- 382355, Gujarat, IndiaKamal Singh RathoreBhupal Nobles, College of Pharmacy, BN University, Udaipur- 313001, Rajasthan, IndiaMansi FaladiaDepartment of Pharmaceutical Sciences, Saurashtra University, Rajkot-360005, Gujarat, IndiaMihir RavalDepartment of Pharmaceutical Sciences, Sardar Patel University, Vallabh Vidyanagar-388 120, Gujarat, IndiaNasir VadiaFaculty of Pharmacy, Marwadi University, Rajkot-Morbi Highway, Rajkot-360003, Gujarat, IndiaNikita UdhwnaiDepartment of Pharmaceutics, Anand Pharmacy College, Anand- 388001, Gujarat, IndiaPriya PatelDepartment of Pharmaceutical Sciences, Saurashtra University, Rajkot-360005, Gujarat, IndiaPranav ShahDepartment of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Surat, Bardoli - 394620, Gujarat, IndiaPallavi M. ChaudhariDr. D. Y. Patil College of Pharmacy, Akurdi, Pune- 411044, IndiaPratibha ChavdaDepartment of Pharmaceutical Sciences Saurashtra University, Rajkot-360005, Gujarat, IndiaSandip B. PatelDepartment of Pharmacology, L M College of Pharmacy, Navrangpura, Ahmedabad-380009, Gujarat, IndiaSaloni BhandariBhupal Nobles, College of Pharmacy, BN University, Udaipur- 313001, Rajasthan, IndiaSaloni DalwadiDepartment of Pharmaceutics, Anand Pharmacy College, Anand - 388001, Gujarat, IndiaVaibhav D. BhattSchool of Applied Sciences and Technology, Gujarat Technology University, Ahmedabad- 382424, Gujarat, IndiaVikas RanaDepartment of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala- 147002 (Punjab), IndiaVaishali ThakkarDepartment of Pharmaceutics, Anand Pharmacy College, Anand- 388001, Gujarat, India

Cancer Pathophysiology

Devang B. Sheth1,*,Chirag A. Patel1,Sandip B. Patel1
1 Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India

Abstract

Cancer prevalence across the globe has increased substantially in the last two decades despite significant progress in inpatient care. Cancer, a multifactorial disease, evolved several theories to establish pathophysiological conditions. Uncontrolled proliferation, dedifferentiation and metastasis mainly describe the cancer progression, which must be characterized by cellular and molecular changes. Understanding these processes helps devise the strategy for effectively delivering the drugs to the target sites. The present review described the essential features of cancer pathophysiology and challenges to achieving drug concentration in the targeted area.

Keywords: Dedifferentiation, Metastasis, Nanotechnology, Uncontrolled Proliferation.
*Corresponding author Devang B. Sheth: Department of Pharmacology, L M College of Pharmacy, Navrangpura, Ahmedabad-380009, Gujarat, India; Tel: +919879949977; E-mail: [email protected]

INTRODUCTION

Cancer is a heterogeneous group of diseases that evolved from a complex multistage process resulting from genetic and epigenetic abnormalities, resulting in dysregulated gene expression [1-3]. All conditions categorised under 'Cancer' share common phenotypic characteristics of uncontrollable cell growth and proliferation. 'Cancer' is derived from the Greek word 'Karkinos,' meaning crab. The etymology correlates with the appearance of finger-like spreading projections from a tumor [4, 5]. Globally, cancer is the second leading cause of mortality below 70 years. Amongst the ranking of premature mortality across the globe, cancer stands 1st across 57 countries, 2nd across 55 countries and 3rd-4th across 23 countries [6]. The world has observed an alarming increase of nearly 100% in new cancer cases from 10 million in 2000 to 19.3 million in 2020. This trend continues to be kept in the last few decades in developed and developing countries with advancements in socioeconomic status and an increase in the average lifespan of human beings. As per Global Cancer Statistics, nearly 10 million deaths due to cancer were reported in 2020 against 6 million deaths in 2000 [6, 7].

Etiopathogenesis

The transformation of a normal cell into a tumor cell is primarily due to one or more DNA alterations that dysregulate gene structure and expression [8, 9]. These alterations may either be inherited or acquired/provoked by exposure to a carcinogen(s).

Aetiology

Alteration(s) of DNA (i.e., mutation) can be provoked by primary carcinogen, secondary carcinogen, co-carcinogen and promoter. Primary carcinogens, such as physical, biological and chemical agents, produce mutagenesis resulting in carcinogenesis. Secondary carcinogen (commonly referred to as pro-carcinogen) mediates the process of carcinogenesis after being converted into active metabolites. Co-carcinogen increases the process of carcinogenesis when administered with a carcinogen, while (tumor) promoter does the same when administered after a carcinogen. Both co-carcinogen and promoter do not possess carcinogenic potential when given alone (Fig. 1). However, it is complicated to determine the etiology of cancer in clinical practice.

Fig. (1)) Process of Carcinogenesis.

Examples of physical carcinogen include ionizing radiation (e.g. γ-rays, X-rays) and non-ionizing radiation (e.g. UV-rays) [10-13]. Squamous cell carcinoma resulting from sun-exposed areas and Kangari cancer due to the use of traditional fire-pot in some areas of Kashmir are examples of cancer produced by physical carcinogens [14-16].

Biological agents such as bacteria, fungus and more commonly viruses can cause direct DNA damage, produce carcinogens or introduce oncogenes in the host cell. Cervical, penile, anal, oral and pharyngeal cancer caused by Human Papillomavirus (HPV); Burkitt's Lymphoma caused by Epstein-Barr Virus (EBV) and Kaposi's Sarcoma caused by Human Herpes Virus 8 (especially in patients of HIV infection) are some examples of biological carcinogen. Growth of Aspergillus flavus resulting in the release of aflatoxin can lead to hepatocellular carcinoma. Infection with Helicobacter pylori is a recognized etiopathological factor for incidences of gastric adenocarcinoma.

Chemical carcinogens can be classified into genotoxic and non-genotoxic carcinogens based on their biological activity [17, 18]. Genotoxic carcinogens cause mutation by covalently modifying the nitrogenous bases of DNA (particularly guanine) [19, 20]. O6 and N7 positions of guanine base can readily and covalently associate with reactive metabolites of chemical carcinogens. Substitutions at N7 positions may get repaired quickly, but O6 positions are not. Thus, permanent mutagenic effects are usually due to substitutions at O6 positions [20, 21]. Chemicals present in tobacco like polycyclic aromatic hydrocarbons, nicotine, coal tar and nitrosamine NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone) when consumed through chewing, smoking or sniffing, greatly increases the possibility of such substitutions [22]. Tobacco products are the leading cause of lung and oropharyngeal cancers. Association of asbestos in lung cancer; heavy metals like arsenic in liver, lung and skin cancer and benzene in leukemia is well documented [20, 21, 23-29]. Non-genotoxic carcinogens mediate their action by modifying epigenetic mechanisms [17, 18].

Pathogenesis

Damage to the genomic structure of cells or altered phenotypic expression of genes is a common feature for all neoplasms. Despite the high fidelity of DNA replication, it is a fact that spontaneous mutation in eukaryotic cells occurs at the rate of 10-10-10-12 errors per base pair per generation [30]. Although low, it is an inevitable and inherent error rate in DNA replication. Thus, all multicellular organisms face the near-certainty of developing a neoplasm if their survival tenure is long enough [31]. Many non-lethal and inconsequential mutations in a minor subset of the coding and non-coding regions of the genome can give rise to carcinogenesis [32]. Oncogene is a mutated gene that can cause cancer by accelerating proliferation through dysregulating the cell cycle or inhibiting apoptosis [33-35]. Major 2 categories of genetic change that lead to cancer include:

(a) Activation of proto-oncogenes to oncogenes

(b) Inactivation of tumor suppressor gene

Such changes are resultant of chromosomal aberrations (e.g., chromosomal translocation, deletion, aneuploidy) and intragenic/point mutations (e.g., substitution mutation, frameshift mutation) [35, 36].

The Philadelphia chromosome produced by reciprocal translocation leading to chronic myelogenous leukemia (CML) and many other types of leukemia is a classic example [37, 38]. Expression of the Philadelphia chromosome produces a fusion protein consisting of BCR and ABL. This mutant protein BCR-ABL with kinase activity leads to dysregulation of cell cycle regulation, stimulating uncontrolled cell division [37-39].

Inactivation of tumor suppressor genes like BRCA (Breast Cancer), APC (Adenomatous Polyposis Coli) and RB (Retinoblastoma) by deletion or truncating mutations is observed in various types of cancer [40]. Gene expression of BRCA1 and BRCA2 leads to tumor suppressor gene protein production. Thus, mutation involving both or any of these gene(s) increase(s) the risk of breast cancer (in both females and males) and ovarian cancer [41-43]. Such mutation may result in consequences leading to interference with Lyonization (a process of X-Chromosome inactivation) [44]. Pathogenic variants of these genes are also implicated in increased prostate cancer, gastric cancer, colon cancer, pancreatic cancer and melanoma [42, 45]. APC-mutant phenotypes are associated with colon, gastric and pancreatic cancer [46-48]. The G1/S checkpoint of the cell cycle is negatively controlled by RB protein. Deletion of RB1 gene prevents arrest of the cell cycle, leading to malignant retinoblastoma [49, 50]. Cervical cancer, mesothelioma, and AIDS-related Burkitt's lymphoma are some examples of RB protein's functional inactivation [51].

Genetic alteration leading to loss or gain of the whole chromosome is referred to as aneuploidy. Chromosomal instability, a major event that gives rise to aneuploidy, can promote carcinogenesis by increasing genetic heterogeneity [52]. Aneuploidy is observed more frequently in the tumor development process than other types of mutations [53].

Substitution mutation in the KRAS (Kristen rat sarcoma virus) gene of the RAS family contributes to the development and progression of colon cancer [54]. The RAS mutants exhibit an impaired ability to hydrolyze GTP either intrinsically or in response to GTPase-activating proteins. This further modulates proliferative-pathway signalling via Raf/mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase (PI3K), leading to uncontrolled proliferation [55-57]. Another example is the TP53 gene, where the substitution of a single nucleotide can lead to the early onset of several types of cancers [58].

Regulation of gene expression through epigenetic mechanisms, viz. histone acetylation, DNA methylation and microRNA expression, can also be pivotal in neoplastic transformation. Epigenetic mechanisms can reduce, enhance or completely silence genetic expression [59]. Epigenetic factors (viz. hormone, co-carcinogen, a tumor promoter, etc.) do not themselves produce mutation but enhance the likelihood that genetic mutation(s) will eventually result in cancer. It is important to note that epigenetic changes are reversible and inherited [60, 61].

CHARACTERISTICS OF CANCER CELLS

Concept of Heterogeneity

Cancers tend to grow increasingly diverse as the disease progresses. Due to this heterogeneity, the bulk tumor may contain a heterogeneous collection of cells with discrete molecular fingerprints and varying levels of treatment sensitivity. This heterogeneity could lead to a non-uniform distribution of genetically different tumor-cell subpopulations across and within disease sites (spatial heterogeneity), as well as temporal fluctuations in cancer cell genomic makeup (temporal heterogeneity) [62].

Uncontrolled Proliferation

Uncontrolled proliferation is considered to be an essential mechanism of cancer cells. It results due to the loss of tightly regulated mechanisms prevailing in the growth of normal tissues. Genesis of cancer involves multiple processes which make pathological changes in tissue architecture followed by pre-neoplastic nodule formation that lead to the appearance of cancer. While growth factors and hormones drive the growth and survival of normal cells in part, mutations and epigenetic changes mediated modifications in signalling pathways make cells resistant and independent of these pathways. Alterations in the cellular system such as epithelial to mesenchymal transition (EMT), autophagy, cancer stem cells, cell cycle regulators, altered cell metabolism, hormone signalling and angiogenesis provide a cell autonomy of growth resulting in uncontrolled proliferation [63].

EMT and Tumor Proliferation

EMT is linked to the Snail family of transcription factors (Snail1/Snail and Snail2/Slug). EMT is believed to suppress the expression of E-cadherin, which is normally involved in the regulation of cell-cell interactions, providing polarity cues and preventing the spreading of tumors [64]. Cancer may progress if tightly regulated Snail-associated EMT is lost, leading to the loss of the regulatory mechanism of contact inhibition. Snail overexpression protects cells from death mediated by a lack of survival factors or apoptotic triggers. Snail2/Slug may also influence cellular response to genotoxic stress, resulting in increased DNA damage, leading to cancer development. Enhanced Snail1/2 levels result in higher DNA damage protection and increased resistance to chemotherapeutic and radiation therapy [65].

Autophagy

Basal autophagy maintains cellular homeostasis by eliminating protein aggregates and damaged organelles in normal cells [66]. In contrast, autophagy induced by starvation can cause the recycling of amino acids and energy, which extends the longevity of cells. Autophagy increases in cancer cells in response to stressors such as deregulated signalling-mediated proliferation, increased glycolysis, and hypoxia and keeps tumor cells in a dormant condition under the presence of survival factors in microenvironments [67]. However, depending on the type of tumor, autophagy can increase tumor cell survival or cell death; therefore, the consequences of induced autophagy are not fully known. Thus, therapeutic manipulations can promote survival or death [68].

Cancer Stem Cells

The features of stem cells (SCs) and cancer stem cells (CSCs) are similar in terms of “stemness”, quiescence, self-renewal, the ability to produce differentiated progeny, apoptosis resistance, and chemoresistance. The abnormal regulation of these activities in CSCs differentiates them from mature SCs, resulting in altered cell characteristics and uncontrolled cell proliferation [69].

Tumor mass containing a small fraction of CSCs is proven to maintain sustained malignant proliferation and differentiated progeny cells of CSCs. Adult SCs produce differentiated daughter cells but reveal the limited cell division capacity of progenitor cells. Whereas CSCs divide symmetrically into progenitor cells, allowing them to replicate infinitely, which explains the relapse of the tumor even after the destruction of mature tumor cells by initial therapy, treatment-resistant CSCs remain active and proliferate [70]. The treatment also requires targeting CSCs efficiently to achieve complete remission.

Dysregulation of stem cell pathways could cause progenitor cells to adopt stem cell phenotype. It's still unclear if cancer stem cells are dedifferentiated progenitor cells with limitless proliferating capacity or stem cells that have escaped homeostasis. Dedifferentiation may have a role in developing some malignancies, according to studies. In vitro breast cancer cell lines, cell sorting has shown that stem-like cells may form de novo from non-stem-like cancer cells [71]. It has been demonstrated that leukemic stem cells can be created from committed progenitor cells that acquire stem cell-like activity in the hematological system. AML is considered a progenitor illness, in which a progenitor acquires aberrant self-renewal capacity and “dedifferentiates” into a stem cell-like condition [72].

Cell Cycle Transducers

The cell cycle is a crucial process that governs genome duplication and cell division. Briefly, the cycle is divided into four phases: G1 (Gap 1), S (DNA synthesis), G2 (Gap 2), and M (Mitosis), with various checkpoints to ensure preserved replication and segregation into daughter cells. These checkpoints protect against genomic instability, promoting or accelerating tumor growth. Cyclins and cyclin-dependent kinases (CDKs) are the cell cycle's orchestrators, and their expression and activity change as the cell cycle progresses [73].

The formation of cyclin-CDK complexes allows phosphorylation of targets like RB to influence cell cycle progression. Cyclin-dependent kinase inhibitors (CDKIs) control the cyclin-CDK complexes themselves, including the INK4s: p16INK4A/CDKN2A, p15INK4B/CDKN2B, p18INK4C/CDKN2C, and p19I- NK4D/CDKN2D; and the CDK-interacting protein/kinase inhibitory proteins (CIP/KIPs): p21CIP1/WAF1/ CDKN1A, p27KIP1/CDKN1B, and p57KIP2/ CDKN1C. Further, E3 ubiquitin regulates the production of mitotic proteins like the Skp1– Cul1–F-box-protein (SCF) complex and the anaphase-promoting complex/cyclosome (APC/C) to govern cell cycle transitions [74].

Mitogens normally regulate the progression of cells through the G1 phase of the cell cycle. Uncontrolled proliferation is often accompanied by the loss of control laid down by mitogens mediated by cyclins and CDKs. Production of cyclin D1 promotes the partial inactivation of RB and the formation of cyclins E and A through E2F mediated transcription factors essential for the G1/S transition and DNA replication, which intensify inactivation of RB, leading to bypassing the G1/S restriction point. Cyclin A-CDK2 drives the transition from S/G2 at the end of the S phase, and cyclin A's subsequent activation of CDK1 causes cells to begin mitosis. CDK1 binds to cyclin B and pushes cells through mitosis once cyclin A is deactivated [75]. Monitoring the DNA integrity through the cell cycle checkpoint is essential for the G1/S and G2/M transition. In DNA damage, cell cycle progression is not favoured under the influence of CDKs inhibition which makes all efforts to correct the error. But if an error is not resolved, cells undergo cell death or senescence.

Cancer cells phenotype, which outweighs many regulators of cell cycle attained through genetic and epigenetic alterations, promotes uncontrolled proliferation. Expressions of cyclins and CDKs at different cell cycle stages are routinely elevated in numerous cancers. Therefore, cyclins and CDKs are considered the potential targets of cancer treatment. However, several CDK inhibitors failed in clinical trials for unknown reasons.

Cellular Metabolism

Proliferating cancer cells require increased ATP production, macromolecule manufacturing, and abnormal cellular redox status maintenance. The tumor suppressor p53, for example, activates glycolytic enzymes and the pentose phosphate pathway, which supply macromolecular synthesis substrates [76]. Furthermore, the M2 isoform of pyruvate kinase (PKM2), which converts phosphoenolpyruvate to pyruvate, inhibits glycolysis, supplying macromolecular synthesis precursors [77].

Hepatic steatosis associated with non-alcoholic fatty liver disease (NAFLD) is associated with inflammation, which may progress to fibrosis. The resultant effect, which alters cellular metabolism, is involved in the Etiopathogenesis of cancer. It is also imperative that patients having liver fibrosis are at risk of developing hepatocellular cancer (HCC). Alterations in methionine metabolism play an important role in the molecular basis of NAFLD-related HCC [78].

Hormone Signalling

Hormonal dysregulation is a known epigenetic factor to cause cancer progression. Hormone-related cancer constitutes almost 30% of all cancer cases, mainly cancers of reproductive organs such as breast, ovary, endometrium, testis and prostate. Steroid hormones induced proliferation of normal cells makes them more vulnerable to DNA damage and oncogenic mutation [79]. Numerous interconnected pathways produce abnormal tumor growth [80]. IGFR-1/IGF-1 and increased EGFR/ErbB-2, combined with downstream Akt and Janus kinase (JAK)/STAT and MAPK signalling, are also involved in androgen-independent prostate cancer. These pathways activate the androgen receptor, which travels to the nucleus and changes host gene expression, promoting cell survival and proliferation [81].

Telomerase Expression

Telomerase activity, seen in nearly 90% of all human malignancies, is likely to be the source of uncontrolled tumor cell multiplication [82]. Overexpression of TERT, which encodes the reverse transcriptase subunit of telomerase, resulted in the uncontrolled proliferation of many types of cancers without affecting the length of telomeres. Oncogenic transcription factors Myc, nuclear factor κ-light chain-enhancer of activated B cells (NF-κB), and β-catenin, on the other hand, reactivate TERT transcription in cancer cells. As a result of oncogene activation, telomerase expression increases, overcoming replicative senescence [62].

Angiogenesis

Tumor development relies on a steady supply of oxygen and nutrients from the blood vessels. However, in fast-developing tumors, the supply from the existing vasculature is frequently insufficient, resulting in intratumoral hypoxia [83]. Up-regulation of hypoxia-inducible factors, HIF-1 and HIF-2, under low oxygen tension, low glucose levels, and acidic extracellular pH leads to activation of genes that mediate proliferation, angiogenesis, intermediate metabolism (glycolysis) and pH regulation. Proliferative signals received through HIFs activation trigger growth factors such as TGF- β, IGF-2, IL-6, IL-8 and growth factor receptors EGFR [63]. The expression of growth factors, in turn, stimulates tumor angiogenesis by causing endothelial cells (ECs) to proliferate and survive, resulting in a plethora of deformed and malfunctioning neo-vessels inside the tumor.

De-differentiation and Loss of Function

Many studies have suggested that the origin of cancer cells is somatic cells [84, 85]. However, the progenitor cells/ stem cells are more likely to transform into cancer cells. Some reports also suggested cancer development from mature cells [86, 87]. Dedifferentiated tumors are considered to be involved in cancer initiation and progression. Dedifferentiation is the process where somatic cells acquire unlimited proliferation and self-renewing activities, as observed with stem cells. Dedifferentiation of non-stem cells in the intestine, resulting in the acquisition of tumor-initiating capacity with stem cell properties, is induced by Wnt signalling along with the elevated levels of NF-kB [87]. Moreover, the origin of tumor cells in glioma is attributed to dedifferentiation into the differentiated lineage [88].

Metastasis

In the process of metastasis, cancer cells detach from the original (primary) tumor, move via the blood or lymph system, and develop a new tumor in other organs or tissues of the body [89]. Cancer metastasis is the primary cause of cancer death and morbidity [90]. Malignant tumors are known for their tendency to metastasize [91]. It is a complex sequence of cell-biological events known as the “invasion–metastasis cascade,” which may overlap (Fig. 2) [92].

The cascade involves:

1. Separating tumor cells, invasion and cell migration;

2. Intravasation into the vasculature or lymphatic system;

3. Circulation survival;

4. Extravasation from the vasculature to secondary tissue; and

5. Metastatic colonization (Colonization at secondary tumor sites).

Fig. (2)) Invasion–metastasis cascade. The cascade involves 1. The separation of tumor cells from their neighbouring cells in the primary tumor, Migration within the stroma (Cross-talk with the stroma cells, orientation within the stroma, Immune cell attack and EMT), invasion through the basement membrane (BM) and ECM surrounding the tumor, invasion of the BM supporting the endothelium of local blood and lymphatic vessels; 2. Entry or intravasation of the metastatic cells into the blood vessels; 3. Survival within the circulation, adhesion of the circulating metastatic cells to the endothelium of capillaries of the target organ site; 4. Extravasation; invasion of the cells through the endothelial cell layer and the surrounding BM; and 5. Metastatic colonization, expansion of secondary tumors at the target organ site. Dotted rectangle callout (Black) includes markers/genes involved in the signalling pathway. EMT, epithelial-mesenchymal transition; MET, mesenchymal-epithelial transition.

Separation of Tumor Cell, Invasion and Cell Migration

The separation and migration of cells from the primary tumor mimic the epithelial-mesenchymal transition (EMT), a process in which polarised epithelial cells acquire the migratory and invasive characteristics of mesenchymal cells [93]. During EMT, polarised epithelial cells undergo biochemical changes that cause them to adopt a mesenchymal phenotype characterized by a loss of cell polarity, decreased cell-cell adhesiveness and increased invasive capability [94-96]. The loss of adherens junctions decreased epithelial-specific markers like cytokeratins and E-cadherin, and increased mesenchymal markers like fibronectin, N-cadherin, and vimentin characterized the EMT [97-102].

Cancer cell invasion occurs when a phenotypic mesenchymal cell breaches its basement membrane and invades the surrounding stroma. Depending on the nature of the EMT program, the tumor cell invasion is frequently conceptualized as a process involving single-cell invasion, trailblazer-type collective invasion, or opportunistic collective invasion [103]. Tumor cell-extrinsic alterations in the microenvironment attract tumor cells into the local tissue, and activation of signalling pathways within tumor cells at the genetic and protein level enables cell motility and extracellular matrix (ECM) degradation, resulting in an invasion [104]. To promote invasion, a signal like growth factors and cytokines can attract tumor cells via chemotaxis [105]. Tumor cells can also migrate through gaps in the ECM using force-dependent cytoplasmic blebbing independent of protease activity. The local invasion is mediated through different signalling pathways that enhance the cytoskeletal dynamics [105-112].

Intravasation into the Vasculature or Lymphatic System

Intravasation into the vasculature's lumen or lymphatic system can be active or passive, depending on the tumor type, microenvironment and vasculature [112]. According to the three-dimensional microfluidic model, the endothelium operates as a barrier to tumor cell intravasation and is controlled by components present in the tumor microenvironment [113]. Wong et al. also reported that tumor cells at the blood vessel's periphery break the endothelium and enter circulation via a mitosis-mediated process [114]. Furthermore, during intravasation, the architectural restrictions of tissue put mechanical stresses on invading tumor cells [119]. Tumor cells become circulating tumor cells (CTCs) as they reach the vasculature and can be used as a biomarker for all solid tumors [115].

Survival in the Circulation

Most intravasation cancer cells have difficulty making their way through the circulatory system. Interactions between CTCs and the microenvironmental components of circulation determine CTC survival and capacity to extravasate at distant places [116]. Most CTCs travel in single, while others travel in clusters [117]. Circulating clusters have a considerably higher chance of becoming metastases. Clusters include CTCs, stromal cells and immunological components from the initial cancer milieu, all of which contribute to the cluster's heterogeneity and increase its longevity [118-121]. Neutrophils help CTCs survive by assisting in cluster formation and suppressing leukocyte activation [121]. Furthermore, CTC-platelet interactions create platelet covering layers over CTCs, which prevents the immune system from detecting circulating tumor cells and provides the stability needed to withstand the physical demands of circulation [122-124].

Extravasation from the Vasculature to Secondary Tissue

The capacity of circulating tumor cells to attach and extravasate via endothelial cells is critical in metastasis [125]. CTCs become entrapped when they pass through small capillaries. As a result, the microvessels rupture, or the tumor cell is forced to extravagate. In organs with highly permeable sinusoidal vessels, such as the liver and bone, CTCs have a high rate of metastasis [126]. Extravasating cells in other organs encounter tight barriers and the basal lamina, necessitating molecular and genetic regulation to penetrate [127].

Metastatic Colonization

The final biological activities required for cancer cells to produce a clinically meaningful metastasis in a secondary cancer location are “metastatic colonization” (s). Circulating tumor cells that flow out from the vasculature at the secondary tumor site face unfavourable environmental conditions that make endurance challenge. While hundreds of cancer cells can enter the bloodstream, most circulating tumor cells fail to initiate metastases within a secondary organ [128]. Various tumor-derived proteins and bone marrow-derived cells indicate the establishment of pre-metastatic niches, where tumor cells infiltrate and produce a secondary tumor [128, 129]. Furthermore, effective metastatic colonization necessitates cancer cell–host cell interactions and establishing a vascular network.

CURRENT CHALLENGES AND OPPORTUNITIES IN CANCER TREATMENT

Despite the advances in oncology research and chemotherapy development, cancer remains one of the most serious health challenges worldwide [130]. The current recommended conventional cancer treatment options include surgical removal of tumors, radiation, and chemotherapy [130]. Hormone therapy, anti-angiogenesis therapy, stem cell transplant, and immunotherapy based on dendritic cells (DC) are modern treatments.

Significant challenges associated with current cancer treatment are targeting cancer stem cells (CSCs), lack of cancer epigenetic profiling and specificity of existing epi-drugs, tumor heterogeneity, tumor microenvironment, drug resistance, limitations of conventional chemotherapeutic agents (non-specific targeting and poor pharmacokinetic characteristics pose different challenges of systemic toxicities) and the metastatic nature of cancer [131-133].

Thus, the intricacies of tumor Etiopathogenesis, combined with the challenges associated with current cancer therapy, necessitate new solutions, particularly novel therapies that can address the challenges mentioned above. Nanomedicine, oncolytic virotherapy, personalized vaccines, microbiome treatments, thermal ablation of tumors, antisense-RNAi techniques, and newly proposed multi-omic approaches (genomic, epigenomic, transcriptomic, epi-transcriptomic, and proteomic networks) are among the novel treatment systems used to treat the malignancy and overcome the limitation of conventional therapies. Nanomedicine emerges as an appealing approach to design and develop tailor-made medicine with improved efficacy and safety for the effective management of cancer.

Nanomedicine

Nanomedicine has emerged as a viable strategy for targeting chemotherapeutics to tumor tissues by exploiting the enhanced permeability and retention effect (EPR) produced by leaky tumor vasculature and insufficient lymphatic drainage [134-138]. Functional moieties (i.e., targeting ligands) can be conjugated to the surfaces of nanoparticles due to their unique physicochemical features, improving targeted delivery to tumor areas and reducing multidrug resistance [139]. This targeted drug delivery at the tumor site improves therapeutic outcomes and reduces the unwanted adverse effects of systemic delivery [140]. Furthermore, the capacity to control the size, composition and functionality of a wide range of nanoparticle platforms (organic, inorganic, and hybrid) has opened the door to developing cancer nanomedicine delivery systems [140]. Liposomes, micelles, gold nanoparticles, iron oxide nanoparticles, silica nanoparticles, carbon-based nanostructures, quantum dots, and hybrid nanomaterials are examples of passively targeted delivery systems. At the same time, active targeting includes silica, gold, liposomes, micelles, iron oxide, graphene, gadolinium, polymer nanocarrier, nanoemulsions, quantum dots, and hybrid nanomaterials [139].

Many nanomedicines have demonstrated acceptable clinical performance and have been approved by various regulatory agencies across the globe. However, it is imperative to overcome the potential problems of nanomedicines concerning non-specific macrophage uptake, thick tumor stroma, high interstitial fluid pressure, slow nanoparticle diffusion, etc., to achieve desired benefits in cancer treatment.

CONCLUSION

Currently, we have witnessed an enormous improvement in our understanding of the pathophysiological aspects of cancer concerning uncontrolled proliferation, dedifferentiation, invasiveness and metastasis. Continuous exploration of interactions between the nanomedicine approaches and tumor microenvironments will open new avenues in the delivery of drug molecules to particular target sites and an acceptable safety profile.

CONSENT FOR PUBLICATION

Not applicable.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENT

Declared none.

REFERENCES

[1]Sarkar S, Horn G, Moulton K, et al. Cancer development, progression, and therapy: an epigenetic overview. Int J Mol Sci 2013; 14(10): 21087-113.https://pubmed.ncbi.nlm.nih.gov/24152442[http://dx.doi.org/10.3390/ijms141021087] [PMID: 24152442][2]Esteller M. Epigenetics in Cancer. N Engl J Med 2008; 358(11): 1148-59.[http://dx.doi.org/10.1056/NEJMra072067] [PMID: 18337604][3]Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230][4]Salaverry O. Cancer etymology and its historical curious course. Rev Peru Med Exp Salud Publica 2013; 30(1): 137-41.[http://dx.doi.org/10.1590/S1726-46342013000100026] [PMID: 23612828][5]Johnson KJ, Springer NM, Bielinsky A-K, Largaespada DA, Ross JA. Developmental origins of cancer 2009; 69: 6375-7.[http://dx.doi.org/10.1158/0008-5472.CAN-09-1391][6]Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71(3): 209-49.[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338][7]Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol 2001; 2(9): 533-43.[http://dx.doi.org/10.1016/S1470-2045(01)00486-7] [PMID: 11905707][8]Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature 2013; 500(7463): 415-21.[http://dx.doi.org/10.1038/nature12477] [PMID: 23945592][9]Garraway LA, Lander ES. Lessons from the cancer genome. Cell 2013; 153(1): 17-37.[http://dx.doi.org/10.1016/j.cell.2013.03.002] [PMID: 23540688][10]Somers E. Physical and chemical agents and carcinogenic risk. Bull Pan Am Health Organ 1980; 14(2): 172-84.[PMID: 7417743][11]MacMahon B, Hutchison GB. Prenatal x-ray and childhood cancer: a review. Acta Unio Int Contra Cancrum 1964; 20: 1172-4.[PMID: 14274726][12]Kanazir DT. Radiation-Induced Alterations in the Structure of Deoxyribonucleic Acid and Their Biological Consequences. Progress in Nucleic Acid Research and Molecular Biology 1969; 9: 117-222. https://www.sciencedirect.com/science/article/pii/S0079660308607692[http://dx.doi.org/10.1016/S0079-6603(08)60769-2][13]Fox BW, Lajtha LG. Radiation damage and repair phenomena. Br Med Bull 1973; 29(1): 16-22.[http://dx.doi.org/10.1093/oxfordjournals.bmb.a070949] [PMID: 4598445][14]Wani I. Kangri cancer. Surgery 2010; 147(4): 586-8.[http://dx.doi.org/10.1016/j.surg.2009.10.025] [PMID: 19932909][15]Aziz SA, Hussain KS, Ahmad KN, Ahmed M, Kharadi MY, Bhat JR. Profile of Kangari cancer: a prospective study. Burns 1998; 24(8): 763-6.[http://dx.doi.org/10.1016/S0305-4179(98)90094-8] [PMID: 9915681][16]Iannacone MR, Wang W, Stockwell HG, et al. Patterns and timing of sunlight exposure and risk of basal cell and squamous cell carcinomas of the skin – a case–control study. BMC Cancer 2012; 12(1): 417.[http://dx.doi.org/10.1186/1471-2407-12-417] [PMID: 22994655][17]Hernández LG, van Steeg H, Luijten M, van Benthem J. Mechanisms of non-genotoxic carcinogens and importance of a weight of evidence approach. Mutat Res Rev Mutat Res 2009; 682(2-3): 94-109.[http://dx.doi.org/10.1016/j.mrrev.2009.07.002] [PMID: 19631282][18]Hayashi Y. Overview of genotoxic carcinogens and non-genotoxic carcinogens. Exp Toxicol Pathol 1992; 44(8): 465-71.[http://dx.doi.org/10.1016/S0940-2993(11)80159-4] [PMID: 1493365][19]Abdelrahman AM, Suleimani YA, Za’abi MA, et al. The renoprotective effect of the dipeptidyl peptidase-4 inhibitor sitagliptin on adenine-induced kidney disease in rats. Biomed Pharmacother 2019; 110: 667-76.[http://dx.doi.org/10.1016/j.biopha.2018.11.117] [PMID: 30553193][20]Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A. Mode of action-based risk assessment of genotoxic carcinogensArch Toxicol 2020; 94(6): 1787-877.[http://dx.doi.org/10.1007/s00204-020-02733-2][21]Barnes JL, Zubair M, John K, Poirier MC, Martin FL. Carcinogens and DNA damage. Biochem Soc Trans. 2018; 46(5): 1213–1224. https://pubmed.ncbi.nlm.nih.gov/30287511[http://dx.doi.org/10.1042/BST20180519][22]Peterson LA, Urban AM, Hecht SS. 818 - Carcinogenic Effects of Cigarette Smoke on the Respiratory Tract* (Comprehensive Toxicology (Second Edition).) McQueenCAComprehensive Toxicology (Second Edition).2010351-77.[23]Liu J, Waalkes MP. Liver is a target of arsenic carcinogenesis. Toxicol Sci 2008; 105(1): 24-32.[http://dx.doi.org/10.1093/toxsci/kfn120] [PMID: 18566022][24]Nielsen LS, Bælum J, Rasmussen J, et al. Occupational asbestos exposure and lung cancer--a systematic review of the literature. Arch Environ Occup Health 2014; 69(4): 191-206.[http://dx.doi.org/10.1080/19338244.2013.863752] [PMID: 24410115][25]Pira E, Donato F, Maida L, Discalzi G. Exposure to asbestos: past, present and future. J Thorac Dis 2018; 10(S2) (Suppl. 2): S237-45.[http://dx.doi.org/10.21037/jtd.2017.10.126] [PMID: 29507791][26]Putnik P, Gabri D, Roohinejad S, Barba FJ, Granato D, Mallikarjunan K. An overview of organosulfur compounds from Allium spp . : From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem 2019; 276: 680-91.[27]Lee SJ, Yum YN, Kim SC, et al. Distinguishing between genotoxic and non-genotoxic hepatocarcinogens by gene expression profiling and bioinformatic pathway analysis. Sci Rep 2013; 3(1): 2783.[http://dx.doi.org/10.1038/srep02783] [PMID: 24089152][28]Munby J, Weetman D. 4 - Benzene and Leukaemia.Bate RBT-WR. 199773-95.https://www.sciencedirect.com/science/article/pii/B9780080521008500129[29]Nohmi T. Thresholds of Genotoxic and Non-Genotoxic Carcinogens. Toxicol Res 2018; 34(4):281-290. https://pubmed.ncbi.nlm.nih.gov/30370002[http://dx.doi.org/10.5487/TR.2018.34.4.281][30]Korona DA, Lecompte KG, Pursell ZF. The high fidelity and unique error signature of human DNA polymerase epsilon. Nucleic Acids Res 2011; 39(5):1763-73. https://pubmed.ncbi.nlm.nih.gov/ 21036870[31]Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability — an evolving hallmark of cancer. Nat Rev Mol Cell Biol 2010; 11(3): 220-8.[http://dx.doi.org/10.1038/nrm2858] [PMID: 20177397][32]Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Jr, Kinzler KW. Cancer genome landscapes. Science 2013; 339(6127): 1546-58.[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594][33]Todd R, Wong DT. Oncogenes. Anticancer Res 1999; 19(6A): 4729-46.[PMID: 10697588][34]Shortt J, Johnstone RW. Oncogenes in cell survival and cell death. Cold Spring Harb Perspect Biol 2012; 4(12): a009829.[http://dx.doi.org/10.1101/cshperspect.a009829] [PMID: 23209150][35]Lee EYHP, Muller WJ. Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol 2010; 2(10): a003236.[http://dx.doi.org/10.1101/cshperspect.a003236] [PMID: 20719876][36]Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature 2009; 458(7239): 719-24.[http://dx.doi.org/10.1038/nature07943] [PMID: 19360079][37]Kang ZJ, Liu YF, Xu LZ, et al. The Philadelphia chromosome in leukemogenesis. Chin J Cancer 2016; 35(1): 48.[http://dx.doi.org/10.1186/s40880-016-0108-0] [PMID: 27233483][38]Koretzky GA. The legacy of the Philadelphia chromosome. J Clin Invest 2007; 117(8): 2030-2.[http://dx.doi.org/10.1172/JCI33032] [PMID: 17671635][39]Rumpold H, Webersinke G. Molecular Etiopathogenesis of Philadelphia-positive chronic myeloid leukemia - is it all BCR-ABL? Curr Cancer Drug Targets 2011; 11(1): 3-19.[http://dx.doi.org/10.2174/156800911793743619] [PMID: 21062244][40]Rivlin N, Brosh R, Oren M, Rotter V. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer 2011; 2(4): 466-74.[http://dx.doi.org/10.1177/1947601911408889] [PMID: 21779514][41]Jancárková N, Zikán M, Pohlreich P, Freitag P, Matous B, Zivný J. Detection and occurrence of BRCA 1 gene mutation in patients with carcinoma of the breast and ovary. Cesk Gynekol 2003; 68(1): 11-6.[42]Dutil J, Colon-Colon JL, Matta JL, Sutphen R, Echenique M. Identification of the prevalent BRCA1 and BRCA2 mutations in the female population of Puerto Rico. Cancer Genet 2012; 205(5): 242-8.[http://dx.doi.org/10.1016/j.cancergen.2012.04.002] [PMID: 22682623][43]Mehrgou A, Akouchekian M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islam Repub Iran 2016; 30: 369.[PMID: 27493913][44]Liu R, Kain M, Wang L. Inactivation of X-linked tumor suppressor genes in human cancer. Future Oncol 2012; 8(4): 463-81.[http://dx.doi.org/10.2217/fon.12.26] [PMID: 22515449][45]Casaubon JT, Kashyap S, Regan J-P. BRCA 1 and 2. Treasure Island (FL) 2021.[46]Clément G, Bosman FT, Fontolliet C, Benhattar J. Monoallelic methylation of the APC promoter is altered in normal gastric mucosa associated with neoplastic lesions. Cancer Res 2004; 64(19): 6867-73.[http://dx.doi.org/10.1158/0008-5472.CAN-03-2503] [PMID: 15466175][47]Horii A, Nakatsuru S, Miyoshi Y, et al. Frequent somatic mutations of the APC gene in human pancreatic cancer. Cancer Res 1992; 52(23): 6696-8.[PMID: 1423316][48]Kwong LN, Dove WF. APC and its modifiers in colon cancer. Adv Exp Med Biol 2009; 656: 85-106.[http://dx.doi.org/10.1007/978-1-4419-1145-2_8] [PMID: 19928355][49]Bookstein R, Rio P, Madreperla SA, et al. Promoter deletion and loss of retinoblastoma gene expression in human prostate carcinoma. Proc Natl Acad Sci USA 1990; 87(19): 7762-6.[http://dx.doi.org/10.1073/pnas.87.19.7762] [PMID: 2217208][50]Sarkar FH, Sakr W, Li YW, Macoska J, Ball DE, Crissman JD. Analysis of retinoblastoma (RB) gene deletion in human prostatic carcinomas. Prostate 1992; 21(2): 145-52.[http://dx.doi.org/10.1002/pros.2990210207] [PMID: 1329054][51]Giacinti C, Giordano A. RB and cell cycle progression. Oncogene 2006; 25(38): 5220-7.[http://dx.doi.org/10.1038/sj.onc.1209615] [PMID: 16936740][52]Ben-David U, Amon A. Context is everything: aneuploidy in cancer. Nat Rev Genet 2020; 21(1): 44-62.[http://dx.doi.org/10.1038/s41576-019-0171-x] [PMID: 31548659][53]Sen S. Aneuploidy and cancer. Curr Opin Oncol 2000; 12(1): 82-8.[http://dx.doi.org/10.1097/00001622-200001000-00014] [PMID: 10687734][54]Saeed O, Lopez-Beltran A, Fisher KW, et al. RAS genes in colorectal carcinoma: Etiopathogenesis, testing guidelines and treatment implications. J Clin Pathol 2019; 72(2): 135-9.[http://dx.doi.org/10.1136/jclinpath-2018-205471] [PMID: 30425122][55]Scheffzek K, Ahmadian MR, Kabsch W, et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 1997; 277(5324): 333-9.[http://dx.doi.org/10.1126/science.277.5324.333] [PMID: 9219684][56]Prior IA, Lewis PD, Mattos C. A Comprehensive survey of ras mutations in cancer. Cancer Res. 2012; 72(10): 2457–2467. http://cancerres.aacrjournals.org/content/72/10/2457 abstract[http://dx.doi.org/10.1158/0008-5472.CAN-11-2612][57]Kuipers EJ, Grady WM, Lieberman D, et al. Colorectal cancer. Nat Rev Dis Primers 2015; 1(1): 15065.[http://dx.doi.org/10.1038/nrdp.2015.65] [PMID: 27189416][58]Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 1999; 77: 81-137.[http://dx.doi.org/10.1016/S0065-230X(08)60785-X] [PMID: 10549356][59]You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 2012; 22(1): 9-20.https://pubmed.ncbi.nlm.nih.gov/22789535[http://dx.doi.org/10.1016/j.ccr.2012.06.008] [PMID: 22789535][60]Lind MI, Spagopoulou F. Evolutionary consequences of epigenetic inheritance. Heredity 2018; 121(3): 205-9.[http://dx.doi.org/10.1038/s41437-018-0113-y] [PMID: 29976958][61]Schuebel K, Gitik M, Domschke K, Goldman D. Making Sense of Epigenetics. Int J Neuropsychopharmacol 2016; 19(11): pyw058.[http://dx.doi.org/10.1093/ijnp/pyw058] [PMID: 27312741][62]Low KC, Tergaonkar V. Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem Sci 2013; 38(9): 426-34.[http://dx.doi.org/10.1016/j.tibs.2013.07.001] [PMID: 23932019][63]Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin Cancer Biol 2015; 35: 25-54.[http://dx.doi.org/10.1016/j.semcancer.2015.02.006][64]Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 2005; 132(14): 3151-61.[http://dx.doi.org/10.1242/dev.01907] [PMID: 15983400][65]Vega S, Morales AV, Ocaña OH, Valdés F, Fabregat I, Nieto MA. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 2004; 18(10): 1131-43.[http://dx.doi.org/10.1101/gad.294104] [PMID: 15155580][66]Huang T, Song X, Yang Y, et al. Autophagy and Hallmarks of Cancer. Crit Rev Oncog 2018; 23(5-6): 247-67.[http://dx.doi.org/10.1615/CritRevOncog.2018027913] [PMID: 30311559][67]Rosenfeldt MT, Ryan KM. The multiple roles of autophagy in cancer. Carcinogenesis 2011; 32(7): 955-63.[http://dx.doi.org/10.1093/carcin/bgr031] [PMID: 21317301][68]Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer 2017; 17(9): 528-42.[http://dx.doi.org/10.1038/nrc.2017.53] [PMID: 28751651][69]Nassar D, Blanpain C. Cancer Stem Cells: Basic Concepts and Therapeutic Implications. Annu Rev Pathol 2016; 11(1): 47-76.[http://dx.doi.org/10.1146/annurev-pathol-012615-044438] [PMID: 27193450][70]Zhu C, Pan Y, Ma S, et al. Therapeutic approaches targeting cancer stem cells. J Cancer Res Ther 2018; 14(7): 1469-75.[http://dx.doi.org/10.4103/jcrt.JCRT_976_17] [PMID: 30589025][71]Jilkine A, Gutenkunst RN. Effect of dedifferentiation on time to mutation acquisition in stem cell-driven cancers. PLOS Comput Biol 2014; 10(3): e1003481.[http://dx.doi.org/10.1371/journal.pcbi.1003481] [PMID: 24603301][72]Zhao Z, Zuber J, Diaz-Flores E, et al. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev 2010; 24(13): 1389-402.[http://dx.doi.org/10.1101/gad.1940710] [PMID: 20595231][73]Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 2017; 17(2): 93-115.[http://dx.doi.org/10.1038/nrc.2016.138] [PMID: 28127048][74]Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009; 9(3): 153-66.[http://dx.doi.org/10.1038/nrc2602] [PMID: 19238148][75]Thu KL, Soria-Bretones I, Mak TW, Cescon DW. Targeting the cell cycle in breast cancer: towards the next phase. Cell Cycle 2018; 17(15): 1871-85.[http://dx.doi.org/10.1080/15384101.2018.1502567] [PMID: 30078354][76]Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11(2): 85-95.[http://dx.doi.org/10.1038/nrc2981] [PMID: 21258394][77]Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324(5930): 1029-33.[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998][78]Affo S, Yu LX, Schwabe RF. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. Annu Rev Pathol 2017; 12(1): 153-86.[http://dx.doi.org/10.1146/annurev-pathol-052016-100322] [PMID: 27959632][79]Reznikov A. Hormonal impact on tumor growth and progression. Exp Oncol 2015; 37(3): 162-72.[http://dx.doi.org/10.31768/2312-8852.2015.37(3):162-172] [PMID: 26422099][80]Hoang DT, Iczkowski KA, Kilari D, See W, Nevalainen MT. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles. Oncotarget 2017; 8(2): 3724-45.[http://dx.doi.org/10.18632/oncotarget.12554] [PMID: 27741508][81]Chang K-H, Ercole CE, Sharifi N. Androgen metabolism in prostate cancer: from molecular mechanisms to clinical consequences. Br J Cancer 2014; 111(7): 1249-54.[http://dx.doi.org/10.1038/bjc.2014.268] [PMID: 24867689][82]Wu L, Fidan K, Um JY, Ahn KS. Telomerase: Key regulator of inflammation and cancer. Pharmacol Res 2020; 155: 104726.[http://dx.doi.org/10.1016/j.phrs.2020.104726] [PMID: 32109579][83]Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 2015; 35: 224-43.[http://dx.doi.org/10.1016/j.semcancer.2015.01.001][84]Barker N, Ridgway RA, van Es JH, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 2009; 457(7229): 608-11.[http://dx.doi.org/10.1038/nature07602] [PMID: 19092804][85]Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3(7): 730-7.[http://dx.doi.org/10.1038/nm0797-730] [PMID: 9212098][86]Cobaleda C, Jochum W, Busslinger M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 2007; 449(7161): 473-7.[http://dx.doi.org/10.1038/nature06159] [PMID: 17851532][87]Schwitalla S, Fingerle AA, Cammareri P, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 2013; 152(1-2): 25-38.[http://dx.doi.org/10.1016/j.cell.2012.12.012] [PMID: 23273993][88]Friedmann-Morvinski D, Bushong EA, Ke E, et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 2012; 338(6110): 1080-4.[http://dx.doi.org/10.1126/science.1226929] [PMID: 23087000][89]Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5(1): 28.[http://dx.doi.org/10.1038/s41392-020-0134-x] [PMID: 32296047][90]Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog 2013; 18(1 - 2): 43-73.[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40] [PMID: 23237552][91]Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res 2017; 7(5): 1016-36.[PMID: 28560055][92]Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011; 147(2): 275-92.[http://dx.doi.org/10.1016/j.cell.2011.09.024] [PMID: 22000009][93]Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119(6): 1420-8.[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818][94]Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2(6): 442-54.[http://dx.doi.org/10.1038/nrc822] [PMID: 12189386][95]Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 2004; 4(2): 118-32.[http://dx.doi.org/10.1038/nrc1276] [PMID: 14964308][96]van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutat Res Rev Mutat Res 2011; 728(1-2): 23-34.[http://dx.doi.org/10.1016/j.mrrev.2011.05.002] [PMID: 21605699][97]Loh CY, Chai J, Tang T, et al. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019; 8(10): 1118.[http://dx.doi.org/10.3390/cells8101118] [PMID: 31547193][98]Cano A, Pérez-Moreno MA, Rodrigo I, et al. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2(2): 76-83.[http://dx.doi.org/10.1038/35000025] [PMID: 10655586][99]