Science of Synthesis Knowledge Updates 2012 Vol. 3 -  - E-Book

Science of Synthesis Knowledge Updates 2012 Vol. 3 E-Book

0,0
2.799,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Science of Synthesis is a reference work for preparative methods in synthetic chemistry. Its product-based classification system enables chemists to easily find solutions to their synthetic problems.

Key Features:

  • Critical selection of reliable synthetic methods, saving the researcher the time required to find procedures in the primary literature.
  • Expertise provided by leading chemists.
  • Detailed experimental procedures.
  • The information is highly organized in a logical format to allow easy access to the relevant information.

The Science of Synthesis Editorial Board, together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB
Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Science of Synthesis

Science of Synthesis is the authoritative and comprehensive reference work for the entire field of organic and organometallic synthesis.

Science of Synthesis presents the important synthetic methods for all classes of compounds and includes:

Methods critically evaluated by leading scientists

Background information and detailed experimental procedures

Schemes and tables which illustrate the reaction scope

Preface

As the pace and breadth of research intensifies, organic synthesis is playing an increasingly central role in the discovery process within all imaginable areas of science: from pharmaceuticals, agrochemicals, and materials science to areas of biology and physics, the most impactful investigations are becoming more and more molecular. As an enabling science, synthetic organic chemistry is uniquely poised to provide access to compounds with exciting and valuable new properties. Organic molecules of extreme complexity can, given expert knowledge, be prepared with exquisite efficiency and selectivity, allowing virtually any phenomenon to be probed at levels never before imagined. With ready access to materials of remarkable structural diversity, critical studies can be conducted that reveal the intimate workings of chemical, biological, or physical processes with stunning detail.

The sheer variety of chemical structural space required for these investigations and the design elements necessary to assemble molecular targets of increasing intricacy place extraordinary demands on the individual synthetic methods used. They must be robust and provide reliably high yields on both small and large scales, have broad applicability, and exhibit high selectivity. Increasingly, synthetic approaches to organic molecules must take into account environmental sustainability. Thus, atom economy and the overall environmental impact of the transformations are taking on increased importance.

The need to provide a dependable source of information on evaluated synthetic methods in organic chemistry embracing these characteristics was first acknowledged over 100 years ago, when the highly regarded reference source Houben–Weyl Methoden der Organischen Chemie was first introduced. Recognizing the necessity to provide a modernized, comprehensive, and critical assessment of synthetic organic chemistry, in 2000 Thieme launched Science of Synthesis, Houben–Weyl Methods of Molecular Transformations. This effort, assembled by almost 1000 leading experts from both industry and academia, provides a balanced and critical analysis of the entire literature from the early 1800s until the year of publication. The accompanying online version of Science of Synthesis provides text, structure, substructure, and reaction searching capabilities by a powerful, yet easy-to-use, intuitive interface.

From 2010 onward, Science of Synthesis is being updated quarterly with high-quality content via Science of Synthesis Knowledge Updates. The goal of the Science of Synthesis Knowledge Updates is to provide a continuous review of the field of synthetic organic chemistry, with an eye toward evaluating and analyzing significant new developments in synthetic methods. A list of stringent criteria for inclusion of each synthetic transformation ensures that only the best and most reliable synthetic methods are incorporated. These efforts guarantee that Science of Synthesis will continue to be the most up-to-date electronic database available for the documentation of validated synthetic methods.

Also from 2010, Science of Synthesis includes the Science of Synthesis Reference Library, comprising volumes covering special topics of organic chemistry in a modular fashion, with six main classifications: (1) Classical, (2) Advances, (3) Transformations, (4) Applications, (5) Structures, and (6) Techniques. Titles will include Stereoselective Synthesis, Water in Organic Synthesis, and Asymmetric Organocatalysis, among others. With expertevaluated content focusing on subjects of particular current interest, the Science of Synthesis Reference Library complements the Science of Synthesis Knowledge Updates, to make Science of Synthesis the complete information source for the modern synthetic chemist.

The overarching goal of the Science of Synthesis Editorial Board is to make the suite of Science of Synthesis resources the first and foremost focal point for critically evaluated information on chemical transformations for those individuals involved in the design and construction of organic molecules.

Throughout the years, the chemical community has benefited tremendously from the outstanding contribution of hundreds of highly dedicated expert authors who have devoted their energies and intellectual capital to these projects. We thank all of these individuals for the heroic efforts they have made throughout the entire publication process to make Science of Synthesis a reference work of the highest integrity and quality.

The Editorial Board

July 2010

E. M. Carreira (Zurich, Switzerland)

C. P. Decicco (Princeton, USA)

A. Fuerstner (Muelheim, Germany)

G. A. Molander (Philadelphia, USA)

P. J. Reider (Princeton, USA)

E. Schaumann (Clausthal-Zellerfeld, Germany)

M. Shibasaki (Tokyo, Japan)

E. J. Thomas (Manchester, UK)

B. M. Trost (Stanford, USA)

Abstracts

1.4.5 Organometallic Complexes of Cobalt

M. Amatore, C. Aubert, M. Malacria, and M. Petit

This chapter is an update of the first report on organometallic cobalt complexes in Science of Synthesis, Section 1.4.1.4.1.4.1.4. It summarizes the more recent and most relevant advances concerning the synthesis and use of various cobalt complexes. During the decade 2000– 2010, two major developments were made concerning cobalt complexes. The first involves the extensive use of cobalt–η5-dienyl complexes. The second major advance is the use of more-convenient and easy-to-handle complexes based on cobalt(II) or -(III) salts.

Keywords: cobalt complexes · cobalt catalysis · cocyclization · cyclic compounds · [m + n + 2] cycloadditions · [m + 2] cycloadditions · cross-coupling reactions · C—H bond activation · ring expansion · ring formation · ring opening

3.6.14 Organometallic Complexes of Gold (Update 1)

M. J. Campbell and F. D. Toste

This chapter is a comprehensive review of asymmetric transformations catalyzed by gold salts published between 2005 and 2011. It focuses primarily on gold(I)-catalyzed reactions using enantiomerically enriched chiral phosphines, phosphoramidites, phosphites, and N-heterocyclic carbene ligands.

Keywords: gold · catalysis · asymmetric · cycloisomerization · cyclopropanation · aldol · hydroalkoxylation · hydroamination · hydrogenation · cycloaddition · alkyne · allene · phosphine · phosphoramidite · N-heterocyclic carbene

3.6.15 Organometallic Complexes of Gold (Update 2)

T. de Haro, D. Garayalde, and C. Nevado

The strong relativistic effects governing the coordination chemistry of gold have triggered the development of a large number of transformation that take advantage of the interaction of gold(I) and gold(III) complexes with alkenes. In this account, we have aimed to summarize the most relevant reactivity modes stemming from these interactions in homogeneous catalysis.

Keywords: alkene · gold · activation · addition

6.1.3.8 Diborane(4) Compounds

G. E. Ferris, S. N. Mlynarski, and J. P. Morken

This chapter is an update to the earlier Science of Synthesis contribution describing reactions involving bis(pinacolato)diboron. It focuses primarily on enantioselective catalytic transformations covered in the literature over the period 2005-2011.

Keywords: alkenes · alkynes · allylic compounds · boron compounds · borylation · conjugate addition · cyclization · dienes · dihydroxylation · enones · hydroboration · ring opening · stereoselective synthesis · transition metals

6.1.35.20 Allylboranes Yu. N. Bubnov and G. D. Kolomnikova

This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of allylboranes and their application in organic synthesis. Libraries of chiral allylic boranes and boronates have been obtained and numerous natural substances and their analogues have been prepared with the use of compounds of this type.

Keywords: allylboranes · allylboronates · allylboration · hydroboration · diboration · silaboration · homologation · metathesis · cross coupling · asymmetric synthesis

16.15.5 Quinoxalines

D. O. Tymoshenko

This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of quinoxalines and related compounds such as quinoxaline N-oxides and quinoxaline 1,4-dioxides. Classical routes to 2,3-substituted quinoxalines involve the intermolecular cyclization of benzene-1,2-diamines with keto aldehydes or 1,2-diketones. More recent developments with different approaches, including C—C bondformation methods, are also surveyed.

Keywords: quinoxalines · quinoxalin-2-ones · quinoxaline-2,3-diones · 2-chloroquinoxalines · benzene-1,2-diamine cyclization · annulation · amination · Suzuki coupling

21.16 Synthesis of Scalemic Amides by Kinetic Resolution

D. Seidel

This chapter provides an overview of non-enzymatic methods for the kinetic resolution of racemic amines. Covered are approaches based on chiral small-molecule reagents and catalysts. The scope is limited to kinetic resolutions of amines and desymmetrizations of diamines that proceed via amine acylation.

Keywords: kinetic resolution · desymmetrization · amines · diamines · acylation · asymmetric catalysis

27.16.3 Azines

A. Nodzewska and R. Łaźny

This update covers the literature published from the year 2001 up to 2011; the preparation and application of 1,4-disubstituted, trisubstituted, and tetrasubstituted azines is described.

Keywords: allenic compounds · azines · carbonyl compounds · diazo compounds · hydrazines · hydrazones · intramolecular reactions · nitrogen heterocycles · semicarbazones · Ugi reaction

27.17.5 Hydrazones

R. Łaźny and A. Nodzewska

This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of N-unsubstituted, N-monosubstituted, N,N-disubstituted, and Nsulfonylated hydrazones and their applications in organic synthesis. It focuses on the literature published in the period 2000–2011.

Keywords: alkenes · alkylation · allenes · arylation · cycloaddition · diazo compounds · hydrazines · hydrazones · nitrogen heterocycles · organometallic reagents · polymers · radical reaction

27.18.3 Hydrazonium Compounds

A. Nodzewska and R. Łaźny

This update covers the literature on hydrazonium compounds published from the year 2000 up to 2011, during which time only the preparation and application of 1,1,1-trialkyl-2-alkylidenehydrazinium compounds has been described.

Keywords: azirines · hydrazones · hydrazonium compounds · hydrazinium salts · hydrolysis · 1H-pyrroles

Science of Synthesis Knowledge Updates 2012/3

Preface

Abstracts

Table of Contents

1.4.5 Organometallic Complexes of Cobalt (Update 2012)

M. Amatore, C. Aubert, M. Malacria, and M. Petit

3.6.14 Organometallic Complexes of Gold (Update 1, 2012)

M. J. Campbell and F. D. Toste

3.6.15 Organometallic Complexes of Gold (Update 2, 2012)

T. de Haro, D. Garayalde, and C. Nevado

6.1.3.8 Diborane(4) Compounds (Update 2012)

G. E. Ferris, S. N. Mlynarski, and J. P. Morken

6.1.35.20 Allylboranes (Update 2012)

Yu. N. Bubnov and G. D. Kolomnikova

16.15.5 Quinoxalines (Update 2012)

D. O. Tymoshenko

21.16 Synthesis of Scalemic Amides by Kinetic Resolution

D. Seidel

27.16.3 Azines (Update 2012)

A. Nodzewska and R. Łaźny

27.17.5 Hydrazones (Update 2012)

R. Łaźny and A. Nodzewska

27.18.3 Hydrazonium Compounds (Update 2012)

A. Nodzewska and R. Łaźny

Author Index

Abbreviations

Table of Contents

Volume 1: Compounds with Transition Metal—Carbon π-Bonds and Compounds of Groups 10–8 (Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os)

1.4 Product Class 4: Organometallic Complexes of Cobalt

1.4.5 Organometallic Complexes of Cobalt

M. Amatore, C. Aubert, M. Malacria, and M. Petit

1.4.5 Organometallic Complexes of Cobalt

1.4.5.1 Cobalt–η5-Dienyl Complexes

1.4.5.1.1 Synthesis of Cobalt–η5-Dienyl Complexes

1.4.5.1.1.1 Method 1: Synthesis of Chiral Dicarbonyl(η5-cyclopentadienyl)cobalt(I) and (η5-Cyclopentadienyl)(η4-diene)cobalt(I) Complexes

1.4.5.1.1.1.1 Variation 1: Synthesis of Chiral Dicarbonyl(η5-cyclopentadienyl)cobalt(I) Complexes by Oxidative Addition

1.4.5.1.1.1.2 Variation 2: Synthesis of Chiral (η5-Cyclopentadienyl)(η4-diene)cobalt(I) Complexes by Substitution of Ligands

1.4.5.1.1.2 Method 2: Synthesis of (Alkene)carbonyl(η5-cyclopentadienyl)cobalt(I) Complexes via Displacement of One Carbonyl Moiety

1.4.5.1.1.3 Method 3: Synthesis of (η5-Cyclopentadienyl)(η4-diene)cobalt(I) Complexes via Substitution of Ligands

1.4.5.1.1.4 Method 4: Synthesis of (η5-Cyclopentadienyl)cobalt–N-Heterocyclic Carbene Complexes by Exchange of Ligands

1.4.5.1.1.4.1 Variation 1: Synthesis of Carbonyl(η5-cyclopentadienyl)cobalt–N-Hetero-cyclic Carbene Complexes

1.4.5.1.1.4.2 Variation 2: Synthesis of (η5-Cyclopentadienyl)(ethene)cobalt–N-Hetero-cyclic Carbene Complexes

1.4.5.1.1.4.3 Variation 3: Synthesis of (η5-Cyclopentadienyl)(triphenylphosphine)cobalt–N-Heterocyclic Carbene Complexes

1.4.5.1.1.5 Method 5: Synthesis of (η5-Cyclopentadienyl)(phosphine)cobalt(I)–Ligand Complexes

1.4.5.1.1.5.1 Variation 1: Synthesis of Carbonyl(η5-cyclopentadienyl)(triphenylphosphine)cobalt(I)

1.4.5.1.1.5.2 Variation 2: Synthesis of (η5-Cyclopentadienyl)(triphenylphosphine)cobalt(I)–Alkene Complexes

1.4.5.1.1.5.3 Variation 3: Synthesis of {[2-(Di-tert-butylphosphino)ethyl]cyclopentadienyl}(ethene)cobalt(I)

1.4.5.1.1.6 Method 6: Synthesis of (η5-Cyclopentadienyl)cobalt–Dinitrosoalkane Complexes

1.4.5.1.1.7 Method 7: Synthesis of (η5-Pentamethylcyclopentadienyl)cobalt–η3-Allyl Complexes by Exchange of Ligands

1.4.5.1.1.8 Method 8: Synthesis of (η5-Cyclopentadienyl)cobalt–η5-Pentadienyl Complexes by Exchange of Ligands

1.4.5.1.1.9 Method 9: Synthesis of (η5-Cyclopentadienyl)cobalt–Alkyne Complexes

1.4.5.1.1.10 Method 10: Synthesis of (η5-Cyclopentadienyl)cobaltacycles

1.4.5.1.1.10.1 Variation 1: Synthesis of (η5-Cyclopentadienyl)cobaltacyclobutenes

1.4.5.1.1.10.2 Variation 2: Synthesis of (η5-Cyclopentadienyl)cobaltasilacyclopentenes

1.4.5.1.2 Applications of Cobalt–η5-Dienyl Complexes in Organic Synthesis

1.4.5.1.2.1 Method 1: Inter- and Intramolecular [2 +2+2] Cyclizations

1.4.5.1.2.1.1 Variation 1: Inter- and Intramolecular [2 +2+2] Cyclizations of Triynes in Aromatic and Aqueous Solvents

1.4.5.1.2.1.2 Variation 2: Intermolecular [2 +2+2] Cyclizations of Diynes and Nitriles: Preparation of Pyridines

1.4.5.1.2.1.3 Variation 3: Intermolecular [2 +2+2] Cyclizations of Enediynes and Allenediynes

1.4.5.1.2.1.4 Variation 4: Inter- and Intramolecular [2 +2+2] Cyclizations of Diynes with Heteroatom-Substituted Multiple Bonds

1.4.5.1.2.2 Method 2: Other Cyclizations

1.4.5.1.2.2.1 Variation 1: [2 + 2] Cycloaddition

1.4.5.1.2.2.2 Variation 2: [3 + 2] Annulation

1.4.5.1.2.2.3 Variation 3: [3 +2+2] Cycloaddition

1.4.5.1.2.2.4 Variation 4: [5 + 2] Cycloaddition

1.4.5.1.2.3 Method 3: Miscellaneous Reactions

1.4.5.1.2.3.1 Variation 1: Cobalt-Mediated Ring Expansion

1.4.5.1.2.3.2 Variation 2: Linear Co-oligomerization of Alkynes with Alkenes

1.4.5.1.2.3.3 Variation 3: Hydroamination of Alkynes

1.4.5.1.2.3.4 Variation 4: Activation of sp3 C—H Bonds

1.4.5.1.2.3.5 Variation 5: Vinylic C—H Functionalization Reactions

1.4.5.2 Miscellaneous Cobalt Complexes

1.4.5.2.1 Synthesis of Miscellaneous Cobalt Complexes

1.4.5.2.1.1 Method 1: Synthesis of Methyltetrakis(trimethylphosphine)cobalt(I)

1.4.5.2.1.2 Method 2: Synthesis of Chlorotris(trimethylphosphine)cobalt(I)

1.4.5.2.1.3 Method 3: Synthesis of Dihalobis(phosphine)cobalt(II) Complexes

1.4.5.2.1.4 Method 4: Cobalt(II) or -(III) Salts as Precatalysts

1.4.5.2.1.5 Method 5: Preformed Cobalt(II) and Cobalt(III) Complexes

1.4.5.2.2 Applications of Miscellaneous Cobalt Complexes in Organic Synthesis

1.4.5.2.2.1 Method 1: Cobalt-Catalyzed Homocoupling Reactions

1.4.5.2.2.2 Method 2: C(sp2)—C(sp2) Cross-Coupling Reactions

1.4.5.2.2.2.1 Variation 1: Alkenylation

1.4.5.2.2.2.2 Variation 2: Biaryl Formation

1.4.5.2.2.3 Method 3: C(sp2)—C(sp3) Cross-Coupling Reactions

1.4.5.2.2.3.1 Variation 1: Alkylation of Alkenyl Halides

1.4.5.2.2.3.2 Variation 2: Alkenylation of Alkyl Halides

1.4.5.2.2.3.3 Variation 3: Alkylation of Aromatic Halides

1.4.5.2.2.3.4 Variation 4: Arylation of Alkyl Halides

1.4.5.2.2.3.5 Variation 5: Pseudodirect and Direct Arylation of Alkyl Halides

1.4.5.2.2.3.6 Variation 6: Allylation

1.4.5.2.2.4 Method 4: C(sp3)—C(sp3) Cross-Coupling Reactions

1.4.5.2.2.4.1 Variation 1: Allylation

1.4.5.2.2.4.2 Variation 2: Benzylation

1.4.5.2.2.4.3 Variation 3: Alkylation

1.4.5.2.2.5 Method 5: Alkynylation

1.4.5.2.2.5.1 Variation 1: Benzylation of Alkynes

1.4.5.2.2.5.2 Variation 2: Alkylation of Alkynes

1.4.5.2.2.5.3 Variation 3: Alkenylation of Alkynes

1.4.5.2.2.6 Method 6: Acylation

1.4.5.2.2.7 Method 7: Radical Reactions

1.4.5.2.2.8 Method 8: Cross Coupling of Unsaturated Compounds

1.4.5.2.2.8.1 Variation 1: Alkyne Functionalization

1.4.5.2.2.8.2 Variation 2: Cross Coupling of Alkynes with Enones

1.4.5.2.2.8.3 Variation 3: Cross-Coupling Reactions Involving Alkenes and Alkynes

1.4.5.2.2.9 Method 9: Michael-Type Conjugate Additions

1.4.5.2.2.10 Method 10: Formation of Carbon—Heteroatom Bonds

1.4.5.2.2.11 Method 11: Cross-Coupling Reactions with Carbonyl Compounds

1.4.5.2.2.11.1 Variation 1: Allylation

1.4.5.2.2.11.2 Variation 2: Formation of Hydroxy Amides and Esters

1.4.5.2.2.11.3 Variation 3: Arylation

1.4.5.2.2.12 Method 12: Multicomponent Reactions

1.4.5.2.2.13 Method 13: Preparation of Organometallic Derivatives

1.4.5.2.2.14 Method 14: Cyclization Reactions

1.4.5.2.2.15 Method 15: Cobalt-Catalyzed Cycloadditions

1.4.5.2.2.15.1 Variation 1: [2 + 2] Cycloadditions

1.4.5.2.2.15.2 Variation 2: [3 + 2] Cycloadditions

1.4.5.2.2.15.3 Variation 3: [4 + 2] Cycloadditions

1.4.5.2.2.15.4 Variation 4: Homo-Diels–Alder Reactions

1.4.5.2.2.15.5 Variation 5: [6 + 2] Cycloadditions

1.4.5.2.2.15.6 Variation 6: [2 +2+2] Cycloadditions

1.4.5.2.2.15.7 Variation 7: [4 +2+2] Cycloadditions

1.4.5.2.2.15.8 Variation 8: [6 + 4] Cycloadditions

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!