Science of Synthesis: Houben-Weyl Methods of Molecular Transformations  Vol. 37 -  - E-Book

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 37 E-Book

0,0
2.589,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations is the entirely new edition of the acclaimed reference series Houben-Weyl, the standard synthetic chemistry resource since 1909. This new edition is published in English and will comprise 48 volumes published between the years 2000 and 2008.

Science of Synthesis is a quality reference work developed by a highly esteemed editorial board to provide a comprehensive and critical selection of reliable organic and organometallic synthetic methods. This unique resource is designed to be the first point of reference when searching for a synthesis strategy.

  • Contains the expertise of presently 400 leading chemists worldwide
  • Critically evaluates the preparative applicability and significance of the synthetic methods
  • Discusses relevant background information and provides detailed experimental procedures

For full information on the Science of Synthesis series, visit the Science of Synthesis Homepage

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB
Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Science of Synthesis

Science of Synthesis is the authoritative and comprehensive reference work for the entire field of organic and organometallic synthesis.

Science of Synthesis presents the important synthetic methods for all classes of compounds and includes:

Methods critically evaluated by leading scientists

Background information and detailed experimental procedures

Schemes and tables which illustrate the reaction scope

Preface

As our understanding of the natural world increases, we begin to understand complex phenomena at molecular levels. This level of understanding allows for the design of molecular entities for functions ranging from material science to biology. Such design requires synthesis and, as the structures increase in complexity as a necessity for specificity, puts increasing demands on the level of sophistication of the synthetic methods. Such needs stimulate the improvement of existing methods and, more importantly, the development of new methods. As scientists confront the synthetic problems posed by the molecular targets, they require access to a source of reliable synthetic information. Thus, the need for a new, comprehensive, and critical treatment of synthetic chemistry has become apparent. To meet this challenge, an entirely new edition of the esteemed reference work Houben–Weyl Methods of Organic Chemistry will be published starting in the year 2000.

To reflect the new broader need and focus, this new edition has a new title, Science of Synthesis, Houben–Weyl Methods of Molecular Transformations. Science of Synthesis will benefit from more than 90 years of experience and will continue the tradition of excellence in publishing synthetic chemistry reference works. Science of Synthesis will be a balanced and critical reference work produced by the collaborative efforts of chemists, from both industry and academia, selected by the editorial board. All published results from journals, books, and patent literature from the early 1800s until the year of publication will be considered by our authors, who are among the leading experts in their field. The 48 volumes of Science of Synthesis will provide chemists with the most reliable methods to solve their synthesis problems. Science of Synthesis will be updated periodically and will become a prime source of information for chemists in the 21st century.

Science of Synthesis will be organized in a logical hierarchical system based on the target molecule to be synthesized. The critical coverage of methods will be supported by information intended to help the user choose the most suitable method for their application, thus providing a strong foundation from which to develop a successful synthetic route. Within each category of product, illuminating background information such as history, nomenclature, structure, stability, reactivity, properties, safety, and environmental aspects will be discussed along with a detailed selection of reliable methods. Each method and variation will be accompanied by reaction schemes, tables of examples, experimental procedures, and a background discussion of the scope and limitations of the reaction described.

The policy of the editorial board is to make Science of Synthesis the ultimate tool for the synthetic chemist in the 21st century.

We would like to thank all of our authors for submitting contributions of such outstanding quality, and, also for the dedication and commitment they have shown throughout the entire editorial process.

October 2000

The Editorial Board

D. Bellus (Basel, Switzerland)

E. N. Jacobsen (Cambridge, USA)

S. V. Ley (Cambridge, UK)

R. Noyori (Nagoya, Japan)

M. Regitz (Kaiserslautern, Germany)

P. J. Reider (New Jersey, USA)

E. Schaumann (Clausthal-Zellerfeld, Germany)

I. Shinkai (Tsukuba, Japan)

E. J. Thomas (Manchester, UK)

B. M. Trost (Stanford, USA)

Volume 37: Ethers

Preface

Table of Contents

Introduction

C. J. Forsyth

37.1 Product Class 1: Dialkyl Ethers

37.1.1 Synthesis from Esters, Aldehydes, Ketones, and Acetals by Reduction or Alkylation

L. J. Van Orden, R. Jasti, and S. D. Rychnovsky

37.1.2 Synthesis by Substitution

M. Tsukamoto and M. Kitamura

37.1.3 Synthesis by Addition to Alkenes

D. R. Soenen and C. D. Vanderwal

37.1.4 Synthesis from Other Ethers

F. E. McDonald

37.2 Product Class 2: Epoxides (Oxiranes)

37.2.1 Synthesis from Alkenes by Metal-Mediated Oxidation

H. Adolfsson

37.2.2 Synthesis from Alkenes with Organic Oxidants

D. Goeddel and Y. Shi

37.2.3 Synthesis by Carbonyl Epoxidation

V. K. Aggarwal, M. Crimmin, and S. Riches

37.2.4 Synthesis by Ring Closure

A. K. Yudin and A. Caiazzo

37.3 Product Class 3: Oxetanes and Oxetan-3-ones

A. G. Griesbeck and T. Sokolova

37.4 Product Class 4: Five-Membered and Larger-Ring Oxacycloalk-3-enes

37.4.1 Synthesis by Ring-Closure Reactions, Except Ring-Closing Metathesis

K. Ding and Z. Wang

37.4.2 Synthesis by Ring-Closing Metathesis

S. W. Roberts and J. D. Rainier

37.4.3 Synthesis from Other Cyclic Ethers

K. Iyer and J. D. Rainier

37.5 Product Class 5: Five-Membered and Larger-Ring Oxacycloalkanes

M. Inoue and S. Yamashita

37.6 Product Class 6: Oxonium Salts

C. J. Forsyth and T. J. Murray

37.7 Product Class 7: Oligo- and Monosaccharide Ethers

I. Robina and P. Vogel

37.8 Product Class 8: Ethers as Protecting Groups

S. Petursson

Keyword Index

Author Index

Abbreviations

Table of Contents

Introduction

C. J. Forsyth

Introduction

37.1 Product Class 1: Dialkyl Ethers

37.1.1 Synthesis from Esters, Aldehydes, Ketones, and Acetals by Reduction or Alkylation

L. J. Van Orden, R. Jasti, and S. D. Rychnovsky

37.1.1 Synthesis from Esters, Aldehydes, Ketones, and Acetals by Reduction or Alkylation

37.1.1.1 Synthesis of Acyclic Ethers by Reduction of Esters

37.1.1.1.1 Method 1: Hydrosilylation

37.1.1.1.1.1 Variation 1: Under Free-Radical Conditions

37.1.1.1.1.2 Variation 2: With Stoichiometric Lewis Acid

37.1.1.1.1.3 Variation 3: With a Catalytic Manganese Complex

37.1.1.1.2 Method 2: Sodium Borohydride Reduction

37.1.1.1.3 Method 3: Two-Step Reduction Utilizing an α-Acetoxy Ether

37.1.1.1.4 Method 4: Two-Step Reduction Utilizing an S-Alkyl Thioester

37.1.1.2 Synthesis of Acyclic Ethers by Alkylation of Esters

37.1.1.2.1 Method 1: Synthesis by a Two-Step Procedure Utilizing an α-Acetoxy Ether

37.1.1.2.1.1 Variation 1: Organocuprate Addition

37.1.1.2.1.2 Variation 2: Allylstannane Addition

37.1.1.2.1.3 Variation 3: Allylsilane, But-2-enylsilane, and Silyl Ketene Acetal Addition

37.1.1.2.1.4 Variation 4: Trimethylsilyl Cyanide Addition

37.1.1.2.1.5 Variation 5: Organozinc Addition

37.1.1.3 Synthesis of Acyclic Ethers by Reduction of Aldehydes or Ketones

37.1.1.3.1 Method 1: Hydrosilylation

37.1.1.3.1.1 Variation 1: With Iodotrimethylsilane

37.1.1.3.1.2 Variation 2: With Alkoxyhydrosilanes

37.1.1.3.1.3 Variation 3: With Brønsted Acid Catalysis

37.1.1.3.2 Method 2: Hydrogenation

37.1.1.3.3 Method 3: In Situ Formation of Acetals, Followed by Reductive Cleavage

37.1.1.4 Synthesis of Acyclic Ethers by Alkylation of Aldehydes or Ketones

37.1.1.4.1 Method 1: Silyl-Modified Sakurai Reaction

37.1.1.5 Synthesis of Acyclic Ethers by Reduction of Acetals

37.1.1.5.1 Method 1: Metal Hydride Reduction

37.1.1.5.1.1 Variation 1: With Diisobutylaluminum Hydride

37.1.1.5.1.2 Variation 2: With Lithium Aluminum Hydride

37.1.1.5.1.3 Variation 3: With Borane–Dimethyl Sulfide Complex

37.1.1.5.1.4 Variation 4: With Triethylsilane

37.1.1.5.1.5 Variation 5: With Zinc(II) Borohydride

37.1.1.5.2 Method 2: Hydrogenation

37.1.1.6 Synthesis of Acyclic Ethers by Alkylation of Acetals

37.1.1.6.1 Method 1: Addition of Allylsilane Reagents

37.1.1.6.2 Method 2: Addition of Allylstannane Reagents

37.1.1.6.3 Method 3: Other Allylation Methods

37.1.1.6.4 Method 4: Addition of Alka-2,3-dienyl- and Propargylsilanes

37.1.1.6.5 Method 5: Addition of Silyl Enol Ethers and Metal Enolates

37.1.1.6.6 Method 6: Addition of Trimethylsilyl Cyanide

37.1.1.6.7 Method 7: Addition of Grignard Reagents

37.1.1.6.8 Method 8: Addition of Organocuprate Reagents

37.1.1.6.9 Method 9: Addition of Organoaluminum Reagents

37.1.1.6.10 Method 10: Cleavage with Lithium Metal

37.1.1.7 Synthesis of Acyclic Ethers by Alkylation of α-Halo Ethers

37.1.1.7.1 Method 1: Lithiation

37.1.1.7.2 Method 2: Palladium-Mediated Coupling

37.1.1.7.3 Method 3: Addition of Organometallic Reagents

37.1.1.7.4 Method 4: Synthesis by a Two-Step Procedure from an Acetal

37.1.2 Synthesis by Substitution

M. Tsukamoto and M. Kitamura

37.1.2 Synthesis by Substitution

37.1.2.1 Method 1: Oxidation of C—H Bonds

37.1.2.2 Method 2: Intramolecular Oxidative Cyclization of Alcohols

37.1.2.3 Method 3: Ring Opening of Cyclopropanes

37.1.2.4 Method 4: Williamson-Type Reaction of Alkyl Halides

37.1.2.4.1 Variation 1: Using Metal Alkoxides

37.1.2.4.2 Variation 2: With Alcohols in the Presence of Base

37.1.2.4.3 Variation 3: From Halo Alcohols

37.1.2.5 Method 5: Synthesis from Sulfonic and Sulfuric Acid Esters

37.1.2.5.1 Variation 1: Using Dialkyl Sulfates

37.1.2.5.2 Variation 2: Using Trifluoromethanesulfonates

37.1.2.5.3 Variation 3: Using 4-Toluenesulfonates

37.1.2.5.4 Variation 4: Using Methanesulfonates

37.1.2.6 Method 6: Synthesis from Esters of Phosphorus Acids

37.1.2.7 Method 7: Synthesis from Carbonates

37.1.2.8 Method 8: Synthesis from Trichloroacetimidates

37.1.2.9 Method 9: Synthesis from Oxalate Esters

37.1.2.10 Method 10: Synthesis Using Meerwein’s Reagent

37.1.2.11 Method 11: Synthesis from Sulfonium and Selenonium Salts

37.1.2.12 Method 12: Synthesis from Ammonium Salts

37.1.2.13 Method 13: Synthesis from Phosphonium Salts

37.1.2.14 Method 14: Synthesis from Diazo Compounds

37.1.2.14.1 Variation 1: From Diazoalkanes

37.1.2.14.2 Variation 2: From Diazo(trimethylsilyl)methane

37.1.2.14.3 Variation 3: From Diazo Carbonyl Compounds

37.1.2.15 Method 15: Synthesis from Alcohols Using Brønsted Acids

37.1.2.16 Method 16: Synthesis from Alcohols Using Pentavalent Phosphorus Reagents

37.1.2.17 Method 17: Synthesis from Alcohols under Mitsunobu Conditions

37.1.2.18 Method 18: Synthesis from Alcohols Using Carbodiimides

37.1.2.19 Method 19: Synthesis of Ethers from Alcohols by Lewis Acids and Transition-Metal Complexes

37.1.2.20 Method 20: Synthesis from Alcohols Using a Catalytic Amount of Base

37.1.2.21 Method 21: Reaction of Di-tert-butyl Peroxide with Grignard or Organolithium Reagents

37.1.2.22 Method 22: Reaction of tert-Butyl Peroxybenzoates with Grignard Reagents

37.1.3 Synthesis by Addition to Alkenes

D. R. Soenen and C. D. Vanderwal

37.1.3 Synthesis by Addition to Alkenes

37.1.3.1 Method 1: Electrophilic Haloetherification

37.1.3.1.1 Variation 1: Of Isolated Alkenes

37.1.3.1.2 Variation 2: Of Allenes

37.1.3.1.3 Variation 3: Of Conjugated Alkenes

37.1.3.1.4 Variation 4: Of α,β-Unsaturated Carbonyl Compounds

37.1.3.2 Method 2: Electrophilic Alkoxymercuration

37.1.3.3 Method 3: Electrophilic Alkoxyselanylation

37.1.3.3.1 Variation 1: General Reaction

37.1.3.3.2 Variation 2: Selenium-Reagent-Catalyzed Tandem Alkoxyselanylation–Oxidative Deselanylation

37.1.3.3.3 Variation 3: Diastereoselective, Alkene-Controlled Alkoxyselanylation

37.1.3.3.4 Variation 4: Diastereoselective Additions by Selenium Reagent Control

37.1.3.4 Method 4: Base-Catalyzed Conjugate Addition of Alcohols to Electron-Deficient Alkenes

37.1.3.4.1 Variation 1: General Reaction

37.1.3.4.2 Variation 2: Diastereoselective Reaction Controlled by Resident Stereogenicity of the Alkene

37.1.3.4.3 Variation 3: Diastereoselective Reaction Controlled by Resident Stereogenicity of the Alcohol

37.1.3.4.4 Variation 4: Diastereoselective Reaction Achieved by Selective Protonation

37.1.3.5 Method 5: Acid-Catalyzed Addition of Alcohols to Isolated Alkenes

37.1.3.6 Method 6: Uncatalyzed Addition of Alcohols

37.1.3.6.1 Variation 1: To Conjugated Alkenes

37.1.3.6.2 Variation 2: Diastereoselective Methods: Alkene Controlled

37.1.3.7 Method 7: Palladium-Catalyzed Addition to Alkenes

37.1.3.8 Method 8: Transition-Metal-Catalyzed Allylic Etherification

37.1.3.9 Method 9: Photochemical Alkoxylation

37.1.3.9.1 Variation 1: Of Isolated Alkenes

37.1.3.9.2 Variation 2: Of Conjugated Alkenes

37.1.3.9.3 Variation 3: Of α,β-Unsaturated Carbonyl Compounds

37.1.3.9.4 Variation 4: Stereoselective Photoalkoxylation of Alkenes

37.1.3.10 Method 10: Radical Alkoxylation of Alkenes

37.1.3.11 Method 11: Electrochemical Alkoxylation of Alkenes

37.1.4 Synthesis from Other Ethers

F. E. McDonald

37.1.4 Synthesis from Other Ethers

37.1.4.1 Method 1: Transetherification

37.1.4.1.1 Variation 1: Substitution of Benzylic Ethers

37.1.4.1.2 Variation 2: Substitution of Allylic Ethers

37.1.4.1.3 Variation 3: Substitution of Pent-4-enyl Ethers

37.1.4.2 Method 2: Substitution of an α-Hydrogen with Carbon

37.1.4.2.1 Variation 1: From Benzylic Ethers

37.1.4.2.2 Variation 2: From Allylic Ethers

37.1.4.2.3 Variation 3: From Propargylic Ethers

37.1.4.2.4 Variation 4: From Alkyl Ethers

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!