The Earth's Beginning - Robert Stawell Ball - E-Book

The Earth's Beginning E-Book

Robert Stawell Ball

0,0

Beschreibung

The Earth's Beginning by Sir Robert Stawell Ball is a comprehensive and engaging exploration of the origins and early history of our planet, written by one of the most prominent astronomers of the late 19th and early 20th centuries. In this work, Ball delves into the mysteries of the Earth's formation, drawing upon the latest scientific discoveries and theories of his time. He guides readers through the fascinating processes that shaped the Earth, from the swirling clouds of cosmic dust in the primordial solar system to the gradual cooling and solidification of the planet's surface. The book covers a wide range of topics, including the nature of the nebulae, the development of the Earth's atmosphere and oceans, the formation of continents and mountains, and the origins of life itself. Ball's clear and accessible prose makes complex scientific concepts understandable to general readers, while his enthusiasm for the subject shines through on every page. He discusses the evidence for the Earth's great antiquity, the role of volcanoes and earthquakes in shaping the landscape, and the ongoing changes that continue to transform the planet. Throughout The Earth's Beginning, Ball combines scientific rigor with vivid descriptions and imaginative speculation, inviting readers to ponder the vast timescales and powerful forces that have shaped our world. The book is richly illustrated with diagrams and plates that help to clarify key points and bring the story of the Earth's early history to life. Whether you are a student of science, a lover of natural history, or simply curious about the origins of our planet, The Earth's Beginning offers a captivating and informative journey through the dawn of Earth and the unfolding of its remarkable story.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern
Kindle™-E-Readern
(für ausgewählte Pakete)

Seitenzahl: 473

Veröffentlichungsjahr: 2025

Das E-Book (TTS) können Sie hören im Abo „Legimi Premium” in Legimi-Apps auf:

Android
iOS
Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



The cover image was created by the transcriber and is placed in the public domain.

THE EARTH’S BEGINNING

 

WORKS BY
SIR ROBERT S. BALL,
M.A., LL.D., F.R.S.

THE STORY OF THE HEAVENS.

With 24 Coloured Plates and Numerous Illustrations. New Edition. 10s. 6d.

THE EARTH’S BEGINNING.

With 4 Coloured Plates and Numerous Illustrations. New Edition. 7s. 6d.

THE STORY OF THE SUN.

With 11 Full Page Coloured and other Plates and Numerous Illustrations. 7s. 6d.

STAR-LAND.

Being Talks with Young People about the Wonders of the Heavens With Rembrandt Frontispiece and 94 Illustrations in Text. 7s. 6d.

CASSELL & COMPANY, Limited, London,
New York, Toronto & Melbourne.

AN ENGLISH SUNSET TINGED BY KRAKATOA. (From a Drawing made at Chelsea at 4.40 p.m. on Nov. 26th, 1883, by Mr. W. Ascroft.)

THE
Earth’s Beginning
BY
SIR ROBERT S. BALL, M.A., LL.D., F.R.S.
Lowndean Professor of Astronomy and Geometry in the University of Cambridge,
Author of “Star-Land,” “The Story of the Heavens,”
etc. etc.
WITH FOUR COLOURED PLATES AND
NUMEROUS ILLUSTRATIONS
NEW EDITION
CASSELL AND COMPANY, LIMITED
LONDON, NEW YORK, TORONTO AND MELBOURNE
MCMIX
First Edition October 1901.
Reprinted December 1901, 1903.
Enlarged Edition 1909.
ALL RIGHTS RESERVED

FOREWORD

Since these lectures were delivered in the Royal Institution of Great Britain there has been much advance in our knowledge of astronomy. The simultaneous advance in other sciences allied with astronomy has been, perhaps, even more remarkable. I am glad to avail myself of the opportunity afforded by a new issue of “The Earth’s Beginning” to draw attention to certain recent developments of science which relate in a very striking way to the subject of this volume, namely, the famous Nebular Theory of the origin of the solar system. It appears to me that these recent developments tend to reduce greatly, even if they do not altogether remove, the chief outstanding difficulty which has hitherto retarded the acceptance of the Nebular Theory.

I have explained in Chapter VI. those views of Helmholtz which have for so long provided the received explanation of the maintenance of solar heat. Calculation shows that if the sun’s heat has been maintained by the contraction of the primæval nebula—and this was the supposition of Helmholtz—the orb of day cannot have radiated with its present intensity for a period much longer than twenty million years.

But from the evidence of geology it must now be admitted that the existence of our earth, indeed even that part of its existence during which it has been the abode of life, has endured for a period far in excess of that which this calculation would allow. It therefore seems to follow that the theory of Helmholtz does not provide an adequate explanation of such an amazing phenomenon as the continuance of a sufficient supply of sunbeams throughout the vast periods demanded by geological phenomena.

There is another entirely different line of reasoning by which Professor John Joly has recently taught us the immense antiquity of our earth. His argument is based upon an estimate of the time that must have elapsed since the waters of the ocean, which had previously been sustained in the great vapours of the atmosphere, were deposited in the ocean beds. When the earth had become sufficiently cool to permit of the vapours now forming the ocean passing from the gaseous to the liquid form, the oceans descended from the heavens above to the earth beneath in the form of fresh water. In the lapse of subsequent ages the sea has become salt because ordinary river water, which always contains some small quantity of salt in solution, is continually bearing salt down to the sea. No doubt water is constantly being abstracted from the sea by evaporation, but only fresh water is thus removed, so in this cycle of change the salt in the sea must be gradually accumulating. Thus, day by day, though no doubt extremely slowly, the sea has been growing more and more salt.

Professor Joly has made an estimate of the quantity of salt daily added to the sea by all the rivers of the globe. He has also made an estimate of the total quantity of salt which is at present contained in the sea. He has thus the means of forming an estimate of the number of years necessary for the sea to have become converted from its primæval freshness to its present saltness. His result is not a little astonishing. The saltness of the sea could not be accounted for unless the rivers had been running into the sea for at least a hundred million years. This period is five times as long as the total period during which the sun could have been shining if the Helmholtzian view were correct.

Of course, there are many elements of uncertainty in such a calculation. We have assumed that the total flow of the rivers is practically constant, and that our estimate fairly represents the average salinity of river water. We have also made a large assumption in supposing that we have accurately estimated the total volume of salt in the oceans. But taken in conjunction with the geological evidence already referred to, taken in conjunction with the immense periods of time that have been required for the evolution of life on the globe by the process of natural selection, the conclusion arrived at is inevitable. It seems impossible to doubt that the sun must have been shining and that our solar system must have existed in practically the same form as it is at present for periods enormously greater than would have been possible if the heat of the sun had been sustained by the solar contraction only.

The difficulty here indicated has been not unjustly considered the most serious difficulty with which the development of modern physical and astronomical science has been confronted. The time during which the sun must have lasted, according to the received explanation of the source of its heat and the time during which the sun has actually lasted, as shown by the facts of geology, present a wide discrepancy. Science demands that some reconciliation must be effected, yet how is that to be accomplished? There is only one possible solution of the problem. It is obvious that there must have been some vast reserve of heat in the sun in comparison with which the quantity of heat yielded by the contraction may be deemed insignificant. Until this new source of solar energy had been discovered, our knowledge of the physics of the solar system lay under a reproach, which it was the bounden duty of men of science to endeavour to remove.

During the last few years lines of research carried on in various directions have, in a most unexpected manner, thrown much light on the origin of the sun’s heat, and, indeed, we may now say that the great difficulty which has for so long troubled us no longer exists in a serious form.

Recent discoveries show that matter possesses stores of energy which, if not actually boundless, are enormously in excess of what had been previously deemed possible. These stores of energy are available for supplying the heat of the sun, and it is easy to show that they are amply sufficient to furnish the necessary sunbeams for even the longest periods during which the claims of geology maintain that the sun must have been shining.

The researches of Professor Sir J. J. Thomson have shown how corpuscles of matter are sometimes moving with velocities enormously greater than those of any celestial body with which astronomy had made us acquainted. The case of high corpuscular velocity which is most generally known is that presented by radium, the particles from which are being continually shot forth in myriads. It is quite true that each of these corpuscles is excessively small, and it may be useful to give the following illustration bearing on the subject. Think of a number represented by unity followed by eighteen cyphers, or more concisely as 1018, and think of a line a kilometre long. If that line were divided into 1018 parts, each of those parts would represent the diameter of a corpuscle of radium. If that line were multiplied by 1018, the result would be a line so long that a ray of light would require a period of no less than 100,000 years to pass from one end to the other.

These corpuscles of radium are, no doubt, excessively small, but the velocity with which they are moving is comparable with the velocity of light. When a material object is moving with a velocity of that magnitude the energy it contains in virtue of that velocity is indeed startling. A very small grain of sand would, if moving with the velocity of light, contain, in virtue of that motion, the equivalent of more heat than could be produced by the combustion of a ton of the best coal. The late Dr. W. E. Wilson showed that if an excessively minute percentage of radium should be found to exist in the sun, it would completely account for the sustentation of the solar heat, and the Hon. R. Strutt has shown that the minute quantities of radium which he has proved to exist in terrestrial rocks would enormously protract the earth’s cooling. These discoveries have, in fact, completely changed the outlook on the problem of the sun’s heat, and, though no doubt much has yet to be done before the whole subject is cleared up, the great difficulty may be regarded as vanquished. Thus, the discovery of radium, and the wonderful phenomena associated therewith, has pointed out a possible escape from one of the gravest difficulties in science.

The most notable fact which emerges from the modern study of the structure of the heavens is the ever-increasing significance and importance of the spiral nebulæ. The following pages will have failed in their object if they have not succeeded in emphasising the fact that the spiral nebula is, next to a fixed star itself, the most characteristic type of object in the material universe. With every increase in the power of the telescope, and with every development of the application of photography to celestial portraiture, the importance of the spiral structure in nebulæ becomes of ever-increasing interest.

But I revert to this subject here for the purpose of taking notice of a suggestive paper by Mr. C. Easton in the “Astrophysical Journal,” Vol. XII., No. 2, September, 1900, entitled “A New Theory of the Milky Way.” This paper advances the striking view that the Milky Way is itself a spiral nebula, and certainly the considerations adduced by Mr. Easton seem to justify his remarkable conclusion.

It is first to be noticed that the Milky Way extends as an irregular band completely round the heavens, and that it follows very nearly the course of a great circle. The curious convolutions of the Milky Way, the varying star densities of its different parts, would, as shown by Mr. Easton, be completely accounted for if the Milky Way were a mighty spiral. We view the ordinary celestial spirals from the outside at an immense distance in space. We view the Milky Way from a position within the circuit of the nebula. It has, however, been shown by Mr. Easton that the centre of the Spiral Nebula is not exactly at the sun. The centre of the Milky Way is near that superb region of the galaxy which lies in Cygnus.

Thus, the significance of the spiral structure in the universe becomes greatly enhanced. The spirals abound in every part of the heavens; they are placed in every conceivable position and in every possible plane; they have every range in size from comparatively small objects, whose destiny is to evolve into a system like our solar system, up to stupendous objects which include a myriad of such systems. There is now the further interest that as the sun and the solar system are included within the Milky Way, and as the Milky Way is a spiral, this earth of ours is itself at this moment a constituent part of a great spiral.

Finally, I would say that, so far as I have been able to understand the subject, it appears to me that every advance in our knowledge of the heavens tends more and more to support the grand outlines of the Nebular Theory as imagined by Kant and Laplace.

R. S. B.

May 1, 1909.

CONTENTS

Chapter

 

Page

I.

Introduction

1

II.

The Problem Stated

21

III.

The Fire-mist

39

IV.

Nebulæ—Apparent and Real

52

V.

The Heat of the Sun

75

VI.

How the Sun’s Heat is Maintained

95

VII.

The History of the Sun

112

VIII.

The Earth’s Beginning

122

IX.

Earthquakes and Volcanoes

158

X.

Spiral and Planetary Nebulæ

191

XI.

The Unerring Guide

207

XII.

The Evolution of the Solar System

246

XIII.

The Unity of Material in the Heavens and the Earth

261

XIV.

The First Concord

294

XV.

The Second Concord

308

XVI.

The Third Concord

324

XVII.

Objections to the Nebular Theory

337

XVIII.

The Beginning of the Nebula

348

XIX.

Concluding Chapter

361

 

 

Appendices

369

 

 

Index

382

LIST OF ILLUSTRATIONS

Fig.

 

Page

 

An English Sunset tinged by Krakatoa (colour)

Frontispiece

1.

Immanuel Kant (from an old print)

7

2.

A Faint Diffused Nebulosity

17

3.

The Crab Nebula

19

4.

Jupiter

25

5.

Nebulous Region and Star-cluster

33

6.

The Great Nebula in Orion

41

7.

The Dumb-bell Nebula

45

8.

The Crossley Reflector

49

9.

The Cluster in Hercules

53

10.

Spectra of the Sun and Capella

62

11.

Spectrum of Nebula in Orion and Spectrum of White Star

64

12.

Solar Spectra with Bright Lines and Dark Lines during Eclipse

69

13.

The Nebulæ in the Pleiades

71

14.

The Sun

81

15.

I. Spectrum of the Sun. II. Spectrum of Arcturus

85

16.

Brooks’ Comet and Meteor Trail

89

17.

Argus and the surrounding Stars and Nebulosity

103

18.

Trifid Nebula in Sagittarius

105

19.

To illustrate the History of the Sun

113

20.

Solar Corona

117

21.

The Great Comet of 1882

119

22.

Special Thermometer for use in Deep Borings

129

23.

At the Bottom of the Great Bore

140

24.

Three consecutive Shells of the Earth’s Crust

145

25.

Earthquake Routes from Japan to the Isle of Wight

171

 

Showing Localities of Earthquakes (colour)

175

26.

Showing Coasts invaded by the Great Sea-waves from Krakatoa

179

 

The Early Stage of the Eruption of Krakatoa (colour)

180

27.

Spread of the Air-wave from Krakatoa to the Antipodes

183

28.

The great Spiral Nebula

193

29.

How to find the great Spiral Nebula

196

30.

A group of Nebulæ

199

31.

A Ray Nebula

201

32.

Portion of the Milky Way

205

33.

A Spiral Nebula seen Edgewise

211

34.

A foreshortened Spiral

212

35.

Edge-view of a Spiral boldly shown

213

36.

To illustrate Moment of Momentum

223

37.

Saturn

233

38.

The Ring Nebula in Lyra

249

39.

Lunar Craters: Hyginus and Albategnius

255

40.

A remarkable Spiral

257

41.

A clearly-cut Spiral

259

42.

The H and K Lines in the Photographic Solar Spectrum

276

43.

Spectrum of Comet showing Carbon Lines

290

 

The Solar Spectrum (colour)

290

44.

Spectrum of the Sun during Eclipse

291

45.

A Spiral presented Edgewise

296

46.

The Plane of a Planet’s Orbit

298

47.

A Right Angle divided into Ten Parts

301

48.

Illustration of the Second Concord

309

49.

Orbits of the Earth, Eros and Mars

313

50.

I. A Natural System. II. An Unnatural System

318

51.

An elongated irregular Nebula

329

52.

Two-branched Spiral

345

53.

Cluster with Stars of the 17th Magnitude

353

54.

Spectrum of Nova Persei (1901)

359

55.

The Apteryx: a Wingless Bird of New Zealand

365

56.

Skeleton of the Apteryx, showing Rudimentary Wings

366

57.

Spirals in other Departments of Nature: Foraminifer

367

58.

Ditto ditto Nautilus

367

59.

To illustrate a Theorem in the Attraction of Gravitation

369

60.

First Law of Motion exemplifies Constant Moment of Momentum

375

61.

A useful Geometrical Proposition

376

62.

Acceleration of Moment of Momentum equals Moment of Force

376

63.

Moment of Momentum unaltered by Collision

380

THE EARTH’S BEGINNING.

CHAPTER I. INTRODUCTION.

The Earth’s Beginning—The Nebular Theory—Many Applications of the Theory—The Founders of the Doctrine—Kant, Laplace, William Herschel: Their Different Methods of Work—The Vastness of the Problem—Voltaire’s Fable—The Oak-Tree—The Method of Studying the Subject—Inadequacy of our Time Conceptions.

I TRY in these lectures to give some account of an exceptionally great subject—a subject, I ought rather to say, of sublime magnificence. It may, I believe, be affirmed without exaggeration that the theme which is to occupy our attention represents the most daring height to which the human intellect has ever ventured to soar in its efforts to understand the great operations of Nature. The earth’s beginning relates to phenomena of such magnitude and importance that the temporary concerns which usually engage our thoughts must be forgotten in its presence. Our personal affairs, the affairs of the nation, and of the empire—indeed, of all nations and of all empires—nay, even all human affairs, past, present, and to come, shrink into utter insignificance when we are to consider the majestic subject of the evolution of that solar system of which our earth forms a part. We shall obtain a glimpse of what that evolution has been in the mighty chapter of the book of Nature on which we are now to enter.

The nebular theory discloses the beginning of this earth itself. It points out the marvellous process by which from original chaos the firm globe on which we stand was gradually evolved. It shows how the foundations of this solid earth have been laid, and how it is that we have land to tread on and air to breathe. But the subject has a scope far wider than merely in its relation to our earth. The nebular theory accounts for the beginning of that great and glorious orb the sun, which presides over the system of revolving planets, guides them in their paths, illuminates them with its light, and stimulates the activities of their inhabitants with its genial warmth. The nebular theory explains how it comes about that the sun still continues in these latter days to shine with the brilliance and warmth that it had throughout the past ages of human history and the vastly greater periods of geological time. Then, as another supreme achievement, it discloses the origin of the planets which accompany the sun, and shows how they have come to run their mighty courses; and it tells us how revolving satellites have been associated with the planets. The nebular theory has, indeed, a remarkable relation to all objects belonging to that wonderful scheme which we call the solar system.

It should also be noticed that the nebular theory often brings facts of the most diverse character into striking apposition. As it accounts for the continued maintenance of the solar radiation, so it also accounts for that beneficent rotation by which each continent, after the enjoyment of a day under the invigorating rays of the sun, passes in due alternation into the repose of night. The nebular theory is ready with an explanation of the marvellous structure revealed in the rings of Saturn, and it shows at the same time how the volcanoes of the moon acquired their past phenomenal activity, and why, after ages of activity, they have now at last become extinct. With equal versatility the nebular theory will explain why a collier experiences increasing heat as he descends the coalpit, and why the planet Jupiter is marked with those belts which have so much interest for the astronomer. The nebular theory offers an immediate explanation of the earthquake which wrought such awful destruction at Lisbon, while it also points out the cause of that healing warmth of the waters at Bath. Above all, the nebular theory explains that peerless discovery of cosmical chemistry which declares that those particular elements of which the sun is composed are no other than the elements which form the earth beneath our feet.

When a doctrine of such transcendent importance is proposed for our acceptance, it is fitting that we should look, in the first instance, to the source from which the doctrine has emanated. It would already have made good its claim to most careful hearing, though not perhaps to necessary acceptance, if it came to us bearing credentials which prove it to be the outcome of the thought and research of one endowed with the highest order of intellect. If the nebular theory had been propounded by only a single great leader of thought, the sublimity of the subject with which it deals would have compelled the attention of those who love to study the book of Nature. If it had appeared that a second investigator, also famous for the loftiest intellectual achievement, had given to the nebular theory the sanction of his name, a very much stronger claim for its consideration would at once have been established. If it should further appear that yet a third philosopher, a man who was also an intellectual giant, had been conducted to somewhat similar conclusions, we should admit, I need hardly say, that the argument had been presented with still further force. It may also be observed that there might even be certain conditions in the work of the three philosophers which would make for additional strength in the cause advocated; if it should be found that each of the great men of science had arrived at the same conclusion irrespective of the others, and, indeed, in total ignorance of the line of thought which his illustrious compeers were pursuing, this would, of course, be in itself a corroboration. If, finally, the methods of research adopted by these investigators had been wholly different, although converging to the establishment of the theory, then even the most sceptical might be disposed to concede the startling claim which the theory made upon his reason and his imagination.

All the conditions that I have assumed have been fulfilled in the presentation of the nebular theory to the scientific world. It would not be possible to point to three names more eminent in their respective branches of knowledge than those of Kant, Laplace, and William Herschel. Kant occupies a unique position by the profundity and breadth of his philosophical studies; Laplace applied the great discoveries of Newton to the investigation of the movements of the heavenly bodies, publishing the results in his immortal work, Mécanique Céleste; Herschel has been the greatest and the most original observer of the heavens since the telescope was invented. It is not a little remarkable that the great philosopher from his profound meditation, the great mathematician from a life devoted to calculations about the laws of Nature, the great observer from sounding the depths of the firmament, should each in the pursuit of his own line of work have been led to believe that the grand course of Nature is essentially expressed by the nebular theory. There have been differences of detail in the three theories; indeed, there have been differences in points which are by no means unimportant. This was unavoidable in the case of workers along lines so distinct, and of a subject where many of the elements were still unknown, as indeed many are still. Even at the present day no man can give a complete account of what has happened in the great evolution. But the monumental fact remains that these three most sagacious men of science, whose lives were devoted to the pursuit of knowledge, each approaching the subject from his own direction, each pursuing his course in ignorance of what the others were doing, were substantially led to the same result. The progress of knowledge since the time when these great men lived has confirmed, in ways which we shall endeavour to set forth, the sublime doctrine to which their genius had conducted them.

Immanuel Kant, whose grandfather was a Scotsman, was born in 1724 at Königsberg, where his life was spent as a professor in the University, and where he died in 1804. In the announcement of the application of the principle of evolution to the solar system, Laplace was preceded by this great German philosopher. The profound thinker who expounded the famous doctrine of time and space did not disdain to allow his attention to be also occupied with things more material than the subtleties of metaphysical investigation. As a natural philosopher Kant was much in advance of his time. His speculations on questions relating to the operations in progress in the material universe are in remarkable conformity with what is now accepted as the result of modern investigation. Kant outlined with a firmness inspired by genius that nebular theory to which Laplace subsequently and independently gave a more definite form, and which now bears his name.

Kant’s famous work with which we are now concerned appeared in 1755.[1] In it he laid down the immortal principle of the nebular theory. The greatness of this book is acknowledged by all who have read it, and notwithstanding that the progress of knowledge has made it obvious that many of the statements it contains must now receive modification, Kant’s work contains the essential principle affirming that the earth, the sun, the planets, and all the bodies now forming the solar system did really originate from a vast contracting nebula. In later years Kant’s attention was diverted from these physical questions to that profound system of philosophy with which his name is chiefly associated. The nebular theory is therefore to be regarded as incidental to Kant’s great lifework rather than as forming a very large and important part of it.

1.  We are now fortunately able to refer the English reader to the work of Professor W. Hastie, D.D., entitled “Kant’s Cosmogony,” Glasgow, 1900. Kant’s most interesting career is charmingly described in De Quincey’s “Last Days of Immanuel Kant.”

IMMANUEL KANT. (From an old Print.)

At the close of the last century, while France was in the throes of the Revolution, a school of French mathematicians was engaged in the accomplishment of a task which marked an epoch in the history of human thought. Foremost among the mathematicians who devoted their energies to the discussion of the great problems of the universe was the illustrious Laplace. As a personal friend of Napoleon, Laplace received marked distinction from the Emperor, who was himself enough of a mathematician to be able to estimate at their true value the magnificent results to which Laplace was conducted.

It was at the commencement of Kant’s career, and before his great lifework in metaphysics was undertaken, that he was led to his nebular theory of the solar system. In the case of Laplace, on the other hand, the nebular theory was not advanced until the close of the great work of his life. The Mécanique Céleste had been written, and the fame of its author had been established for all time; and then in a few pages of a subsequent volume, called the Système du Monde, he laid down his famous nebular theory. In that small space he gave a wonderful outline of the history of the solar system. He had not read that history in any books or manuscripts; he had not learned it from any ancient inscriptions; he had taken it direct from the great book of Nature.

Influenced by the caution so characteristic of one whose life had been devoted entirely to the pursuit of the most accurate of all the sciences, Laplace accompanied his announcement of the nebular theory with becoming words of warning. The great philosopher pointed out that there are two methods of discovering the truths of astronomy. Some truths may be discovered by observing the heavenly bodies with telescopes, by measuring with every care their dimensions and their positions, and by following their movements with assiduous watchfulness. But there is another totally different method which has enabled many remarkable discoveries to be made in astronomy; for discoveries may be made by mathematical calculations which have as their basis the numerical facts obtained by actual observation. This mathematical method often yields results far more profound than any which can be obtained by the astronomer’s telescope. The pen of the mathematician is indeed an instrument which sometimes anticipates revelations that are subsequently confirmed by actual observation. It is an instrument which frequently performs the highly useful task of checking the deductions that might too hastily be drawn from telescopic observations. It is an instrument the scope of whose discoveries embraces regions immeasurably beyond the reach of the greatest telescope. The pen of the mathematician can give us information as to events which took place long before telescopes came into existence—nay, even unnumbered ages prior to the advent of man on this earth.

Laplace was careful to say that the nebular theory which he sketched must necessarily be judged by a standard different from that which we apply to astronomical truths revealed by telescopic observation or ascertained by actual calculation. The nebular theory, said the great French mathematician, has to be received with caution, inasmuch as from the nature of the case it cannot be verified by observation, nor does it admit of proof possessing mathematical certainty.

A large part of these lectures will be devoted to the evidence bearing upon this famous doctrine. Let it suffice here to remark that the quantity of evidence now available is vastly greater than it was a hundred years ago, and furthermore, that there are lines of evidence which can now be followed which were wholly undreamt of in the days of Kant and Laplace. The particular canons laid down by Laplace, to which we have just referred, are perhaps not regarded as so absolutely binding in modern days. If we were to reject belief in everything which cannot be proved either by the testimony of actual eye-witnesses or by strict mathematical deductions, it would, I fear, fare badly with not a few great departments of modern science. It will not be necessary to do more at present than just to mention, in illustration of this, the great doctrine of the evolution of life, which accounts for the existing races of plants and animals, including even man himself. I need hardly say that the Darwinian theory, which claims that man has come by lineal descent from animals of a lower type, admits of no proof by mathematics; it receives assuredly no direct testimony from eye witnesses; and yet the fact that man has so descended is, I suppose, now almost universally admitted.

In the case of the great German philosopher, as well as in the case of the great French mathematician, the enunciation and the promulgation of their nebular theories were merely incidental to the important scientific undertakings with which their respective lives were mainly occupied. The relation of the nebular theory to the main lifework of the third philosopher I have named, has been somewhat different. When William Herschel constructed the telescopes with which, in conjunction with his illustrious sister, he conducted his long night-watches, he discovered thousands of new nebulæ; he may, in fact, be said to have created nebular astronomy as we now know it. Ever meditating on the objects which his telescopes brought to light, ever striving to sound the mysteries of the universe, Herschel perceived that between a nebula which was merely a diffused stain of light on the sky, and an object which was hardly distinguishable from a star with a slight haze around it, every intermediate grade could be found. In this way he was led to the splendid discovery which announced the gradual transformation of nebulæ into stars. We have already noted how the profound mathematician was conducted to a view of the origin of the solar system which was substantially identical with that which had been arrived at by the consummate metaphysician. The interest is greatly increased when we find that similar conclusions were drawn independently from the telescopic work of the most diligent and most famous astronomical observer who has ever lived. Not from abstract speculation like Kant, not from mathematical suggestion like Laplace, but from accurate and laborious study of the heavens was the great William Herschel led to the conception of the nebular theory of evolution.

That three different men of science, approaching the study of perhaps the greatest problem which Nature offers us from points of view so fundamentally different, should have been led substantially to the same result, is a remarkable incident in the history of knowledge. Surely the theory introduced under such auspices and sustained by such a weight of testimony has the very strongest claim on our attention and respect.

In the discussion on which we are about to enter in these lectures we must often be prepared to make a special effort of the imagination to help us to realise how greatly the scale of the operations on which the attention is fixed transcends that of the phenomena with which our ordinary affairs are concerned. Our eyes can explore a region of space which, however vast, must still be only infinitesimal in comparison with the extent of space itself. Notwithstanding all that telescopes can do for us, our knowledge of the universe must be necessarily restricted to a mere speck in space, a speck which bears to the whole of space a ratio less—we might perhaps say infinitely less—than that which the area of a single daisy bears to the area of the continent where that daisy blooms. But we need not repine at this limitation; a whole life devoted to the study of a daisy would not be long enough to explore all the mysteries of its life. In like manner the duration of the human race would not be long enough to explore adequately even that small part of space which is submitted for our examination.

But it is not merely the necessary limits of our senses which restrict our opportunities for the study of the great phenomena of the universe. Man’s life is too short for the purpose. That our days are but a span is the commonplace of the preacher. But it is a commonplace specially brought home to us in the study of the nebular theory. A man of fourscore will allude to his life as a long one, and no doubt it may be considered long in relation to the ordinary affairs of our abode on earth; but what is a period of eighty years in the history of the formation of a solar system in the great laboratory of the universe? Such a period then seems to be but a trifle—it is nothing. Eighty years may be long enough to witness the growth of children and grandchildren; but it is too short for a single heartbeat in the great life of Nature. Even the longest lifetime is far too brief to witness a perceptible advance in the grand transformation. The periods of time demanded in the great evolution shadowed forth by the nebular theory utterly transcend our ordinary notions of chronology. The dates at which supreme events occurred in the celestial evolution are immeasurably more remote than any other dates which we are ever called upon to consider in other departments of science. The time of the story on which we are to be engaged is earlier, far earlier, than any date we have ever learned at school, or have ever forgotten since. The incidents of that period took place long before any date was written in figures—earlier than any of those very ancient dates which the geologists indicate not by figures indeed, but by creatures whose remains imbedded in the rocks suffice to give a character to the period referred to. The geologist will specify one epoch as that in which the fossilized bone of some huge extinct reptile was part of a living animal; he may specify another by the statement that the shell of some beautiful ammonite was then inhabited by a living form which swam in the warm primæval seas. The date of our story has at least this much certainty: that it is prior—immeasurably prior—to the time when that marvellous thing which we call life first came into being.

Voltaire has an instructive fable which I cannot resist repeating. It will serve, at all events, to bring before us the way in which the lapse of time ought to be regarded by one who desires to view the great operations of Nature in their proper proportions. He tells how an inhabitant of the star Sirius went forth on a voyage of exploration through the remote depths of space. In the course of his travels he visited many other worlds, and at length reached Saturn, that majestic orb, which revolved upon the frontier of the solar system, as then known. Alighting on the ringed globe for rest and investigation, the Sirian wanderer, in quest of knowledge, was successful in obtaining an interview with a stately inhabitant of Saturn who enjoyed the reputation of exceptional learning and wisdom. The Sirian hoped to have some improving conversation with this sage who dwelt on a globe so utterly unlike his own, and who had such opportunities of studying the majestic processes of Nature in remote parts of the universe. He thought perhaps they might be able to compare instructive notes about the constitution of the suns and systems in their respective neighbourhoods. The visitor accordingly prattled away gaily. He opened all his little store of knowledge about the Milky Way, about the Great Bear, and about the great Nebula in Orion; and then pausing, he asked what the Saturnian had to communicate in reply. But the philosopher remained silent. Eagerly pressed to make some response, the grave student who dwelt on the frontier globe at last said in effect: “Sirian, I can tell you but little of Nature. I can tell you indeed nothing that is really worthy of the great theme which Nature proposes; for the grand operations of Nature are very slow; they are so slow that the great transformations in progress around us would have to be watched for a very long time before they could be properly understood. To observe Nature so as to perceive what is really happening, it would be necessary to have a long life; but the lives of the inhabitants of Saturn are not long; none of us ever lives more than fifteen thousand years.”

Change is the order of Nature. Many changes no doubt take place rapidly, but the great changes by which the system has been wrought into its present form, those profound changes which have produced results of the greatest magnificence in celestial architecture are extremely slow. We should make a huge mistake if we imagined that changes—even immense changes—are not in progress, merely because our brief day is too short a period wherein to perceive them.

On the village green stands an oak-tree, a veteran which some say dates from the time of William the Conqueror, but which all agree must certainly have been a magnificent piece of timber in the days of Queen Elizabeth. The children play under that tree just as their parents and their grandparents did before them. A year, a few years, even a lifetime, may show no appreciable changes in a tree of such age and stature. Its girth does not perceptibly increase in such a period. But suppose that a butterfly whose life lasts but a day or two were to pass his little span in and about this venerable oak. He would not be able to perceive any changes in the tree during the insignificant period over which his little life extended. Not alone the mighty trunk and the branches, but even the very foliage itself would seem essentially the same in the minutes of the butterfly’s extreme old age as they did in the time of his life’s meridian or at the earliest moment of his youth. To the observations of a spectator who viewed it under such ephemeral conditions the oak-tree would appear steadfast, and might incautiously be deemed eternal. If the butterfly could reflect on the subject, he might perhaps argue that there could not be any change in progress in the oak-tree, because although he had observed it carefully all his life he could not detect any certain alteration. He might therefore not improbably draw the preposterous conclusion that the oak-tree must always have been just as large and just as green as he had invariably known it; and he might also infer that just as the oak-tree is now, so will it remain for all time.

Fig. 2.—A Faint Diffused Nebulosity (n.g.c. 1499; in Perseus). (Photographed by Dr. Isaac Roberts, F.R.S.)

In our study of the heavens we must strive to avoid inferences so utterly fallacious as these which I have here tried to illustrate. Let it be granted that to our superficial view the sun and the moon, the stars and the constellations present features which appear to us as eternal as the bole of the oak seemed to the butterfly. But though the sun may seem to us always of the same size and always of the same lustre, it would be quite wrong to infer that the lustre and size of the sun are in truth unchanging. The sun is no more unchanging than the oak-tree is eternal. The sun and the earth, no less than the other bodies of the universe, are in process of a transformation no less astonishing than that wonderful transformation which in the course of centuries develops an acorn into the giant of the forest. We could not indeed with propriety apply to the great transformation of the sun the particular word growth; the character of the solar transformation cannot be so described. The oak-tree, of course, enlarges with its years, while the sun, on the other hand, is becoming smaller. The resemblance between the sun and the oak-tree extends no further than that a transformation is taking place in each. The rate at which each transformation is effected is but slow; the growth of the oak is too slow to be perceived in a day or two; the contraction of the sun is too slow to be appreciable within the centuries of human history.

Whatever the butterfly’s observation might have suggested with regard to the eternity of the oak, we know there was a time when that oak-tree was not, and we know that a time will come when that oak-tree will no longer be. In like manner we know there was a time when the solar system was utterly different from the solar system as we see it now; and we know that a time will come when the solar system will be utterly different from that which we see at present. The mightiest changes are most certainly in progress around us. We must not deem them non-existent, merely because they elude our scrutiny, for our senses may not be quick enough to perceive the small extent of some of these changes within our limited period of observation. The intellect in such a case confers on man a power of surveying Nature with a penetration immeasurably beyond that afforded by his organs of sense.

Fig. 3.—The Crab Nebula (n.g.c. 1952; in Taurus). (Photographed by Dr. Isaac Roberts, F.R.S)

That the great oak-tree which has lived for centuries sprang from an acorn no one can doubt; but what is the evidence on which we believe this to have been the origin of a veteran of the forest when history and tradition are both silent? In the absence of authentic documents to trace the growth of that oak-tree from the beginning, how do we know that it sprouted from an acorn? The only reason we have for believing that the oak-tree has gone through this remarkable development is deduced from the observation of other oak-trees. We know the acorn that has just sprouted; we know the young sapling as thick as a walking stick; we know the vigorous young tree as stout as a man’s arm or as his body; we know the tree when it first approaches the dignity of being called timber; we can therefore observe different trees grade by grade in a continuous succession from the acorn to the monarch of five centuries. No one doubts for a moment that the growth as witnessed in the stages exhibited by several different trees, gives a substantially accurate picture of the development of any individual tree. Such is the nature of one of the arguments which we apply to the great problem before us. We are to study what the solar system has been in the course of its history by the stages which we witness at the present moment in the evolution of other systems throughout the universe. We cannot indeed read the history in time, but we can read it in space.

The mighty transformation through which the solar system has passed, and is even now at this moment passing, cannot be actually beheld by us poor creatures of a day. It might perhaps be surveyed by beings whose pulses counted centuries, as our pulses count seconds, by beings whose minutes lasted longer than the dynasties of human history, by beings to whom a year was comparable with the period since the earth was young, and since life began to move in the waters.

May I, with all reverence, try to attune our thoughts to the time conceptions required in this mighty theme by quoting those noble lines of the hymn—

“A thousand ages in Thy sight
Are like an evening gone,
Short as the watch that ends the night,
Before the rising sun.”

CHAPTER II. THE PROBLEM STATED.

The Great Diurnal Motion—The Distinction between Stars and Planets—The Earth no more than a Planet—Relation of the Stars to the Solar System—Contrast between Aldebaran and Mars—Illustration of Star-distances—The Celestial Perspective—Illustration of an Attractive Force—Instructive Experiments—The Globe and the Tennis Ball—The Law of Gravitation—The Focal Ellipse—The Solar System as it is now Known—Statement of the Great Problem before us.

WHEN we raise our eyes to the heavens on a clear night, thousands of bright objects claim our attention. We observe that all these objects move as if they were fastened to the inside of an invisible sphere. They are seen gradually ascending from the east, passing across the south, and in due course sinking towards the west. The sun and the moon, as well as all the other bodies, alike participate in this great diurnal movement. The whole scheme of celestial objects seems to turn around the two points in the heavens that we call the Poles, and so far as the pole in the northern hemisphere is concerned, its position is most conveniently indicated by the proximity of the well-known Pole Star.

Except this great diurnal motion, the vast majority of the bodies on the celestial sphere have no other movement easily recognisable, and certainly none which it is necessary for us to consider at present. The groups in which the stars have been arranged by the poetical imagination of the ancients exist to-day, as they have existed during all the ages since they were first recognised, without any noticeable alteration in their lineaments. The stately belt of Orion is seen to-night as Job beheld it thousands of years ago; the stars in the Pleiades have not altered their positions, relatively to the adjacent stars nor their arrangement among themselves, since the time when astronomers in early Greece observed them. All the bodies which form these groups are therefore known as fixed stars.

But besides the fixed stars, which exist in many thousands, and, of course, the sun and the moon, there are other celestial objects, so few in number as to be counted on the fingers of one hand, which are in no sense fixed stars. It is quite true that these wandering bodies, or planets, as they are generally designated, bear a certain resemblance to the fixed stars. In each case the star or the planet appears as a bright point, like many other bright points in the heavens, and star and planet both participate in the general diurnal motion. But a little attention will show that while the stars, properly so called, retain their relative places for months and years and centuries, the planets change their places so rapidly that in the course of a few nights it is quite easy to see, even without the aid of any instrument, that they have independent motion.

We may compare the movements of these bodies to the movement of the moon, which nightly shifts her place over a long track in the sky; and although we are not able to see the stars in the vicinity of the sun, inasmuch as the brilliant light of the orb quenches the feeble radiance from such stars, there is no doubt that, did we see them, the sun itself would seem to move relatively to the stars, just as does the moon and just as do the planets.

The fundamental distinction between stars and planets was noticed by acute observers of Nature in the very earliest times. The names of the planets come to us as survivals from the time when the sun, the moon, and the stars were objects of worship, and they come to us bearing the names of the deities of which these moving globes were regarded as the symbols. But it was not the movements of the planets alone which called for the notice of the early observers of the skies. The brightness and certain other features peculiar to them also attracted the attention of the primitive astronomers. They could not fail to observe that when the beautiful planet Venus was placed so as to be seen to the greatest advantage, her orb was far brighter than any other object in the host of heaven, the sun and the moon both of course excepted. It was also obvious that Jupiter at its best exceeded the stars in lustre, and sometimes approached even to that of Venus itself. Though Mercury was generally so close to the sun as to be invisible among its beams, yet on the rare occasions when that planet was seen, just after sunset or just before sunrise, its lustre was such as to mark it out as one of the remarkable bodies in the heavens.

Thus the astronomers of the earliest ages pointed to the five planets and the sun and the moon as the seven wandering stars. The diligent attention of the learned of every subsequent period was given to the discovery of the character of their movements. The problems that these motions presented were, however, so difficult that not until after the lapse of thousands of years did their nature become understood. The supreme importance of the earth appeared so obvious to the early astronomers that it did not at first occur to them to assign to our earth a position which would reduce it to the same class as any of the celestial bodies. The obviously great size of our globe, the fact that to the uninstructed senses the earth seemed to be at rest, while the other bodies seemed to be in motion, and many other analogous circumstances, appeared to show that the earth must be a body totally different from the other objects distributed around us in space. It was only by slow degrees, and after much observation and reflection, and not a little controversy, that at last the true nature of our system was detected. Those who have been brought up from childhood in full knowledge of the rotation of the earth and of the other fundamental facts relating to the celestial sphere, will often find it difficult to realise the way such problems must have presented themselves to the observers of old, who believed, as for centuries men did believe, that the earth was a plane of indefinite extent fixed in space, and that the sun and the planets, the moon and the stars, were relatively small bodies whose movements must be accounted for as best they could be, consistently with the fixity and flatness of the earth.

Fig. 4.—Jupiter (May 30th, 1899, 10h. 9.5m.; g.m.t.). (E. M. Antoniadi.)

But at last it began to be seen that the earth must be relegated to a position infinitely less important than that which the untutored imagination assigned to it. It was found that the earth was not an indefinite plane; it was rather a globe poised in space, without direct material support from any other body. It was found that the earth was turning round on its axis: while instead of the sun revolving around the earth, it was much more correct to say that the earth revolved around the sun. The astonishing truth was then disclosed that the five planets, Jupiter and Saturn, Mercury, Venus and Mars, stood in a remarkable relation to the earth. For as each of these planets was found to revolve round the sun, and as the earth also revolved round the sun, the assumed difference in character between the earth and the planets tended to vanish altogether. There was in fact no essential difference. If indeed the earth was smaller than Jupiter and Saturn, yet it was considerably greater and heavier than Mars or Mercury, and it was almost exactly the same size and weight as Venus. There was clearly nothing in the question of bulk to indicate any marked difference between our earth and the planets. It was also observed that there was no distinction to be drawn between the way in which the earth revolved round the sun and the movements of the planets. No doubt the earth is not so near the sun as Mercury; it is not so near the sun as even Venus; on the other hand the sun is nearer the earth than Mars, while Jupiter is a long way further off than Mars, and Saturn is even beyond Jupiter again. It is these considerations which justify us in regarding our earth as one of the planets. We have also to note the overwhelming magnitude of the sun in comparison with any one of the planets. It will suffice to give a single illustration. The sun is more than a thousand times as massive as Jupiter, and Jupiter is the greatest of the planets. This latter noble globe is in fact greater than all the rest of the planets put together.

But before we can fully realise the circumstances of the solar system, it will be necessary to see how the stars, properly so called, enter into the scheme of things celestial. The stars look so like the planets that it has not infrequently happened that even an experienced astronomer has mistaken one for the other. The planet Mars is often very like the star Aldebaran, and there are not a few first-magnitude stars which on a superficial view closely resemble Saturn. But how great is the intrinsic difference between a star and a planet! In the first place we have to note that every planet is a dark object like this earth of ours, possessing no light of its own, and dependent entirely on the sun for the supply of light by which it is illumined. But a star is totally different. The star is not a dark object, but is really an object which is in itself intensely luminous and brilliant; the star is in fact a sun-like body. How then, it may well be asked, does a star like Aldebaran, which is indeed a sun-like body, and in all probability is quite as large and quite as brilliant as the sun itself, bear even a superficial resemblance to an object like Mars, which would not be visible at all were it not for the illumination with which the beams from the sun endow it?

The explanation of this striking resemblance is to be sought in the relative distances of the two objects. A light which is near to the eye may produce an effect quite as great as a very much stronger light which is further away. The intensity of a light varies inversely as the square of the distance. If the distance of a light from the eye be doubled, then the intensity of that light is reduced to one-fourth. Now Aldebaran as a sun-like body emits light which is literally millions of times as great as the gleam of sunshine which starts back to us after reflection from Mars; but Aldebaran is, let us say, a million times as far away from us as Mars, and this being so, the light from Aldebaran would come to us with only a million-millionth part of the intensity that it would have if the star were at the same distance as the planet. There can be no doubt that if Aldebaran were merely at the same distance from the earth as Mars, then Aldebaran would dispense lustre like a splendid sun. By moving Aldebaran further off its light, or rather the light that arrives at the earth, will gradually decrease until by the time that the star is a million times as far as Mars, the light that it sends us is about equal to that of Mars. If it were removed further still, the light that it would send us would become less than that which we receive from Mars, and if still more remote, Aldebaran might cease to be visible altogether.

This illustration will suffice to explain the fundamental difference between planets and stars, notwithstanding the fact that the two classes of bodies bear to each other a resemblance which is extremely remarkable, even if it must be described as being in a sense accidental. But we now know that all of the thousands of stars are to be regarded as brilliant suns, some of which may not be so far off as Aldebaran, though doubtless some are very much further. The actual distances are immaterial, for the essential point to notice is that the five planets are distinguished from the stars, not merely by the fact that they are moving, while the stars are at rest, but by the circumstance that the planets are comparatively close to each other and close to the sun, while the stars are at distances millions of times as great as the distances which the planets are from each other and from the sun.

We are now enabled to place the scheme of things celestial in its proper perspective. I shall suppose that at a point in a field in the centre of England, somewhere near Leamington, let us say, we drive in a peg to represent the sun. Let us draw a circle with that peg as centre, a yard being the radius, and let that circle represent the track in which the earth goes round the sun. I do not indeed say that the orbit of the earth is exactly a circle, and the actual shape of that orbit we may have to refer to later. As, however, the apparent size of the sun does not greatly alter with the seasons, it is evident that the track which our earth pursues cannot be very different from a circular path. Inside this circle which we have drawn with a yard radius, we shall put two smaller circles which are to represent the path in which Venus moves, and the path in which Mercury moves. Outside the path of the earth we shall draw another circle with a radius of five yards; this will be the highway along which the majestic Jupiter wends his way. Inside the path of Jupiter we shall put a circle which will represent the track of Mars, and outside the path of Jupiter a circle with ten yards as radius will represent the track of Saturn. In each of these circles we shall suppose the corresponding planet to revolve, and the time of revolution will of course be greater the further the planet is from the sun. To complete one of its circuits the earth will require a year, Jupiter twelve years, while Saturn, which in the ancient astronomy moved on the frontier of the solar system, will need thirty years to accomplish its mighty journey.

We have thus obtained a plan of the solar system; but now we should like to indicate the positions which some of the stars are to occupy on the same scale. Let us, to begin with, see where the very nearest fixed star is to be placed. We may suppose that the field at the centre of England, in which our little diagram has been constructed, is a large one, so that we can represent the places of objects which are ten or twenty times as far from the sun as Saturn. It is, however, certain that no actual field would be large enough to contain within its bounds the points which would faithfully represent the positions of even the nearest fixed stars. The whole county of Warwick would not be nearly big enough for this purpose; indeed we may say that the whole of England, or indeed of the United Kingdom, would not be sufficiently extensive. If we represented the star at its true relative distance, it could not be put down anywhere within the bounds of the United Kingdom; the nearest object of this kind would have to be far away out on the continent of Europe, or far away out on the Atlantic Ocean, far away down near the equator, or far away up near the pole. This illustration will at all events give some notion of the isolated position of the sun, with the planets revolving around it, in relation to the rest of the host of heaven.