Structure Elucidation in Organic Chemistry -  - E-Book

Structure Elucidation in Organic Chemistry E-Book

0,0
160,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Intended for advanced readers, this is a review of all relevant techniques for structure analysis in one handy volume.
As such, it provides the latest knowledge on spectroscopic and related techniques for chemical structure analysis, such as NMR, optical spectroscopy, mass spectrometry and X-ray crystallography, including the scope and limitation of each method. As a result, readers not only become acquainted with the techniques, but also the advantages of the synergy between them. This enables them to choose the correct analytical method for each problem, saving both time and resources. Special emphasis is placed on NMR and its application to absolute configuration determination and the analysis of molecular interactions.

Adopting a practical point of view, the author team from academia and industry guarantees both solid methodology and applications essential for structure determination, equipping experts as well as newcomers with the tools to solve any structural problem.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 975

Veröffentlichungsjahr: 2015

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Related Titles

Title Page

Copyright

Preface

List of Contributors

Chapter 1: Interaction of Radiation with Matter

1.1 Introduction

1.2 Spectroscopy: A Definition

1.3 Electromagnetic Radiation

1.4 Electromagnetic Spectrum

1.5 Interaction of Radiation with Matter

1.6 Magnetic Spectroscopies

1.7 Pulse Techniques in NMR Spectroscopy

1.8 Line Widths

1.9 Selection Rules

1.10 Summary of Spectroscopic Techniques

References

Chapter 2: Computational Spectroscopy Tools for Molecular Structure Analysis

2.1 Introduction

2.2 Potential Energy Surface and Molecular Structure

2.3 Computational Aspects for Spectroscopic Techniques

2.4 Application and Case Studies

Acknowledgments

References

Chapter 3: Absolute Configuration and Conformational Analysis of Chiral Compounds via Experimental and Theoretical Prediction of Chiroptical Properties: ORD, ECD, and VCD

3.1 Introduction

3.2 Chirality

3.3 What is a Chiroptical Method?

3.4 Quantum Mechanical (

Ab Initio

) Methods for Predicting Chiroptical Properties

3.5 Electronic Circular Dichroism (ECD)

3.6 Vibrational Circular Dichroism (VCD)

3.7 Optical Rotatory Dispersion (ORD)

3.8 When More than One Method is Needed

3.9 Concluding Remarks

References

Chapter 4: Mass Spectrometry Strategies in the Assignment of Molecular Structure: Breaking Chemical Bonds before Bringing the Pieces of the Puzzle Together

4.1 Introduction

4.2 Instrumentation and Technology

4.3 Breaking Chemical Bonds – Fragmentation Reactions

4.4 Confirmation of Identity

4.5 Putting the Puzzle Together – Structure Elucidation of Unknowns

4.6 Conclusions and Perspectives

Abbreviations

References

Chapter 5: Basic Principles of IR/Raman: Applications in Small Molecules Structural Elucidation

5.1 Introduction

5.2 Characteristic Vibrational Modes: Diatomics and Chemical Bonds

5.3 Fundamental Vibrational Modes and Molecular Structure

5.4 Selection Rules and Finding the Number of Normal Modes in Each Symmetry Species

5.5 The Vibrational Assignment of Raman and Infrared Spectra

5.6 Conclusions

References

Chapter 6: Solid-State NMR Applications in the Structural Elucidation of Small Molecules

6.1 Introduction

6.2 Line-Narrowing and Sensitivity Enhancement Methods in ssNMR Spectroscopy

6.3 Probing Dynamics in Solids

6.4 Application of ssNMR Spectroscopy to Small Molecules

6.5 NMR of Molecules on Surfaces (DNP)

6.6 NMR Crystallography

Acronyms

References

Chapter 7: Simplified NMR Procedures for the Assignment of the Absolute Configuration

7.1 Introduction

7.2 Single Derivatization Methods for Mono- and Polyfunctional Compounds

7.3 Resin-Bound Chiral Derivatizing Agents (Mix and Shake Method)

7.4 Non-resin in Tube Assignment (BPG and BINOL Borates)

7.5 Tandem HPLC-NMR: Simultaneous Enantioresolution and Configurational Assignment

7.6 Assignment Based on the Chemical Shifts from the Auxiliaries

7.7 Scope and Conclusions

References

Chapter 8: Structural Elucidation of Small Organic Molecules Assistedby NMR in Aligned Media

8.1 Introduction

8.2 Aligning Media

8.3 Measurement of RDCs

8.4 Computational Methodology

8.5 Data Analysis: Use of RDCs as Structural Constraints in Small Molecules

8.6 RDCs and Determination of Absolute Configuration

8.7 Conclusions and Perspectives

Acknowledgments

References

Chapter 9: NMR Techniques for the Study of Transient Intermolecular Interactions

9.1 Introduction

9.2 Nuclear Overhauser Effect

9.3 Saturation Transfer Difference NMR

9.4 Diffusion NMR

9.5 Conclusions

References

Chapter 10: Analysis of Molecular Interactions by Surface Plasmon Resonance Spectroscopy

10.1 Introduction

10.2 General Aspects of the Surface Plasmon Resonance Principle

10.3 The SPR Experiment

10.4 The Information Contained in the SPR Experiment

10.5 SPR Applications: From Large to Small Molecules

10.6 Beyond SPR–Orthogonal Interaction Biosensor Technologies

References

Chapter 11: Determination of Absolute Configurations by Electronic CD Exciton Chirality, Vibrational CD, 1H NMR Anisotropy, and X-ray Crystallography Methods – Principles, Practices, and Reliability

11.1 Introduction

11.2 Reliability in the AC Determination and Selection of Method

11.3 Non-empirical Method: AC Determination by the X-ray Bijvoet Method

11.4 Non-empirical Method: AC Determination by the ECD Exciton Chirality Method

11.5 Non-empirical Method: AC Determination by VCD Spectroscopy and DFT MO Simulation

11.6 Empirical Method: AC Determination by

1

H NMR Anisotropy Method Using MαNP Acid

11.7 Relative Method: X-ray Crystallography Using Camphorsultam Dichlorophthalic Acid (CSDP Acid)

11.8 Relative Method: X-ray Crystallography Using of MαNP Group as Internal Reference

11.9 Conclusion

11.A.1 Appendix

Acknowledgments

References

Chapter 12: An Integrated Approach to Structure Verification Using Automated Procedures

12.1 Introduction

12.2 Practical Aspects of NMR Automatic Verification

12.3 The Architecture of the Automatic Verification Expert System

12.4 Performance of the Automated Structure Verification Systems

12.5 Conclusions

Acknowledgments

References

Chapter 13: On the Search for the Appropriate Techniques for Structural Elucidation of Small Molecules

13.1 Introduction

13.2 The Challenge of Structural Determination

13.3 Tools: Mass Spectrometry (MS)

13.4 Tools: Solution NMR Spectroscopy

13.5 Tools: Solid-State NMR Spectroscopy

13.6 Chiroptical Spectroscopies

13.7 Theoretical Calculations:

Ab initio

Calculations of NMR Shifts

13.8 Theoretical Calculations: Computer-Assisted Structure Elucidation

13.9 Summary

Acknowledgments

References

Index

EULA

Pages

XV

XVI

XVII

XVIII

XIX

XX

XXI

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

Guide

Cover

Table of Contents

Preface

Chapter 1: Interaction of Radiation with Matter

List of Illustrations

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure Scheme 3.1

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 3.16

Figure 3.17

Figure 3.18

Figure 3.19

Figure 3.20

Figure 3.21

Figure 3.22

Figure 3.23

Figure 3.24

Figure 3.25

Figure 3.26

Figure 3.27

Figure 3.28

Figure 3.29

Figure 3.30

Figure 3.31

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Figure 4.17

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 6.1

Figure 6.27

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16

Figure 6.17

Figure 6.18

Figure 6.19

Figure 6.20

Figure 6.21

Figure 6.22

Figure 6.23

Figure 6.24

Figure 6.25

Figure 6.26

Figure 6.28

Figure 6.29

Figure 6.30

Figure 6.31

Figure 6.32

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

Figure 7.11

Figure 7.12

Figure 7.13

Figure 7.14

Figure 7.15

Figure 7.16

Figure 7.17

Figure 7.18

Figure 7.19

Figure 7.20

Figure 7.21

Figure 7.22

Figure 7.23

Figure 7.24

Figure 7.25

Figure 7.26

Figure 7.27

Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5

Figure 8.6

Figure 8.7

Figure 8.8

Figure 8.9

Figure 8.10

Figure 8.11

Figure 8.12

Figure 8.13

Figure 8.14

Figure 8.15

Figure 8.16

Figure 8.17

Figure 8.18

Figure 8.19

Figure 8.20

Figure 8.21

Figure 8.22

Figure 8.23

Figure 8.24

Figure 9.1

Figure 9.2

Figure 9.3

Figure 9.4

Figure 9.5

Figure 9.6

Figure 9.7

Figure 9.8

Figure 9.9

Figure 9.10

Figure 9.11

Figure 9.12

Figure 9.13

Figure 10.1

Figure 10.2

Figure 10.3

Figure 10.4

Figure 10.5

Figure 10.6

Figure 10.7

Figure 10.8

Figure 10.9

Figure 10.10

Figure 10.11

Figure 10.12

Figure 11.1

Figure 11.2

Figure 11.3

Figure 11.4

Figure 11.5

Figure 11.6

Figure 11.7

Figure 11.8

Figure 11.9

Figure 11.10

Figure 11.11

Figure 11.12

Figure 11.13

Figure 11.14

Figure 11.15

Figure 11.16

Figure 11.17

Figure 11.18

Figure 11.19

Figure 11.20

Figure 11.21

Figure 11.22

Figure 11.23

Figure 11.24

Figure 11.25

Figure 11.26

Figure 11.27

Figure 11.28

Figure 11.29

Figure 11.30

Figure 11.31

Figure 11.32

Figure 11.33

Figure 11.34

Figure 11.35

Figure 11.36

Figure 11.37

Figure 11.38

Figure 11.39

Figure 11.40

Figure 11.41

Figure 11.44

Figure 11.42

Figure 11.43

Figure Scheme 12.1

Figure Scheme 12.2

Figure 12.1

Figure 12.2

Figure 12.3

Figure 12.4

Figure 12.5

Figure 12.6

Figure 12.7

Figure 12.8

Figure 12.9

Figure 12.10

Figure 12.11

Figure 12.12

Figure 12.13

Figure 12.14

Figure 12.15

Figure 12.16

Figure 12.17

Figure 13.1

Figure 13.2

Figure 13.3

Figure 13.4

Figure 13.5

Figure 13.6

Figure 13.7

Figure 13.8

List of Tables

Table 1.1

Table 1.2

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 4.1

Table 4.2

Table 4.3

Table 5.1

Table 5.2

Table 5.3

Table 6.1

Table 6.2

Table 6.3

Table 10.1

Table 10.2

Table 11.A.1

Table 12.1

Table 12.2

Table 12.3

Table 12.4

Table 12.5

Table 12.6

Table 12.7

Related Titles

Silverstein, R.M., Webster, F.X., Kiemle, D.

The Spectrometric Identification of Organic Compounds

7th Edition

2013

Print ISBN: 978-1-118-51735-2 (Also available in a variety of electronic formats)

Grunenberg, J.

Computational Spectroscopy

Methods, Experiments and Applications

2010

Print ISBN: 978-3-527-32649-5

Findeisen, M., Berger, S.

50 and More Essential NMR Experiments

A Detailed Guide

2013

Print ISBN: 978-3-527-33483-4

Gauglitz, G., Moore, D.S. (eds.)

Handbook of Spectroscopy

2nd Edition

2013

Print ISBN: 978-3-527-32150-6 (Also available in a variety of electronic formats)

Berger, S., Sicker, D.

Classics in Spectroscopy

Isolation and Structure Elucidation of Natural Products

2009

Print ISBN: 978-3-527-32617-4

Pregosin, P.S.

NMR in Organometallic Chemistry

2012

Print ISBN: 978-3-527-33013-3 (Also available in a variety of electronic formats)

Edited by

María-Magdalena Cid and Jorge Bravo

Structure Elucidation in Organic Chemistry

The Search for the Right Tools

The Editors

Prof. Dr. María-Magdalena Cid

University of Vigo

Organic Chemistry Department

Lagoas-Marcosende

36310 Vigo

Spain

 

Prof. Dr. Jorge Bravo

University of Vigo

Inorganic Chemistry Department

Campus Universitario

Lagoas Marcosende

36310 Vigo

Spain

 

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

 

Library of Congress Card No.: applied for

 

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

 

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33336-3

ePDF ISBN: 978-3-527-66464-1

ePub ISBN: 978-3-527-66463-4

Mobi ISBN: 978-3-527-66462-7

oBook ISBN: 978-3-527-66461-0

Preface

The correct structural determination of a given molecule is not only a matter of building up a puzzle with more or less academic interest but also a complex exercise with aftermaths that sometimes go well beyond. A well-documented example is the repercussions at different levels that the resolution of the DNA structure in 1954 had, a landmark that merited the Nobel Prize for Medicine in 1962. However, it is not necessary to go back to those years to be aware of the importance of correct structure determination. In this regard, a recent article published by C&EN, reports on the first legal case in which a structural reassignment puts in trouble a patent and clinical trials of the promising anticancer agent TIC10. In this article Nick Levinson, the Stanford University postdoc who discovered the bosutinib problem, says, “I find it astonishing that a drug candidate can get this far through regulatory controls and into trials without the key players actually having done the proper quality control. It points to a serious hole in the whole process.”

The application of spectroscopy for structure determination and analysis has seen a big growth during the last decades and is now an important part of every chemistry course, as spectroscopic methods are nowadays used at some point in the solution of almost all problems in chemistry, including those at the frontier of life sciences. Besides, determining the molecular structure of materials is an essential step in understanding their properties and how they are formed.

This book is intended to provide the readers with the advantages of the synergy among all the involved techniques in structural elucidation to solve a particular target, bridging the gap among mass spectrometry, optical and X-ray spectroscopies, and nuclear magnetic and surface plasmon resonances (SPRs) by providing the needed knowledge and applicability of all of them. Because most of the advances in these techniques required the use of computational tools, computational spectroscopy is another subject included in the book.

This book provides the advanced student or practicing chemist with a comprehensive and up-to-date perspective on structural elucidation studies of pure substances and mixtures, in molecular or supramolecular architectures. It starts with an introductory chapter describing the different manifestations of light-matter interactions. Chapter 2 is devoted to computational spectroscopy, providing an overview of the theoretical background and computational requirements needed for molecular structure analysis by means of spectroscopic techniques. Chapters about the use of mass spectrometry (Chapter 4) and infrared/Raman spectroscopy (Chapter 5) for characterizing, identifying, or determining a structure provide qualitative and quantitative information not available from any other techniques.

Several chapters are devoted to nuclear magnetic resonance (NMR), because, since its discovery, it is the analytical method that has had the greatest impact, particularly in chemistry. In fact, developments in NMR have been the motive behind the award of two Nobel prizes for chemistry. NMR is used in all branches of science in which precise structural determination is required and in which the nature of interactions and reactions in solution are being studied. Thus, part of the book focuses on topics of current interest in solid and solution NMR in isotropic and anisotropic media. Transfer nuclear Overhauser effect and saturation transfer difference (STD) allowing the detection of transient binding of small molecules to macromolecular receptors is also treated along with automatic verification system (ASV) applied to assess the correctness of a proposed structure.

Two separate chapters are devoted to optical spectroscopy (electronic and vibrational circular dichroism and optical rotatory dispersion) (Chapter 3) and X-ray analysis (Chapter 11), as they are essential techniques for determination of relative and absolute configuration of natural products.

The book also aims at introducing the reader to the applications of SPR technology (Chapter 10), emphasizing on a practical point of view since SPR sensors have become a central tool for the study of biomolecular interactions and the detection of chemical and biological species.

Finally, Chapter 13 tries to emphasize that the structural determination of chemical compounds is commonly a difficult task and frequently entails the combined use of several tools. To illustrate the power of this combination, randomly chosen representative cases of misassigned structures are discussed.

We hope this book provides experts and untrained researchers with the needed tools to solve structural problems and also with the current state of development in other not so common techniques.

We thank those who made this book a reality either by proofreading the manuscripts or by giving interesting suggestions to improve them. We would like to make a special mention of all the authors for their commitment in this project and also to Dr. Carlos Silva for his invaluable assistance in the design of the cover and Dr. Reinhold Weber for all his support without which this project would not have reached the end.

Vigo, December 2014

María Magdalena Cid

Jorge Bravo

List of Contributors

José Lorenzo Alonso-Gómez

Universidade de Vigo

Departamento de Quimica Orgánica

Edificio de Ciencias Experimentais

Campus Lagoas-Marcosende

Vigo

Spain

Jesús Angulo

Instituto de Investigaciones Quimicas

CSIC-US

Glycosystems Laboratory

Avenida Americo Vespucio 49

Sevilla

Spain

Ana Ardá

Centro de Investigaciones Biológicas

Chemical and Physical Biology

Ramiro de Maeztu 9

Madrid

Spain

Ricardo F. Aroca

University of Windsor

Department of Chemistry and Biochemistry

Windsor, N9B 3P4

Ontario

Canada

Michael Bernstein

Mestrelab Research

S.L., Feliciano Barrera

Baixo

Santiago de Compostela

Spain

Nina Berova

Columbia University

Department of Chemistry

Havemeyer Hall

3114

Broadway

New York 10027

USA

Malgorzata Biczysko

Istituto Italiano di Tecnologia

Center for Nanotechnology Innovation @NEST

Piazza San Silvestro 12

Pisa

Italy

and

Scuola Normale Superiore

Piazza dei Cavalieri 7

Pisa

Italy

Jorge Bravo

Universidade de Vigo

Departamento de Quimica Inorganica

Edificio de Ciencias Experimentais

Campus Lagoas-Marcosende

Vigo

Spain

Eurico J. Cabrita

Universidade Nova de Lisboa

Departamento de Quimica

Faculdade de Ciencias e Tecnologia

2829-516 Caparica

Portugal

María Magdalena Cid

Universidade de Vigo

Departamento de Quimica Organica

Edificio de Ciencias Experimentais

Campus Lagoas-Marcosende

Vigo

Spain

Juan Carlos Cobas Gómez

Mestrelab Research

S.L., Feliciano Barrera

Baixo

Santiago de Compostela

Spain

Roberto R. Gil

Carnegie Mellon University

Department of Chemistry

Mellon Institute

Room 302

Fifth Avenue

Pittsburgh

PA 15213-3890

USA

Christian Griesinger

Max-Planck-Institut für Biophysikalische Chemie

Abteilung 030

Am Fassberg 11

Göttingen

Germany

Nobuyuki Harada

Tohoku University

Institute for Multidisciplinary Research for Advanced Materials

2-1-1 Katahira

Aoba

Sendai 980-8577

Japan

Maarten Honing

VU University Amsterdam

Department of BioMolecular Analysis

De Boelelaan 1083

HV Amsterdam

The Netherlands

Jesús Jiménez-Barbero

Centro de Investigaciones Biológicas

C/Ramiro de Maeztu 9

Madrid

Spain

Luís Mafra

University of Aveiro

Department of Chemistry

CICECO

3810-193 Aveiro

Portugal

Manuel Martín-Pastor

Universidade de Santiago de Compostela

Unidade de RMN.RIAIDT

Edificio CACTUS

Campus Vida s/n

Santiago de Compostela

Spain

Eva Muñoz

Universidade de Santiago de Compostela

Departamento de Quimica Organica

Facultade de Quimica y Centro Investigacion en Quimica Bilogica y Materiales Moleculares (CIQUS)

Campus Vida s/n

Santiago de Compostela

Spain

Armando Navarro-Vázquez

Universidade de Vigo

Departamento de Quimica Organica

Edificio de Ciencias Experimentais

Campus Lagoas-Marcosende

Vigo

Spain

Wilfried M.A. Niessen

VU University Amsterdam

Department of BioMolecular Analysis

De Boelelaan 1083

HV Amsterdam

The Netherlands

Pedro M. Nieto

Instituto de Investigaciones Quimicas

CSIC-US

Glycosystems Laboratory

Avenida Americo Vespucio 49

Sevilla

Spain

Olalla Nieto Faza

Universidade de Vigo

Departamento de Química Física

Facultad de Química

Edificio de Ciencias Experimentais

Campus Lagoas-Marcosende

Vigo

Spain

Ignacio Pérez-Juste

Universidade de Vigo

Departamento de Química Física

Facultad de Química

Edificio de Ciencias Experimentais

Campus Lagoas-Marcosende

Vigo

Spain

Ana G. Petrovic

New York Institute of Technology

Broadway

Office 405A

New York

NY 10023-7692

USA

Cristina Puzzarini

Universitá di Bologna

Dipartimento di Chimica ``Giacomo Ciamician''

Via Selmi 2

Bologna

Italy

Emilio Quiñoá Cabana

Universidade de Santiago de Compostela

Departamento de Quimica Organica

Facultade de Quimica y Centro Investigacion en Quimica Bilogica y Materiales Moleculares (CIQUS)

Campus Vida s/n

Santiago de Compostela

Spain

Daniel Ricklin

University of Pennsylvania

Department of Pathology and Laboratory Medicine

Stellar Chance Laboratories

Curie Boulevard

Philadelphia

PA 19104

USA

Ricardo Riguera Vega

Universidade de Santiago de Compostela

Departamento de Quimica Organica

Facultade de Quimica y Centro Investigacion en Quimica Bilogica y Materiales Moleculares (CIQUS)

Campus Vida s/n

Santiago de Compostela

Spain

João Rocha

University of Aveiro

Department of Chemistry

CICECO

3810-193 Aveiro

Portugal

Mariana Sardo

University of Aveiro

Department of Chemistry

CICECO

3810-193 Aveiro

Portugal

José Manuel Seco

Universidade de Santiago de Compostela

Departamento de Quimica Organica

Facultade de Quimica y Centro Investigacion en Quimica Bilogica y Materiales Moleculares (CIQUS)

Campus Vida s/n

Santiago de Compostela

Spain

Han Sun

Abteilung NMR-basierte Strukturbiologie

Max-Planck-Institut für biophysikalische Chemie

Am Fassberg 11

Göttingen

Germany

Stanislav Sýkora

Extra Byte

Via Raffaello Sanzio 22C

Castano Primo

Italy

1Interaction of Radiation with Matter

Ignacio Pérez-Juste and Olalla Nieto Faza

1.1 Introduction

The interaction of light with matter is at the basis of one of the primary participants in human perception, because a significant part of the cerebral cortex is dedicated to visual processing. This complex mechanism starts with the light-induced isomerization of a retinal molecule that triggers a messenger cascade to produce the transmission of a nerve impulse from the retina. And it is through sight that we gather most of our knowledge of our environment (sizes, colors, shapes, etc.).

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!