142,99 €
Seit den Anfängen durch Louis Pasteur hat die Racematspaltung eine rasante Entwicklung durchlaufen. Nicht zuletzt wegen des hohen Bedarfs an enantiomerenreinen Wirkstoffe in der Medizin sind die Methoden für die Darstellung enantiomerer Verbindungen durch die Racematspaltung immer eleganter und ausgereifter geworden. Dynamisch kinetische Racematspaltung oder enzymatische Methoden - die Möglichkeiten werden immer vielfältiger und ausgereifter. Dieses Buch mit den Beiträgen zahlreicher renommierter Autoren stellt nun erstmals alle wichtigen Aspekte dieser faszinierenden Methode zusammen. Die zahlreichen Querverweise innerhalb des Buches und Referenzen für weiterführende Literatur ermöglichen eine rasche Recherche auf diesem Gebiet. Von einfachen Trennungsproblemen bis hin zu komplizierten Fragestellungen wird der Einsteiger mit didaktischem Geschick an die Thematik herangeführt und der Experte erhält wertvolle Informationen zu diesem Fachgebiet.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 483
Veröffentlichungsjahr: 2014
Cover
Title Page
Related Titles
Copyright
List of Contributors
Chapter 1: Introduction: A Survey of How and Why to Separate Enantiomers
1.1 Classical Methods
1.2 Kinetic Resolution (‘KR’)
1.3 Dynamic Kinetic Resolution (‘DKR’)
1.4 Divergent Reactions of a Racemic Mixture (‘DRRM’)
1.5 Other Methods
Acknowledgments
References
Chapter 2: Stoichiometric Kinetic Resolution Reactions
2.1 Introduction
2.2 Kinetic Treatment
2.3 Chiral Reagents and Racemic Substrates
2.4 Enantiodivergent Formation of Chiral Product
2.5 Enantioconvergent Reactions
2.6 Diastereomer Kinetic Resolution
2.7 Some Applications of Kinetic Resolution
2.8 Conclusion
References
Chapter 3: Catalytic Kinetic Resolution
3.1 Introduction
3.2 Kinetic Resolution of Alcohols
3.3 Kinetic Resolution of Epoxides
3.4 Kinetic Resolution of Amines
3.5 Kinetic Resolution of Alkenes
3.6 Kinetic Resolution of Carbonyl Derivatives
3.7 Kinetic Resolution of Sulfur Compounds
3.8 Kinetic Resolution of Ferrocenes
3.9 Conclusions
Abbreviations
References
Chapter 4: Application of Enzymes in Kinetic Resolutions, Dynamic Kinetic Resolutions and Deracemization Reactions
4.1 Introduction
4.2 Kinetic Resolutions Using Hydrolytic Enzymes
4.3 Dynamic Kinetic Resolution
4.4 Deracemization
4.5 Enantioconvergent Reactions
4.6 Conclusions
References
Chapter 5: Dynamic Kinetic Resolution (DKR)
5.1 Introduction
5.2 Definition and Classification
5.3 Dynamic Kinetic Resolution (DKR)
5.4 Mathematical Expression
5.5 DKR-Related Methods
5.6 Concluding Remarks
References
Chapter 6: Enantiodivergent Reactions: Divergent Reactions on a Racemic Mixture and Parallel Kinetic Resolution
6.1 Introduction: The Conceptual Basis for Kinetic Resolution and Enantiodivergent Reactions
6.2 Divergent RRM Using a Single Chiral Reagent: Ketone Reduction
6.3 Divergent RRM under Oxidative Conditions
6.4 Organometallic Reagents and Regiodivergent RRM
6.5 Regiodivergent RRM in Selective Reactions of Difunctional Substrates
6.6 Divergent RRM Using Two Chiral Reagents: Parallel Kinetic Resolution (PKR)
6.7 Conclusion
Acknowledgement
References
Chapter 7: Rare, Neglected and Potential Synthetic Methods for the Separation of Enantiomers
7.1 Resolution through the Selfish Growth of Polymers: Stereoselective Polymerization
7.2 Resolution through Photochemical Methods
7.3 Combinations of Crystallization and Racemization
7.4 Destruction Then Recreation of Stereocentres: Enantioselective Protonations
7.5 Dynamic Combinatorial Chemistry
7.6 Asymmetric Autocatalysis
7.7 Miscellaneous
7.8 Concluding Remarks
Acknowledgements
References
Index
End User License Agreement
IX
X
1
2
3
4
5
6
7
8
9
10
11
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
235
234
236
237
239
238
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
271
270
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
Table of Contents
Scheme 1.1
Scheme 1.2
Scheme 1.3
Scheme 1.4
Scheme 1.5
Scheme 1.6
Scheme 1.7
Scheme 1.8
Scheme 1.9
Scheme 1.10
Scheme 2.1
Figure 2.1
Figure 2.2
Figure 2.3
Scheme 2.2
Scheme 2.3
Scheme 2.4
Scheme 2.5
Scheme 2.6
Scheme 2.7
Scheme 2.8
Scheme 3.1
Scheme 3.2
Scheme 3.3
Scheme 3.4
Scheme 3.5
Scheme 3.6
Scheme 3.7
Scheme 3.8
Scheme 3.9
Scheme 3.10
Scheme 3.11
Scheme 3.12
Scheme 3.13
Scheme 3.14
Scheme 3.15
Scheme 3.16
Scheme 3.17
Scheme 3.18
Scheme 3.19
Scheme 4.1
Scheme 4.2
Scheme 4.3
Scheme 4.4
Scheme 4.5
Scheme 4.6
Scheme 4.7
Scheme 4.8
Scheme 4.9
Scheme 4.10
Scheme 4.11
Scheme 4.12
Scheme 4.13
Scheme 4.14
Scheme 4.15
Scheme 4.16
Scheme 4.17
Scheme 4.18
Scheme 4.19
Schemes 4.20
Figure 4.21
Scheme 4.22
Scheme 4.23
Scheme 4.24
Scheme 4.25
Scheme 4.26
Scheme 4.27
Scheme 4.28
Schemes 4.29
Figure 4.30
Scheme 4.31
Scheme 4.32
Scheme 4.33
Scheme 4.34
Figure 4.35
Scheme 4.36
Scheme 4.37
Scheme 4.38
Scheme 4.39
Scheme 4.40
Scheme 4.41
Scheme 4.42
Scheme 4.43
Scheme 4.44
Scheme 4.45
Scheme 4.46
Scheme 4.47
Scheme 4.48
Scheme 4.49
Figure 5.1
Figure 5.2
Scheme 5.32
Scheme 5.1
Scheme 5.2
Scheme 5.3
Scheme 5.4
Scheme 5.5
Scheme 5.6
Scheme 5.7
Scheme 5.8
Scheme 5.9
Scheme 5.10
Scheme 5.11
Scheme 5.12
Scheme 5.13
Scheme 5.14
Scheme 5.15
Scheme 5.16
Scheme 5.17
Scheme 5.18
Scheme 5.19
Scheme 5.20
Scheme 5.28
Scheme 5.21
Scheme 5.22
Scheme 5.23
Scheme 5.24
Scheme 5.25
Scheme 5.26
Scheme 5.27
Scheme 5.29
Scheme 5.30
Scheme 5.31
Scheme 5.33
Scheme 5.34
Scheme 5.35
Scheme 5.36
Scheme 5.37
Scheme 5.38
Scheme 5.39
Scheme 5.40
Scheme 5.41
Scheme 5.42
Scheme 5.43
Scheme 5.44
Scheme 5.45
Scheme 5.46
Scheme 5.47
Scheme 5.48
Scheme 5.49
Schemes 5.50
Figure 5.52
Scheme 5.51
Scheme 5.53
Figure 5.3
Figure 5.4
Scheme 5.54
Scheme 5.55
Scheme 5.56
Scheme 5.57
Scheme 5.58
Figure 6.1
Figure 6.2
Figure 6.3
Scheme 6.1
Scheme 6.2
Scheme 6.3
Scheme 6.4
Scheme 6.5
Scheme 6.6
Scheme 6.7
Scheme 6.8
Scheme 6.9
Scheme 6.10
Scheme 6.11
Scheme 6.12
Schemes 6.13
Figure 6.15
Scheme 6.14
Scheme 6.16
Scheme 6.17
Scheme 6.18
Scheme 6.19
Scheme 6.20
Scheme 6.21
Scheme 6.22
Scheme 6.23
Scheme 6.24
Scheme 6.25
Scheme 6.26
Schemes 6.27
Figure 6.28
Scheme 6.29
Scheme 6.30
Scheme 6.31
Scheme 6.32
Scheme 6.33
Scheme 6.34
Scheme 6.35
Scheme 6.36
Scheme 6.37
Scheme 6.38
Scheme 6.39
Scheme 6.40
Scheme 6.41
Schemes 6.42
Figure 6.43
Scheme 7.1
Scheme 7.2
Scheme 7.3
Scheme 7.4
Scheme 7.5
Scheme 7.6
Scheme 7.7
Scheme 7.8
Table 2.1
Table 2.2
Table 3.1
Table 3.2
Table 6.1
Table 6.2
Edited by
Matthew Todd
Christmann, M., Bräse, S. (eds)
Asymmetric Synthesis II
More Methods and Applications
2012
ISBN 978-3-527-32921-2
Ma, S. (ed.)
Handbook of Cyclization Reactions
2009
Print ISBN: 978-3-527-32088-2
Dai, L., Hou, X. (eds.)
Chiral Ferrocenes in Asymmetric Catalysis
Synthesis and Applications
2009
Print ISBN: 978-3-527-32280-0
Cordova, A. (ed.)
Catalytic Asymmetric Conjugate Reactions
2010
Print ISBN: 978-3-527-32411-8
Yudin, A.K. (ed.)
Catalyzed Carbon-Heteroatom Bond Formation
2010
Print ISBN: 978-3-527-32428-6
Cybulski, A., Moulijn, J.A., Stankiewicz, A. (eds.)
Novel Concepts in Catalysis and Chemical Reactors
Improving the Efficiency for the Future
2010
Print ISBN: 978-3-527-32469-9
Blaser, H., Federsel, H. (eds.)
Asymmetric Catalysis on Industrial Scale
Challenges, Approaches and Solutions 2nd Edition
2010
Print ISBN: 978-3-527-32489-7
The Editor
Dr. Matthew Todd
The University of Sydney
Faculty of Science
School of Chemistry
Sydney, NSW 2006
Australia
Cover
Auguste Rodin, The Cathedral
Modeled 1908, Musée Rodin cast in
1955, Bronze. Size: 25 1/4 x 12 3/4 x 13
1/2 inches; with permission from:
Iris and B. Gerald Cantor Foundation,
1180 S. Beverly Drive, Suite 321, Los
Angeles, California USA 90035-1153
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
© 2014 Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-33045-4
ePDF ISBN: 978-3-527-65091-0
ePub ISBN: 978-3-527-65090-3
Mobi ISBN: 978-3-527-65089-7
oBook ISBN: 978-3-527-65088-0
List of Contributors
Marwa Ahmed
University of Canberra
Faculty of Education, Science, Technology & Mathematics (ESTeM)
Biomedical Science Discipline
Kirinari Street, Bruce
Canberra, ACT 2601
Australia
Jean-Claude Fiaud
Université Paris-Sud
Laboratoire de Catalyse Moléculaire (UMR 8182)
Institut de Chimie Moléculaire et des Matériaux d'Orsay
rue Georges Clemenceau
Orsay
France
Ashraf Ghanem
University of Canberra
Faculty of Education, Science, Technology & Mathematics (ESTeM)
Biomedical Science Discipline
Kirinari Street, Bruce
Canberra, ACT 2601
Australia
Cara E. Humphrey
Investigator III
NIBR/GDC/PSB Prep Labs
class="item1">Klybeckstrasse 141
Basel
Switzerland
Henri B. Kagan
Université Paris-Sud
Laboratoire de Catalyse Moléculaire (UMR 8182)
Institut de Chimie Moléculaire et des Matériaux d'Orsay
rue Georges Clemenceau
Orsay
France
Masato Kitamura
Nagoya University
Department of Basic Medicinal Science
Graduate School of Pharmaceutical Science
Furo-cho, Chikusa-ku
Nagoya 464-8601
Japan
Mahagundappa R. Maddani
Mangalore University
Department of Chemistry
Mangalagangotri-574199
Karnataka
India
Keiji Nakano
Kochi University
Department of Applied Science
2-5-1 Akebono-cho
Kochi 780-8520
Japan
Hélène Pellissier
Aix Marseille Université
Centrale Marseille
CNRS
iSm2 UMR 7313
Marseille 13397
France
Trisha A. Russell
Whitworth University
Department of Chemistry
W. Hawthorne Rd.
Spokane, WA 99218
USA
Matthew Todd
The University of Sydney
Faculty of Science
School of Chemistry
Sydney, NSW 2006
Australia
Nicholas J. Turner
The University of Manchester
Manchester Institute of Biotechnology-3.019
School of Chemistry
Princess Street
Manchester M13 9PL
UK
Edwin Vedejs
University of Michigan
Department of Chemistry
N. University Ave.
Ann Arbor, MI 48109
USA
Matthew Todd
This book is about the separation of enantiomers by synthetic methods, which is to say methods involving some chemical transformation as part of the separation process. We do not in this book cover chromatographic methods for the separation of enantiomers [1]. Nor do we focus on methods based on crystallizations as these have been amply reviewed elsewhere (see below). We are concerned mainly therefore with resolutions that involve a synthetic component, so mostly with the various flavours of kinetic resolutions through to more modern methods such as divergent reactions of a racemic mixture (DRRM). This introduction briefly clarifies the scope of the book.
The reasons such methods are of continued importance are threefold:
Society: the need for enantiopure compounds
. New molecules as single enantiomers are important to our continued well-being because they are the feedstocks of new medicines, agrochemicals, fragrances and other features of modern society in a chiral world. Of the 205 new molecular entities approved as drugs between 2001 and 2010, 63% were single enantiomers [2]. Nature provides an abundance of enantiopure compounds, but we seek, and need, to exceed this by obtaining useful unnatural molecules as single enantiomers, and we may reasonably want to access both enantiomers of some compounds.
Academia: the basic science involved in the behaviour of chiral compounds
. If we seek the state of the art in our discipline, we cannot help but think that rapid and selective chemical distinction between enantiomers, which results in their facile separation, is something beautiful in itself. There have been many successful methods developed for the synthetic separation of enantiomers, as we shall see, and these are both interesting and instructive to consider for the design of future examples of such processes. The relationship between kinetic resolution and asymmetric catalysis is strong, and one can inform the design of the other. It is hoped that the diverse examples described in this book stimulate thoughts in the reader of what is possible next.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!