Science of Synthesis: Houben-Weyl Methods of Molecular Transformations  Vol. 40a -  - E-Book

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 40a E-Book

0,0
2.589,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Turning Information Into Knowledge

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations is the entirely new edition of the acclaimed reference series Houben-Weyl, the standard synthetic chemistry resource since 1909. This new edition is published in English and will comprise 48 volumes published between the years 2000 and 2008.

Science of Synthesis is a quality reference work developed by a highly esteemed editorial board to provide a comprehensive and critical selection of reliable organic and organometallic synthetic methods. This unique resource is designed to be the first point of reference when searching for a synthesis strategy.

  • Contains the expertise of presently 400 leading chemists worldwide
  • Critically evaluates the preparative applicability and significance of the synthetic methods
  • Discusses relevant background information and provides detailed experimental procedures

For full information on the Science of Synthesis series, visit the Science of Synthesis Homepage

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB
Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Science of Synthesis

Science of Synthesis is the authoritative and comprehensive reference work for the entire field of organic and organometallic synthesis.

Science of Synthesis presents the important synthetic methods for all classes of compounds and includes:

Methods critically evaluated by leading scientists

Background information and detailed experimental procedures

Schemes and tables which illustrate the reaction scope

Preface

As our understanding of the natural world increases, we begin to understand complex phenomena at molecular levels. This level of understanding allows for the design of molecular entities for functions ranging from material science to biology. Such design requires synthesis and, as the structures increase in complexity as a necessity for specificity, puts increasing demands on the level of sophistication of the synthetic methods. Such needs stimulate the improvement of existing methods and, more importantly, the development of new methods. As scientists confront the synthetic problems posed by the molecular targets, they require access to a source of reliable synthetic information. Thus, the need for a new, comprehensive, and critical treatment of synthetic chemistry has become apparent. To meet this challenge, an entirely new edition of the esteemed reference work Houben–Weyl Methods of Organic Chemistry will be published starting in the year 2000.

To reflect the new broader need and focus, this new edition has a new title, Science of Synthesis, Houben–Weyl Methods of Molecular Transformations. Science of Synthesis will benefit from more than 90 years of experience and will continue the tradition of excellence in publishing synthetic chemistry reference works. Science of Synthesis will be a balanced and critical reference work produced by the collaborative efforts of chemists, from both industry and academia, selected by the editorial board. All published results from journals, books, and patent literature from the early 1800s until the year of publication will be considered by our authors, who are among the leading experts in their field. The 48 volumes of Science of Synthesis will provide chemists with the most reliable methods to solve their synthesis problems. Science of Synthesis will be updated periodically and will become a prime source of information for chemists in the 21st century.

Science of Synthesis will be organized in a logical hierarchical system based on the target molecule to be synthesized. The critical coverage of methods will be supported by information intended to help the user choose the most suitable method for their application, thus providing a strong foundation from which to develop a successful synthetic route. Within each category of product, illuminating background information such as history, nomenclature, structure, stability, reactivity, properties, safety, and environmental aspects will be discussed along with a detailed selection of reliable methods. Each method and variation will be accompanied by reaction schemes, tables of examples, experimental procedures, and a background discussion of the scope and limitations of the reaction described.

The policy of the editorial board is to make Science of Synthesis the ultimate tool for the synthetic chemist in the 21st century.

We would like to thank all of our authors for submitting contributions of such outstanding quality, and, also for the dedication and commitment they have shown throughout the entire editorial process.

The Editorial Board

October 2000

D. Bellus (Basel, Switzerland)

E. N. Jacobsen (Cambridge, USA)

S. V. Ley (Cambridge, UK)

R. Noyori (Nagoya, Japan)

M. Regitz (Kaiserslautern, Germany)

P. J. Reider (New Jersey, USA)

E. Schaumann (Clausthal-Zellerfeld, Germany)

I. Shinkai (Tsukuba, Japan)

E. J. Thomas (Manchester, UK)

B. M. Trost (Stanford, USA)

Volume Editor’s Preface

Within the coverage of compounds with one carbon—heteroatom bond (Category 5), the present volume of Science of Synthesis is the first to deal with the heteroatom nitrogen as an element of group 15 of the periodic table. Specifically, the chemistry of aliphatic amines and related organic nitrogen compounds with a formally sp3-hybridized nitrogen is covered and so another important field of organic synthesis is now included in the series.

Following the organizational hierarchy of Science of Synthesis, the emphasis is on the synthesis of amines and related organonitrogen compounds; synthetic applications of the products will be found in the other volumes of Science of Synthesis. However, the specific chemical and biological properties of amines and the related compounds make them attractive targets in themselves. In several examples the amine target is a natural product and so represents an amine in a more complex chemical environment.

The chemistry presented in this volume is extensively reviewed in different volumes of the traditional Houben–Weyl series, especially in Vols. 10/2 (1967), 11/1 (1957), XI/2 (1958) and updated in Vols. E16a (1990), E16c (1992), and E16d, part II (1992). The authors of the present volume have done a great job in culling out the still important information from the old sources and adding to it the new developments, which include improved methods or introduction of novel reagents. This volume demonstrates that today we have a flexible arsenal of methods to synthesize primary, secondary, and tertiary amines, hydroxylamines, and hydrazines including their cyclic or onium derivatives. Moreover, in most cases reliable diastereo- and enantioselective methods to obtain chiral targets are available. If the passing user should be overwhelmed by the multitude of methods, the introductory sections will provide a general orientation and serve as a guideline.

Throughout the development of this volume it was a pleasure to cooperate with the publishing house in Stuttgart. We gratefully acknowledge the input by Dr. Joe Richmond in the planning of the volume and the constant support by Dr. Fiona Shortt de Hernandez and her team, especially Dr. Alex Russell as the responsible scientific editor, but also Dr. Mark Smith, Dr. Marcus White, Dr. Karen Muirhead-Hofmann, and production assistant Michaela Frey, who were always ready to help and have done a great job in making this volume another premium product in the Science of Synthesis series.

Volume Editors

October 2008

Aachen

Clausthal-Zellerfeld

Dieter Enders

Ernst Schaumann

Volume 40a: Amines and Ammonium Salts

Preface

Volume Editors’ Preface

Table of Contents

Introduction

E Schaumann

40.1 Product Class 1: Amino Compounds

40.1.1 Product Subclass 1: Alkyl- and Cycloalkylamines

E Schaumann

40.1.1.1 Synthesis by Reduction

40.1.1.1.1 Reduction of Carbonic and Carboxylic Acid Derivatives

B. Wünsch and C. Geiger

40.1.1.1.2 Reductive Amination of Carbonyl Compounds

P. Margaretha

40.1.1.1.3 Reaction of Acetals with Organometallic Reagents

G K. Friestad

40.1.1.1.4 Hydroaminomethylation of Alkenes

A Börner, M. Beller, and B. Wünsch

40.1.1.1.5 Reduction of Nitrogen-Based Functional Groups

P. Margaretha

40.1.1.2 Synthesis by Substitution

40.1.1.2.1 Synthesis by Substitution of Hydrogen or Metals

H Butenschön

40.1.1.2.2 Substitution of Carbon Functionalities via Solvolysis

F -P. Montforts, M. Osmers, and V. A. Azov

40.1.1.2.3 Substitution of Sulfur or Phosphorus Functionalities

F -P. Montforts and M. Osmers

40.1.1.3 Synthesis by Addition Reactions

40.1.1.3.1 Hydroamination

S. Doye

40.1.1.3.2 Addition of Carbanions to Azomethines

G K. Friestad

40.1.1.3.3 Pericyclic Reactions Involving C=N Units

W. Maison

40.1.1.4 Synthesis by Rearrangement

R. Purchase and M. Sainsbury

40.1.1.5 Synthesis from Other Amino Compounds

40.1.1.5.1 Resolution of Chiral Amines

V. A. Azov

40.1.1.5.2 The Mannich Reaction

J. Ipaktschi and M. R. Saidi

40.1.1.5.3 Modification of Mannich Adducts

J. Ipaktschi and M. R. Saidi

40.1.1.5.4 Substitution on the Amine Nitrogen

S. A. Lawrence

40.1.2 Product Subclass 2: Propargylic Amines

J. Q. Feng and C.-J. Li

40.1.3 Product Subclass 3: Allylic Amines

J. Q. Feng and C.-J. Li

40.1.4 Product Subclass 4: n-Nitroge-n or n-Phosphorus-Functionalized Alkylamines (n >2)

K.-M. Roy

40.1.5 Product Subclass 5: Aziridines

J. B. Sweeney

40.1.6 Product Subclass 6: Azetidines

F. Couty

40.1.7 Product Subclass 7: Ammonium Compounds and Nitrogen Ylides

E. Kruiswijk and J. A. Deck

Keyword Index

Author Index

Abbreviations

Table of Contents

Introduction

E. Schaumann

Introduction

40.1 Product Class 1: Amino Compounds

40.1.1 Product Subclass 1: Alkyl- and Cycloalkylamines

E. Schaumann

40.1.1 Product Subclass 1: Alkyl- and Cycloalkylamines

40.1.1.1 Synthesis by Reduction

40.1.1.1.1 Reduction of Carbonic and Carboxylic Acid Derivatives

B Wünsch and C. Geiger

40.1.1.1.1 Reduction of Carbonic and Carboxylic Acid Derivatives

40.1.1.1.1.1 Method 1: Reduction of Carbon Monoxide Gas

40.1.1.1.1.2 Method 2: Reduction of Carbamates

40.1.1.1.1.2.1 Variation 1: Reduction with Aluminum Hydrides

40.1.1.1.1.2.2 Variation 2: Catalytic Hydrogenation

40.1.1.1.1.2.3 Variations 3: Miscellaneous Reductions

40.1.1.1.1.3 Method 3: Reduction of Isocyanates or Isothiocyanates

40.1.1.1.1.4 Method 4: Reduction of Nitriles

40.1.1.1.1.4.1 Variation 1: Catalytic Hydrogenation

40.1.1.1.1.4.2 Variation 2: Reduction with Aluminum Hydrides

40.1.1.1.1.4.3 Variation 3: Reduction with Boranes

40.1.1.1.1.4.4 Variation 4: Reduction with Borohydrides

40.1.1.1.1.4.5 Variation 5: The Kulinkovich-de Meijere Reaction

40.1.1.1.1.5 Method 5: Reduction of Amides or Thioamides

40.1.1.1.1.5.1 Variation 1: Reduction with Aluminum Hydrides

40.1.1.1.1.5.2 Variation 2: Reduction with Borane Derivatives

40.1.1.1.1.5.3 Variation 3: Reduction with Hydrosilanes

40.1.1.1.1.5.4 Variation 4: Reduction of Thioamides

40.1.1.1.1.5.5 Variation 5: The Kulinkovich-de Meijere Reaction

40.1.1.1.1.6 Method 6: Reduction of Imides

40.1.1.1.1.7 Method 7: Reduction of Imidates and Imidoyl Chlorides

40.1.1.1.2 Reductive Amination of Carbonyl Compounds

P. Margaretha

40.1.1.1.2 Reductive Amination of Carbonyl Compounds

40.1.1.1.2.1 Alkylamines from Carbonyl Compounds by Direct Reductive Amination

40.1.1.1.2.1.1 Method 1: Direct Reductive Amination by Catalytic Hydrogenation

40.1.1.1.2.1.1.1 Variation 1: Hydrogenation Using Heterogeneous Metal Catalysts

40.1.1.1.2.1.1.2 Variation 2: Hydrogenation Using Homogeneous Metal Complex Catalysts

40.1.1.1.2.1.1.3 Variation 3: Palladium-Catalyzed Transfer Hydrogenation

40.1.1.1.2.1.2 Method 2: Direct Reductive Amination Using Silanes as a Hydrogen Source

40.1.1.1.2.1.2.1 Variation 1: Using Polymethylhydrosiloxane

40.1.1.1.2.1.2.2 Variation 1: Using Aminohydrosilanes

40.1.1.1.2.1.2.3 Variation 3: Using Triethylsilane

40.1.1.1.2.1.3 Method 3: Direct Reductive Amination with Borohydride or Borane Reducing Agents

40.1.1.1.2.1.3.1 Variation 1: Using Sodium Cyanoborohydride

40.1.1.1.2.1.3.2 Variation 2: Using Sodium Borohydride

40.1.1.1.2.1.3.3 Variation 3: Using Zirconium(II) or Copper(I) Borohydrides

40.1.1.1.2.1.3.4 Variation 4: Using Sodium Triacyloxyborohydrides

40.1.1.1.2.1.3.5 Variation 5: Using Aminoboranes

40.1.1.1.2.2 Primary Alkylamines from Oximes and O-Alkyloximes

40.1.1.1.2.2.1 Primary Alkylamines from Oximes

40.1.1.1.2.2.1.1 Method 1: Catalytic Hydrogenation

40.1.1.1.2.2.1.2 Method 2: Catalytic Transfer Hydrogenation

40.1.1.1.2.2.1.3 Method 3: Reduction with Metallic Zinc

40.1.1.1.2.2.1.3.1 Variation 1: Using Zinc in the Presence of Ammonia

40.1.1.1.2.2.1.3.2 Variation 2: Using Zinc in the Presence of a Carboxylic Acid

40.1.1.1.2.2.1.4 Method 4: Reductions with Borane or Borohydrides

40.1.1.1.2.2.1.4.1 Variation 1: Reduction with Borane

40.1.1.1.2.2.1.4.2 Variation 2: Reduction with Borohydrides

40.1.1.1.2.2.1.5 Method 5: Reductions with Aluminum Trihydride or Hydroaluminates

40.1.1.1.2.2.2 Primary Alkylamines from O-Alkyloximes

40.1.1.1.2.3 Secondary Alkylamines from N-Alkylidenealkylamines by Reduction

40.1.1.1.2.3.1 Method 1: Stereorandom Reduction of N-Alkylidenealkylamines to Secondary Alkylamines

40.1.1.1.2.3.1.1 Variation 1: Via Transfer Hydrogenation

40.1.1.1.2.3.1.2 Variation 2: By Reduction with Hydrides

40.1.1.1.2.3.2 Method 2: Enantioselective Reduction of N-Alkylidenealkylamines to Secondary Alkylamines

40.1.1.1.2.4 Tertiary Alkylamines from Enamines by Reduction

40.1.1.1.2.4.1 Method 1: Amines from Enamines by Catalytic Hydrogenation

40.1.1.1.2.4.2 Method 1: Amines from Enamines by Enantioselective (Asymmetric) Catalytic Hydrogenation

40.1.1.1.2.4.3 Method 3: Amines from Enamines Using Other Reducing Agents

40.1.1.1.3 Reaction of Acetals with Organometallic Reagents

G K. Friestad

40.1.1.1.3 Reaction of Acetals with Organometallic Reagents

40.1.1.1.3.1 Method 1: Additions to N,O-Acetals Function

40.1.1.1.3.1.1 Variation 1: Addition to N,O-Acetals Incorporating a Tertiary Amine Function

40.1.1.1.3.1.2 Variation 2: Addition to N,O-Acetals Incorporating a Secondary Amine Function

40.1.1.1.3.1.3 Variation 3: Development of Asymmetric Additions to N,O-Acetals

40.1.1.1.3.2 Method 2: Additions to N,N-Acetals

40.1.1.1.3.3 Method 3: Reductive Arylation of N,O-Acetals: The Tscherniac-Einhorn Reaction

40.1.1.1.3.3.1 Variation 1: Asymmetric Equivalents of the Tscherniac-Einhorn Reaction

40.1.1.1.4 Hydroaminomethylation of Alkenes

A. Börner, M. Beller, and B. Wünsch

40.1.1.1.4 Hydroaminomethylation of Alkenes

40.1.1.1.4.1 Method 1: Hydroaminomethylation

40.1.1.1.5 Reduction of Nitrogen-Based Functional Groups

P. Margaretha

40.1.1.1.5 Reduction of Nitrogen-Based Functional Groups

40.1.1.1.5.1 Reduction of Nitroalkanes

40.1.1.1.5.1.1 Method 1: Cathodic Reduction

40.1.1.1.5.1.2 Method 2: Catalytic Hydrogenation

40.1.1.1.5.1.3 Method 3: Transfer Hydrogenation

40.1.1.1.5.1.4 Method 4: Reduction Using Borohydrides and an Additional Catalyst

40.1.1.1.5.1.4.1 Variation 1: Using Sodium Borohydride

40.1.1.1.5.1.4.2 Variation 2: Using Borohydride Exchange Resin

40.1.1.1.5.1.4.3 Variation 3: Using Zinc(II) Borohydride-Pyridine

40.1.1.1.5.1.5 Method 5: Reduction Using Lithium Aluminum Hydride

40.1.1.1.5.1.6 Method 6: Reduction Using Aluminum Amalgam Promoted by Ultrasound

40.1.1.1.5.1.7 Method 7: Reduction Using Tin-Hydrochloric Acid

40.1.1.1.5.1.8 Method 8: Reduction Using Samarium(II) Iodide

40.1.1.1.5.2 Reduction of Mesoionic 2-Alkyl-1,2,3-triazines

40.1.1.1.5.3 Reduction of Nitrosoalkanes

40.1.1.1.5.4 Reduction of Alkyl Azides

40.1.1.1.5.4.1 Method 1: Catalytic Hydrogenation

40.1.1.1.5.4.2 Method 2: Transfer Hydrogenation

40.1.1.1.5.4.3 Method 3: Reduction Using Boranes or Boronates

40.1.1.1.5.4.3.1 Variation 1: Using Dichloroborane-Dimethyl Sulfide

40.1.1.1.5.4.3.2 Variation 2: Using Lithium Aminoborohydrides

40.1.1.1.5.4.3.3 Variation 3: Using Sodium Borohydride

40.1.1.1.5.4.3.4 Variation 4: Using Borohydride Exchange Resin—Nickel(II) Acetate

40.1.1.1.5.4.3.5 Variation 5: Using Zinc(II) Borohydride

40.1.1.1.5.4.4 Method 4: Reduction Using Lithium Aluminum Hydride

40.1.1.1.5.4.5 Method 5: Reduction Using Tributyltin Hydride

40.1.1.1.5.4.6 Method 6: Reduction Using Metals

40.1.1.1.5.4.7 Method 7: Reduction Using Triphenylphosphine

40.1.1.1.5.4.8 Method 8: Reduction Using Hydrogen Sulfide

40.1.1.1.5.4.9 Method 9: Reduction Using Propane-1,3-dithiol

40.1.1.1.5.4.10 Method 10: Reduction Using Low-Valent Metal Ion Salts

40.1.1.1.5.4.11 Methods 11: Miscellaneous Methods

40.1.1.1.5.5 Reduction of 1,2-Diazenes

40.1.1.1.5.6 Reduction of Hydroxylamines

40.1.1.1.5.7 Reduction of Amine Oxides

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!