The Outline Of History - Wells Herbert George - E-Book

The Outline Of History E-Book

Wells Herbert George

0,0
2,39 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

The Outline Of History, is a work by H. G. Wells chronicling the history of the world from the origin of the Earth to the First World War. It appeared in an illustrated version of 24 fortnightly installments beginning on 22 November 1919 and was published as a single volume in 1920. It sold more than two million copies, was translated into many languages, and had a considerable impact on the teaching of history in institutions of higher education. Wells modeled the Outline on the Encyclopédie of Denis Diderot.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB
Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Herbert George Wells

UUID: d2f62e7c-c129-4521-b2e9-c2a887b0364e
Questo libro è stato realizzato con StreetLib Writehttps://writeapp.io

Indice dei contenuti

Herbert George Wells

Printed in March 2022

Herbert George Wells

The-Outline-of-History

Part I

1.0 The Earth in Space and Time

The earth on which we live is a spinning globe. Vast though it seems to us, it is a mere speck of matter in the greater vastness of space.

Space is, for the most part, emptiness. At great intervals there are in this emptiness flaring centres of heat and light, the fixed stars. They are all moving about in space, notwithstanding that they are called fixed stars, but for a long time men did not realize their motion. They are so vast and at such tremendous distances that their motion is not perceived. Only in the course of many thousands of years is it appreciable. These fixed stars are so far off that, for all their immensity, they seem to be, even when we look at them through the most powerful telescopes, mere points of light, brighter or less bright. A few, however, when we turn a telescope upon them, are seen to be whirls and clouds of shining vapour which we call nebulae. They are so fax off that a movement of millions of miles would be imperceptible.

One star, however, is so near to us that it is like a great ball of flame. This one is the sun. The sun is itself in its nature like a fixed star, but it differs from the other fixed stars in appearance because it is beyond comparison nearer than they are; and because it is nearer men have been able to learn something of its nature. Its mean distance from the earth is ninety-three million miles. It is a mass of flaming matter, having a diameter of 866,000 miles. Its bulk is a million and a quarter times the bulk of our earth.

These are difficult figures for the imagination. If a bullet fired from a Maxim gun at the sun kept its muzzle velocity unimpaired, it would take seven years to reach the sun. And yet we say the sun is near, measured by the scale of the stars. If the earth were a small ball, one inch in diameter, the sun would be a globe of nine feet diameter; it would fill a small bedroom. It is spinning round on its axis, but since it is an incandescent fluid, its polar regions do not travel with the same velocity as its equator, the surface of which rotates in about twenty-five days. The surface visible to us consists of clouds of incandescent metallic vapour. At what lies below we can only guess. So hot is the sun's atmosphere, that iron, nickel, copper, and tin are present in it in a gaseous state. About it at great distances circle not only our earth, but certain kindred bodies called the planets. These shine in the sky because they reflect the light of the sun; they are near enough for us to note their movements quite easily. Night by night their positions change with regard to the fixed stars.

It is well to understand how empty is space. If, as we have said, the sun were a ball nine feet across, our earth would, in proportion, be the size of a one-inch ball, and. at a distance of 323 yards from the sun. The moon would be a speck the size of a small pea, thirty inches from the earth. Nearer to the sun than the earth would be two other very similar specks, the planets Mercury and Venus, at a distance of 125 and 250 yards respectively. Beyond the earth would come the planets Mars, Jupiter, Saturn, Uranus, and Neptune, at distances of 500, 1,680, 3,000, 6,000, and 9,500 yards respectively. There would also be a certain number of very much smaller specks, flying about amongst these planets, more particularly a number called the asteroids circling between Mars and Jupiter, and occasionally a little puff of more or less luminous vapour and dust would drift into the system from the almost limitless emptiness beyond. Such a puff is what we call a comet. All the rest of the space about us and around us and for unfathomable distances beyond is cold, lifeless, and void. The nearest fixed star to us, on this, minute scale be it remembered"the earth as a one-inch ball, and the moon a little pea"would be over 40,000 miles, away. Most of the fixed stars we see would still be scores and hundreds of millions of miles away.

The science that tells of these things and how men have come to know about them is Astronomy, and to books of astronomy the reader must go to learn more about the sun and stars. The science and description of the world on which we live are called respectively Geology and Geography.

The diameter of our world is a little under 8,000 miles. Its surface is rough, the more projecting parts of the roughness are mountains, and in the hollows of its surface there is a film of water, the oceans and seas. This film of water is about five miles thick at its deepest part"that is to say, the deepest oceans have a depth of five miles. This is very little in comparison with the bulk of the world.

About this sphere is a thin covering of air, the atmosphere. As we ascend in a balloon or go up a mountain from the level of the sea-shore the air is continually less dense, until at last it becomes so thin that it cannot support life. At a height of twenty miles there is scarcely any air at all"not one hundredth part of the density of air at the surface of the sea. The highest point to which a bird can fly is about four miles up"the condor, it is said, can struggle up to that; but most small birds and insects which are carried up by aeroplanes or balloons drop off insensible at a much lower level, and the greatest height to which any mountaineer has ever climbed is under five miles. Men have flown in aeroplanes to a height of over four miles, and balloons with men in them have reached very nearly seven miles, but at the cost of considerable physical suffering. Small experimental balloons, containing not men, but recording instruments, have gone as high as twenty-two miles.

It is in the upper few hundred feet of the crust of the earth, in the sea, and in the lower levels of the air below four miles that life is found. We do not know of any life at all except in these, films of air and water upon our planet. So far as we know, all the rest of space is as yet without life. Scientific men have discussed the possibility of life, or of some process of a similar kind, occurring upon such kindred bodies as the planets Venus and Mars. But they point merely to questionable possibilities.

Astronomers and geologists and those who study physics have been able to tell us something of the origin and history of the earth. They consider that, vast ages ago, the sun was a spinning, flaring mass of matter, not yet concentrated into a compast centre of heat and light, considerably larger than it is now, and spinning very much faster, and that as it whirled, a series of fragments detached themselves from it, which became the planets. Our earth is one of these planets. The flaring mass that was the material of the earth broke into two masses as it spun; a larger, the earth itself, and a smaller, which is now the dead, still moon. Astronomers give us convincing reasons for supposing that sun and earth and moon and all that system were then whirling about at a speed much greater than the speed at which they are moving to-day, and that at first our earth was a flaming thing upon which no life could live. The way in which they have reached these conclusions is by a very beautiful and interesting series of observations and, reasoning, too long and elaborate for us to deal with here. But they oblige us to believe that the sun, incandescent though it is, is now much -cooler than it was, and that it spins more slowly now than it did, and that it continues to cool and slow down. And they also show that the rate at which the earth spins is diminishing and continues to diminish"that is to say, that our day is growing longer and longer, and that the heat at the centre of the earth wastes slowly. There was a time when the day was not a half and not a third of what it is to-day; when a blazing hot sun, much greater than it is now, must have moved visibly"had there been an eye to mark it"from its rise to its setting across the skies. There will be a time when the day will be as long as a year is now, and the cooling sun, shorn of its beams, will hang motionless in the heavens.

It must have been in days of a much hotter sun, a far swifter day and night, high tides, great heat, tremendous storms and. earthquakes, that life, of which we are a part, began upon the world. The moon also was nearer and brighter in those days and had a changing face.

2.0 The Record of the Rocks

2.1 The First Living Things

2.2 How Old is the World?

2.1 The First Living Things

We do not know how life began upon the earth. [1]

Biologists, that is to say, students of life, have made guesses about these beginnings, but we will not discuss them here. Let us only note that they all agree that life began where the tides of those swift days spread and receded over the steaming beaches of mud and sand.

The atmosphere was much denser then, usually great cloud masses obscured the sun, frequent storms darkened the heavens. The land of those days, upheaved by violent volcanic forces, was a barren land, without vegetation, without soil. The almost incessant rain-storms swept down upon it, and rivers and torrents carried great loads of sediment out to sea, to become muds that hardened later into slates and shales, and sands that became sandstones. The geologists have studied the whole accumulation of these sediments as it remains today, from those of the earliest ages to the most recent. Of course the oldest deposits are the most distorted and changed and worn, and in them there is now no certain trace to be found of life at all. Probably the earliest forms of life were small and soft, leaving no evidence of their existence behindthem. It was only when some of these, living things developed skeletons and shells of lime and such-like hard material that they left fossil vestiges after they died, and so put themselves on record for examination.

The literature of geology isvery largely an account of the fossils that are found in the rocks, and of the order in which layers after layers of rocks lie one on another. The very oldest rocks must have been formed before there was any sea at all, when the earth was too, hot for a sea, to exist, and when the water that is now sea was an atmosphere of steam mixed with the air. Its higher levels were dense with clouds, from which a hot rain fell towards the rocks below, to be converted again into steam long before it reached their incandescence. Below this steam atmosphere the molten world-stuff solidified as the first rocks. These first rocks must have solidified as a cake over glowing liquid material beneath, much as cooling lava does. They must have appeared first as crusts and clinkers. They must have been constantly remelted and recrystallized before any thickness of them became permanently solid. The name of Fundamental Gneiss is given to a great underlying system of crystalline rocks which probably formed age by age as this hot youth of the world drew to its close. The scenery of the world in the days when the Fundamental Gneiss was formed must have been more like the interior of a furnace than anything else to be found upon earth at the present time.

After long ages the steam in the atmosphere began also to condense and. fall right down to earth, pouring at last over these warm primordial rocks in rivulets of hot water and gathering in depressions as pools and lakes and the first seas. Into those seas the streams that poured over the rocks brought with them dust and particles to form a sediment, and this sediment accumulated in layers, or as geologists call them, strata, and formed the first Sedimentary Rocks. Those earliest sedimentary rocks sank into depressions and were covered by others; they were bent, tilted up, and torn by great volcanic disturbances and by tidal strains that swept through the rocky crust of the earth. We find these first sedimentary rocks still coming to the surface of the land here and there, either not covered by later strata or exposed after vast ages of concealment by the wearing off of the rock that covered them later"there are great surfaces of them in Canada especially; they are cleft and bent, partially remelted, recrystallized, hardened and compressed, but recognizable for what-they are. And they contain no single certain trace of life at all. They are frequently called Azoic (lifeless) Rocks. But since in some of these earliest sedimentary rocks a substance called graphite (black lead) occurs, and also red and black oxide of iron, and since it is asserted that these substances need the activity of living things for their production, which may or may not be the case, some geologists prefer to call these earliest sedimentary rocks Archaeozoic (primordial life). They suppose that the first life was soft living matter that had no shells or skeletons or any such structure that could remain as a recognizable fossil after its death, and that its chemical influence caused the deposition of graphite and iron oxide. This is pure guessing, of course, and there is at least an equal probability that in the time of formation of the Azoic Rocks, life had not yet begun.

Overlying or overlapping these Azoic or Archaeozoic rocks come others, manifestly also very ancient and worn, which do contain traces of life. These first remains are of the simplest description; they are the vestiges of simple plants called algae or marks like the tracks made by worms in the sea mud. There are also the skeletons of the microscopic creatures called Radiolaria. This second, series of rocks is called the Proterozoic (beginning of life) series, and marks a long age in the world's history. Lying over and above the Proterozoic rocks is a third series, which is found to contain a considerable number and variety of traces of living things. First comes the evidence of a diversity of shellfish, crabs, and such-like crawling things, worms, seaweeds, and the like; then of a multitude of fishes and, of the beginnings of land plants and land creatures. These rocks are called the Palaeozoic (ancient life) rocks. They mark a vast era, during which life was slowly spreading, increasing, and developing in the seas of our world. Through long ages, through the earliest Palaeozoic time, it was no more than a proliferation of such swimming and creeping things in the water. There were creatures called trilobites; they were crawling things like big sea woodlice that were probably related to the American king-crab of today. There were also sea scorpions, the prefects of that early world. The individuals of certain species of these were nine feet long. These were the very highest sorts of life. There were abundant different sorts of an order of shellfish called brachiopods. There were plant animals, rooted and joined together like plants, and loose weeds that waved in the waters.

It was not a display of life to excite our imaginations. There was nothing that ran or flew or even swam swiftly or skillfully. Except for the size of some of the creatures, it was not very different from, and rather less various than, the kind of life a student would gather from any summer-time ditch nowadays for microscopic examination. Such was the life of the shallow seas through a hundred million years or more in the early Palaeozoic period. The land during that time was apparently absolutely barren. We find no trace nor hint of land life. Everything that lived in those days lived. under water for most or all of its life.

Between the formation of these Lower Palaeozoic rocks in which the sea scorpion and trilobite ruled, and our own time, there have intervened almost immeasurable ages, represented by layers and masses of sedimentary rocks. There are first the Upper Palaeozoic rocks, and above these the geologists, distinguish two great divisions. Next above the Palaeozoic come the Mesozoic (middle life) rocks, a second vast system of fossilbearing rocks, representing perhaps a hundred millions of swift years, and containing a wonderful array of fossil remains, bones of giant reptiles and the like, which we will presently describe; and above these again are the Cainozoic (recent life) rocks, a third great volume in the history of life, an unfinished volume of which the sand and mud that was carried out to sea yesterday by the rivers of the world, to bury the bones and scales and bodies and tracks that will become at last fossils of the things of to-day, constitute the last written leaf.

[Fig 0009 Life in the Early Paleozoic]

[Fig 0009]

These markings and fossils in the rocks and the rooks themselves are our first historical documents. The history of life that men have puzzled out and are still puzzling out from them is called the Record of the Rocks. By studying this record men are slowly piecing together a story of life's beginnings, and of the beginnings of our kind, of which our ancestors a century or so ago had no suspicion. But when we call these rocks and the fossils a record and a history, it must not be supposed that there is anysign of an orderly keeping of a record. It is merely that whatever happens leaves some trace, if only we are intelligent enough to detect the meaning of that trace. Nor are the rocks of the world in orderly layers one above the other, convenient for men to read. They are not like the books and pages of a library. They are torn, disrupted, interrupted, flung about, defaced, like a carelessly arranged office after it has experienced in succession a bombardment, a hostile military occupation, looting, an earthquake, riots, and a fire. And so it is that for countless generations this Record of the Rocks lay unsuspected beneath the feet of men. Fossils were known to the Ionian Greeks in the sixth century B.C., they were discussed at Alexandria by Eratosthenes and others in the third century B.C., a discussion which is summarised in Strabo's Geography ( ?20-10 B.C.). They were known to the Latin poet Ovid, but he did not understand their nature. He thought they were the first rude efforts of creative power. They were noted by Arabic writers in the tenth century. Leonardo da Vinci, who lived so recently as the opening of the sixteenth century (1452-1519), was one of the first Europeans to grasp the real significance of fossils, and it has been only within the last century and a half that man has begun the serious and sustained deciphering of these long-neglected early pages of his world's history.

2.2 How Old is the World?

Speculations about geological time vary enormously. Estimates of the age of the oldest rocks by geologists and astronomers starting from different standpoints have varied between 1,600,000,000, and 25,000,000. That the period of time has been vast, that it is to be counted by scores and possibly by hundreds of millions of years, is the utmost that can be said with certainty in the matter. It is, quite open to the reader to divide every number in the appended time diagram by ten or multiply it by two; no one can gainsay him. Of the relative amount of time as between one age and another we have, however, stronger evidence; if the reader cuts down the 800,000,000 we have given here to 400,000,000, then he must reduce the 40,000,000 of the Cainozoic to 20,000,000. And be it noted that whatever the total sum may be, most geologists are in agreement that half or more than half of the whole of geological time had passed before life had developed to the Later Palozoic level. The reader reading quickly through these opening chapters may be apt to think of them as a mere swift prelude of preparation to the apparently much longer history that follows, but in reality that subsequent history is longer only because it is more detailed and more interesting to us. It looms larger in perspective. For ages that stagger the imagination this earth spun hot and lifeless, and again for ages of equal vastness it held no life above the level of the animalcul in a drop of ditch-water.

Not only is Space from the point of view of life and humanity empty, but Time is empty also. Life is like, a little glow, scarcely kindled yet, in these void immensities.

[Fig 0011 Time Chart from earliest life to present age]

[Fig 0011]

3.0 Natural Selection and Changes of Species

Now here it will be well to put plainly certain general facts about this new thing, life, that was creeping in the shallow waters and intertidal muds of the early Palaeozoic period, and which is perhaps confined to our planet alone in all the immensity of space.

Life differs from all things whatever that are without life in certain general aspects. There are the most wonderful differences among living things to-day, but all living things past and present agree in possessing a certain power of growth, all living things take nourishment, all living things move about as they feed and grow, though the movement be no more than the spread of roots through the soil, or of branches in the air. Moreover, living things reproduce; they give rise to other living things, either by growing and then dividing or by means of seeds or spores or eggs or other ways of producing young. Reproduction is a characteristic of life.

No living thing goes on living for ever. There seems to be a limit of growth for every kind of living thing. Among very small and simple living things, such as that microscopic blob of living matter the Amoeba, an individual may grow and then divide completely into two new individuals, which again may divide in their turn. Many other microscopic creatures live actively for a time, grow, and then become quiet and inactive, enclose themselves in an outer covering and break up wholly into a number of still smaller things, spores, which are released and scattered and again grow into the likeness of their parent. Among more complex creatures the reproduction is not usually such simple division, though division does occur even in the case of many creatures big enough to be visible to the unassisted eye. But the rule with almost all larger beings is that the individual grows up to a certain limit of size. Then, before it becomes unwieldy, its growth declines and stops. As it reaches its full size it matures, it begins to produce young, which are either born alive or hatched from eggs. But all of its body does not produce young. Only a special part does that. After the individual has lived and produced offspring for some time, it ages, and dies. It does so by a sort of necessity. There is a practical limit to its life as well as to its growth. These things are as true of plants as they are of animals. And they are not true of things that do not live. Non-living things, such as crystals, grow, but they have no set limits of growth or size, they do not move of their own accord and there is no, stir within them. Crystals once formed may last unchanged for millions of years. There is no reproduction for any non-living thing.

This growth and dying and reproduction of living things leads to some very wonderful consequences. The young which a living thing produces are either directly, or after some intermediate stages and changes (such as the changes of a caterpillar and butterfly), like the parent living thing. But they are never exactly like it or like each other. There is always a slight difference, which we speak of as individuality. A thousand butterflies this year may produce two or three thousand next year; these latter will look to us almost exactly like their predecessors, but each one will have just that slight difference. It is hard for us to see individuality in butterflies because we do not observe them very closely, but it is easy for us to see it in men. All the men and women in the world now are descended from the men and women of A.D. 1800, but not one of us now is exactly the same as one of that vanished generation. And what is true of men and butterflies is true of every sort of living thing, of plants as of animals. Every species changes all its individualities in each generation. That is true of all the minute creatures that swarmed and reproduced and died in the Archaeozoic and Proterozoic seas, as it is of men to-day.

Every species of living things is continually dying and being born again, as a, multitude of fresh individuals.

Consider, then, what must happen to a new-born generation of living things of any species. Some of the individuals will be stronger or sturdier or better suited to succeed in life in some way than the rest, many individuals will be weaker or less suited. In particular single cases any sort of luck or accident may occur, but on the whole the better equipped individuals will live and grow up and reproduce themselves and the weaker will as a rule go under. The latter will be less able to get food, to fight their enemies and pull through. So that in each generation there is as it were a picking over of a species, a picking out of most of the weak or unsuitable and a preference for the strong and suitable. This process is called Natural Selection or the Survival of the Fittest. [1]

It follows, therefore, from the fact that living things grow and breed and die, that every species, so long as the conditions under which it lives remain the same, becomes more and more perfectly fitted to those conditions in every generation.

But now suppose those conditions change, then the sort of individual that used to succeed may now fail to succeed and a sort of individual that could not get on at all under the old conditions may now find its opportunity. These species will change, therefore, generation by generation; the old sort of individual that used to prosper and dominate will fail and die out and the new sort of individual will become the rule,"until the general character of the species changes.

Suppose, for example, there is some little furry whitey brown animal living in a bitterly cold land which is usually under snow. Such individuals as have the thickest, whitest fur will be least hurt by the cold, less seen by their enemies, and less conspicuous as they seek their prey. The fur of this species will thicken and its whiteness increase with every generation, until there is no advantage in carrying any more fur.

Imagine now a change of climate that brings warmth into the land, sweeps away the snows, makes white creatures glaringly, visible during the greater part of the year and thick fur an encumbrance. Then every individual with a touch of brown in its colouring and a thinner fur will find itself at an advantage, and very white and heavy fur will be a handicap. There will be a weeding out of the white in favour of the brown in each generation. If this change of climate come about too quickly, it may of course exterminate the species altogether; but if it come about gradually, the species, although it may have a hard time, may yet be able to change itself and adapt itself generation by generation. This change and adaptation is called the Modification of Species.

[Fig 0016 Life in the Later Paleozoic Age]

[Fig 0016]

Perhaps this change of climate does not occur all over the lands inhabited by the species, maybe it occurs only on one side of some great arm of the sea or some great mountain range or such-like divide, and not on the other. A warm ocean current like the Gulf Stream may be deflected, and flow so as to warm one side of the barrier, leaving the other still cold. Then on the cold side this species will still be going on to its utmost possible furriness and whiteness and on the other side it will be modifying towards brownness and a thinner coat. At the same time there will probably be other changes going on; a difference in the paws perhaps, because one half of the species will be frequently scratching through snow for its food, while the other will be scampering over brown earth. Probably also the difference of climate will mean differences in the sort of food available, and that may produce differences in the teeth and the digestive organs. And there may be changes in the sweat and oil glands of the skin due to the changes in the fur, and these will affect the excretory, organs and all the internal chemistry of the body. And so through all the structure of the creature. A time will come when the two separated varieties of this formerly single species will become so unlike each other as to be recognizably different species. Such a splitting up of a species in the course of generations into two or more species is called the Differentiation of Species.

And it should be clear to the reader that given these elemental facts of life, given growth and death and reproduction with individual variation in a world that changes, life must change in this way, modification and differentiation must occur, old species must disappear, and new ones appear. We have chosen for our instance here a familiar sort of animal, but what is true of furry beasts in snow and ice is true of all life, and equally true of the soft jellies and simple beginnings, that flowed and crawled for hundreds of millions of years between the tidal levels and in the shallow, warm waters of the Proterozoic seas.

The early life of the early world when the blazing sun rose and set in only a quarter of the time it now takes, when the warm seas poured in great tides over the sandy and muddy shores of the rocky lands and the air was full of clouds and steam, must have been modified and varied and species must have developed at a great pace. Life was probably as swift and short as the days and years; the generations, which natural selection picked over, followed one another in rapid succession.

Natural selection is a slower process with man than with any other creature. It takes twenty years or more before an ordinary human being in western Europe grows up and reproduces. In the case of most animals the new generation is on trial in a year or less. With such simple and lowly beings, however, as first appeared in the primordial seas, growth and reproduction was probably a matter of a few brief hours or even of a few brief minutes. Modification and differentiation of species must accordingly have been extremely rapid, and life had already developed a great variety of widely contrasted forms before it began to leave traces in the rocks. The Record of the Rocks does not begin, therefore, with any group of closely related forms from which all subsequent and existing creatures are descended. It begins in the midst of the game, with nearly every main division of the animal kingdom already represented. Plants are already plants, and animals animals. The curtain rises on a drama in the sea that has already begun, and has been going on for some time. The brachiopods are discovered already in their shells, accepting and consuming much the same sort of food that oysters and mussels do now; the great water scorpions crawl among the seaweeds, the trilobites roll up into balls, and unroll and scuttle away. In that ancient mud and among those early weeds there was probably as rich and abundant and active a life of infusoria and the like as one finds in a drop of ditchwater to-day. In the ocean waters, too, down to the utmost downward limit to which light could filter, then as now, there was an abundance of minute and translucent, and in many cases phosphorescent, beings.

But though the ocean and intertidal waters already swarmed with life, the land above the high-tide line was still, so far as we can guess, a stony wilderness without a trace of life.

4.0 The Invasion of the Dry Land by Life

4.1 Life and Water

4.2 The Earliest Animals

4.1 Life and Water

Wherever the shore line ran there was life, and that life went on in and by and with water as its home, its medium, and its fundamental necessity.

The first jelly-like beginnings of life must have perished whenever they got out of the water, as jelly-fish dry up and perish on our beaches to-day. Drying up was the fatal thing for life in those days, against which at first it had no protection. But in a world of rain-pools and shallow seas and tides, any variation that enabled a living thing to hold out and keep its moisture during hours of low tide or drought met with every encouragement in the circumstances of the time. There must have been a constant risk of stranding. And, on the other hand, life had to keep rather near the shore and beaches in the shallows because it had need of air (dissolved of course in the water) and light.

No creature can breathe, no creature can digest its food, without water. We talk of breathing air, but what all living things really do is to breathe oxygen dissolved in water. The air we ourselves breathe must first be dissolved in our lungs; and all our food must be liquefied before it can be assimilated. Water-living creatures which are always under water, wave the freely exposed gills by which they breathe in that water, and extract the air dissolved in it. But a creature that is to be exposed for any time out of the water must have its body and its breathing apparatus protected from drying up. Before the seaweeds could creep up out of the Early Palaeozoic seas into the intertidal line of the beach, they had to develop a tougher outer skin to hold their moisture.

Before the ancestor of the sea scorpion could survive being left by the tide it had to develop its casing and armour. The trilobites probably developed their tough covering and rolled up into balls, far less as a protection against each other and any other enemies they may have possessed, than as a precaution against drying. And when presently, as we ascend the Palaeozoic rocks, the fish appear, first of all the back-boned or vertebrated animals, it is evident that a number of them are already adapted by the protection of their gills with gill covers and by a sort of primitive lung swimming-bladder, to face the same risk of temporary stranding.

Now the weeds and plants that were adapting themselves to intertidal conditions were also bringing themselves into a region of brighter light, and light is very necessary and precious to all plants. Any development of structure that would stiffen them and hold them up to the light, so that instead of crumping and flopping when the waters receded, they would stand up outspread, was a great advantage. And so we find them developing fibre and support, and the beginning of woody fibre in them. The early plants reproduced by soft spores, or half-animal gametes, that were released in water, were distributed by water and could only germinate under water. The early plants were tied, and most lowly plants today are tied, by the conditions of their life cycle, to water. But here again there was a great advantage to be got by the development of some protection of the spores from drought that would enable reproduction to occur without submergence. So soon as a species could do that, it could live and reproduce and spread above the, high-water mark, bathed in light and out of reach of the beating and distress of the waves. The main classificatory divisions of the larger plants mark stages in the release of plant life, from the necessity of submergence by the development of woody support and of a method of reproduction that is more and more defiant of drying up. The lower plants are still the prisoner attendants of water. The lower mosses must live in damp, and even the development of the spore of the ferns demands at certain stages extreme wetness. The highest plants have carried freedom from water so far that they can live and reproduce if only there is some moisture in the soil below them. They have solved their problem of living out of water altogether.

The essentials of that problem were worked out through the vast aeons of the Proterozoic Age and the early Palaeozoic Age by nature's method of experiment and trial. Then slowly, but in great abundance, a variety of new plants began to swarm away from the sea and over the lower lands, still keeping to swamp and lagoon and water-course as they spread.

4.2 The Earliest Animals

And after the plants came the animal life.

There is no sort of land animal in the world, as there is no sort of land plant, whose structure is not primarily that of a water-inhabiting being which has been adapted through the modification and differentiation of species to life out of the water. This adaptation is attained in various ways. In the case of the land scorpion the gill-plates of the primitive sea scorpion are sunken into the body so as to make the lungbooks secure from rapid evaporation. The gills of crustaceans, such as the crabs which run about in the air, are protected by the gill-cover extensions of the back shell or carapace. The ancestors of the insects developed a system of air pouches and air tubes, the tracheal tubes, which carry the air all over the body before it is dissolved. In the case of the vertebrated land animals, the gills of the ancestral fish were first supplemented and then replaced by a bag-like growth from the throat, the primitive lung swimming-bladder. To this day there survive certain mudfish which enable us to understand very clearly the method by which the vertebrated land animals worked their way out of the water. These creatures (e.g. the African lung fish) are found in tropical regions in which there is a rainy full season and a dry season, during which the rivers become mere ditches of baked mud. During the rainy season these fish swim about and breathe by gills like any other fish. As the waters of the river evaporate, these fish bury themselves in the mud, their gills go out of action, and the creature keeps, itself alive until the waters return by swallowing air, which passes into its swimming-bladder. The Australian lung fish, when it is caught by the drying up of the river in stagnant pools, and the water has become deaerated and foul, rises to the surface and gulps air. A newt in a pond does exactly the same thing. These creatures still remain at the transition stage, the stage at which the ancestors of the higher vertebrated animals were released from their restriction to an under-water life.

[Fig 0022 Australian Lung Fish]

[Fig 0022]

The amphibia (frogs, newts, tritons, etc.) still show in their life history all the stages in the process of this liberation. They are still dependent on water for their reproduction; their eggs must be laid in sunlit water, and there they must develop. The young tadpole has branching external gills that wave in the water; then a gill cover grows back over them and forms a gill chamber.

Then as the creature's legs appear and its tail is absorbed, it begins to use its lungs, and its gills dwindle and vanish. The adult frog can live all the rest of its days in the air, but it can be drowned if it is kept steadfastly below water. When we come to the reptile, however, we find an egg which is protected from evaporation by a tough egg case, and this egg produces young which breathe by lungs from the very moment of hatching. The reptile is on all fours with the seeding plant in its freedom from the necessity to pass any stage of its life cycle in water.

The later Palaeozoic Rocks of the northern hemisphere give us the materials for a series of pictures of this slow spreading of life over the land. Geographically, all round the northern half of the World it was an age of lagoons and shallow seas very favourable to this invasion. The new plants, now that they had acquired the power to live this new aerial life, developed with an extraordinary richness and variety.

There were as yet no true flowering plants [1] no grasses nor trees that shed their leaves in winter; [2] the first flora consisted of great tree ferns, gigantic equisetums, cycad ferns, and kindred vegetation. Many of these plants took the form of huge-stemmed trees, of which great multitudes of trunks survive fossilized to this day. Some of these trees were over a hundred feet high, of orders and classes now vanished from the world. They stood with their sterns in the water, in which no doubt there was a thick tangle of soft mosses and green slime and fungoid growths that left few plain vestiges behind them. The abundant remains of these first swamp forests constitute the main coal measures of the world to-day.

[Fig 0023 Some Reptiles of the Later Palaeozoic Age]

[Fig 0023]

Amidst this luxuriant primitive vegetation crawled and glided and flew the first insects. They were rigid-winged, four-winged creatures, often very big, some of them having wings measuring a foot in length. There were numerous dragon flies"one found in the Belgian coal-measures had a wing span of twenty-nine inches! There were also a great variety of flying cockroaches. Scorpions abounded, and a number of early spiders, which, however, had no spinnerets for web making. Land snails appeared. So, too, did the first known step of our own ancestry upon land, the amphibia. As we ascend the higher levels of the Later Palaeozoic record, we find the process of air adaptation has gone as far as the appearance of true reptiles amidst the abundant and various amphibia.

The land life of the Upper Palaeozoic Age was the life of a green swamp forest without flowers or birds or the noises of modern insects. There were no big land beasts at all; wallowing amphibia, and primitive reptiles were the very highest creatures that life had so far produced. Whatever land lay away from the water or high above the water was still altogether barren and lifeless. But steadfastly, generation by generation, life was creeping away from the shallow sea-water of its beginning.

5.0 The Age of Reptiles

5.1 The Age of Lowland Life

5.2 Flying Dragons

5.3 The First Birds

5.4 An Age of Hardship and Death

5.5 The First Appearance of Fur and Feathers

5.1 The Age of Lowland Life

We know that for hundreds of thousands of years the wetness and warmth, the shallow lagoon conditions that made possible the vast accumulations of vegetable matter which, compressed and mummified, [1] are now coal, prevailed over most of the world. There were some cold intervals, it is true; but they did not last long enough to destroy the growths. Then that long ago age of luxuriant low-grade vegetation drew to its end, and for a time life on the earth seems to have undergone a period of world-wide bleakness.

We cannot discuss fully here the changes that have gone on and are going on in the climate of the earth. A great variety of causes, astronomical movements, changes in the sun and changes upon and within the earth, combine to produce a ceaseless fluctuation of the conditions under which life exists. As these conditions change, life, too, must change or perish.

When the story resumes again after this arrest at the end of the Palaeozoic period we find life entering upon a fresh phase of richness and expansion. Vegetation has made great advances in the art of living out of water. While the Palaeozoic plants of the coal measures probably grew with swamp water flowing over their roots, the Mesozoic flora from its very outset included palm-like cycads and low-grown conifers that were distinctly land plants growing on soil above the water level.

The lower levels of the Mesozoic land were no doubt covered by great fern brakes and shrubby bush and a kind of jungle growth of trees. But there existed as yet no grass, no small flowering plants, no turf nor greensward. Probably the Mesozoic was not an age of very brightly coloured vegetation. It must have had a flora green in the wet season and brown and. purple in the dry. There were no gay flowers, no bright autumn tints before the fall of the leaf, because there was as yet no fall of the leaf. And beyond the lower levels the world was still barren, still unclothed, still exposed without any mitigation to the wear and tear of the wind and rain.

When one speaks of conifers in the Mesozoic the reader must not think of the pines and firs that clothe the high mountain slopes of our time. He must think of low-growing evergreens. The mountains were still as bare and lifeless as ever. The only colour effects among the mountains were the colour effects of naked rock, such colours as make the landscape of Colorado so marvellous to-day.

Amidst this spreading vegetation of the lower plains the reptiles were increasing mightily in multitude and variety. They were now in many cases absolutely land animals. There are numerous anatomical points of distinction between a reptile and an amphibian; they held good between such reptiles and amphibians as prevailed in the carboniferous time of the Upper Palaeozoic; but the fundamental difference between reptiles and amphibia which matters in this history is that the amphibian must go back to the water to lay its eggs, and that in the early stages of its life it must live in and under water. The reptile, on the other hand, has cut out all the tadpole stages from its life cycle, or, to be more exact, its tadpole stages are got through before the young leave the egg case. The reptile has come out of the water altogether. Some had gone back to it again, just as the hippopotamus and. the otter among mammals have gone back, but that is a further extension of the story to which we cannot give much attention in this Outline.

[Fig 0027 Some Mesozoic Reptiles]

[Fig 0027]

In the Palaeozoic period, as we have said, life had not spread beyond the swampy river valleys and the borders of sea lagoons and the like; but in the Mesozoic, life was growing ever more accustomed to the thinner medium of the air, was sweeping boldly up over the plains and towards the hill-sides. It is well for the student of human history and the human future to note that. If a disembodied intelligence with no knowledge of the future had come to earth and studied life during the early Paloeozoic age, he might very reasonably have concluded that life was absolutely confined to the water, and that it could never spread over the land. It found a way. In the Later Paloeozoic Period that visitant might have been equally sure that life could not go beyond the edge of a swamp. The Mesozoic Period would still have found him setting bounds to life far more limited than the bounds that are set to-day. And so to-day, though we mark how life and, man are still limited to five miles of air and a depth of perhaps a mile or so of sea, we must not conclude from that present limitation that life, through man, may not presently spread out and up and down to a range of living as yet inconceivable.

The earliest known reptiles were beasts with great bellies and not very powerful legs, very like their kindred amphibia, wallowing as the crocodile wallows to this day; but, in the Mesozoic they soon began to stand up and go stoutly on all fours, and several great sections of them began to balance themselves on tail and hind-legs, rather as the kangaroos do now, in order to release the fore limbs for grasping food. The bones of one notable division of reptiles which retained a quadrupedal habit, a division of which many remains have been found in South African and Russian Early Mesozoic deposits, display a number of characters which approach those of the mammalian skeleton, and because of this resemblance to the mammals (beasts) this division is called the Theriomorpha (beastlike). Another division was the crocodile branch, and, another developed towards the tortoises and turtles. The Plesiosaurs and lchthyosaurs were two groups which have left no living representatives; they were huge reptiles returning to a whale-like life in the sea. Pliosaurus, one of the largest plesiosaurs, measured thirty feet from snout to tail tip"of which half was neck. The Mosasaurs were a third group of great porpoise-like marine lizards. But the largest and most diversified group of these Mesozoic reptiles was the group we have spoken of as kangaroo-like, the Dinosaurs, many of which attained, enormous proportions. In bigness these greater Dinosaurs have never been exceeded, although the sea can still show in the whales creatures as great. Some of these, and the largest among them, were herbivorous animals; they browsed on the rushy vegetation and among the ferns and bushes, or they stood up and grasped trees with their fore-legs while they devoured the foliage. Among the browsers, for example, were the Diplodocus carnegii, which measured eighty-four feet in length, and the Atlarlosaurus. The Gigantosaurs, disinterred by a German expedition in 1912 from rocks in East Africa, was still more colossal. It measured well over a hundred feet! These greater monsters had legs, and they are usually figured as standing up on them; but it is very doubtful if they could, have supported their weight in this way, out of water. Buoyed up by water or mud, they may have got along. Another noteworthy type we have figured is the Triceratops. There were also a number of great flesh-eaters who preyed upon these herbivores. Of these, Tyrannosaurus seems almost the last word in frightfulness among living things. Some species of this genus measured forty feet from snout to tail. Apparently it carried this vast body kangaroo, fashion on its tail and hindlegs. Probably it reared itself up. Some authorities even suppose that it leapt through the air. If so, it possessed muscles of a quite miraculous quality. A leaping elephant would be a far less astounding idea. Much more probably it waded half submerged in pursuit of the herbivorous river saurians.

5.2 Flying Dragons

One special development of the dinosaurian type of reptile was a light, hopping, climbing group of creatures which developed a bat-like web between the fifth finger and the side of the body, which was used in gliding from tree to tree after the fashion of the flying squirrels. These bat-lizards were the Pterodactyls. They are often described as flying reptiles, and pictures are drawn of Mesozoic scenery in which they are seen soaring and swooping about. But their breastbone has no keel such as the breastbone of a bird has for the attachment of muscles strong enough for long sustained flying. They must have flitted about like bats. They must have had a grotesque resemblance to heraldic dragons, and. they played the part of bat-like birds in the Mesozoic jungles. But bird-like though they were, they were not birds nor the ancestors of birds. The structure of their wings was altogether different from that of birds. The structure of their wings was that of a hand with one long finger and a web; the wing of a bird is like an arm with feathers projecting from its hind edge. And, these Pterodactyls had no feathers.

[Fig 0030 Later Mesozoic Reptiles]

[Fig 0030]

5.3 The First Birds

Far less prevalent at this time were certain other truly birdlike creatures, of which the earlier sorts also hopped and clambered and the later sorts skimmed and flew. These were at first"by all the standards of classification"Reptiles. They developed into true birds as they developed wings and as their reptilian scales became long and complicated, fronds rather than scales, and so at last, by much spreading and splitting, feathers. Feathers are the distinctive covering of birds, and they give a power of resisting heat and, cold far greater than that of any other integumentary covering except perhaps the thickest fur. At a very early stage this novel covering of feathers, this new heat-proof contrivance that life had chanced upon, enabled many species of birds to invade a province for which the pterodactyl was ill equipped. They took to sea fishing"if indeed they did not begin with it"and spread to the north and south polewards beyond the temperature limits set to the true reptiles. The earliest birds seem to have been carnivorous divers and water birds. To this day some of the most primitive bird forms are found among the sea birds of the Arctic and Antarctic seas, and it is among these sea birds that zoologists still find lingering traces of teeth, which have otherwise vanished completely from the beak of the bird.

[Fig 0031 Pterodactyls and Archaeopteryx]

[Fig 0031]

The earliest known bird (the Archaeopteryx) had no beak; it had a row of teeth in a jaw like a reptile's. It had three claws at the forward corner of its wing. Its tail, too, was peculiar. All modern birds have their tail feathers set in a short compact bony rump; the Archaopteryx had a long bony tail with a row of feathers along each side.

5.4 An Age of Hardship and Death

This great period of Mesozoic life, this second volume of the book of life, is indeed an amazing story of reptilian life proliferating and developing. But the most striking of all the story remains to be told. Right up to the latest Mesozoic Rocks we find all these reptilian orders we have enumerated still flourishing unchallenged. There is no hint of an enemy or competitor to them in the relics we find of their world. Then the record is broken. We do not know how long a time the break represents; many pages may be missing here, pages that may represent some great cataclysmal climatic change. When next we find abundant traces of the land plants and the land animals of the earth, this great multitude of reptile species had gone. For the most part they have left no descendants. They have been wiped out. The pterodactyls have gone absolutely, of the plesiosaurs and ichthyosaurs none is alive; the mosasaurs have gone; of the lizards a few remain, the monitors of the Dutch East Indies are the largest; all the multitude and diversity of the dinosaurs have vanished. Only the crocodiles and the turtles and tortoises carry on in any quantity into Cainozoic times. The place of all these types in the picture that the Cainozoic fossils presently unfold to us is taken by other animals not closely related to the Mesozoic reptiles and certainly not descended from any of their ruling types. A new kind of life is in possession of the world.

This apparently abrupt ending up of the reptiles is, beyond all question, the most striking revolution in the whole history of the earth before the coming of mankind. It is probably connected with the close of a vast period of equable warm conditions and the onset of a new austerer age, in which the winters were bitterer and the summers brief but hot. The Mesozoic life, animal and vegetable alike, was adapted to warm conditions and capable of little resistance to cold. The new life, on the other hand, was before all things capable of resisting great changes of temperature.

Whatever it was that led to the extinction of the Mesozoic reptile, it was probably some very far-reaching change indeed, for the life of the seas did at the same time undergo a similar catastrophic alteration. The crescendo and ending of the Reptiles on land was paralleled by the crescendo and ending of the Ammonites, a division of creatures like squids with coiled shells which swarmed in those ancient seas. All though the rocky record of this Mesozoic period there is a vast multitude and variety of these coiled, shells; there are hundreds of species, and towards the end of the Mesozoic period they increased in diversity and produced exaggerated types. When the record resumes these, too, have gone. So far as the reptiles are con c erned, people may perhaps be inclined to argue that they were exterminated because the Mammals that replaced them, competed with them, and were more fitted to survive; but nothing of the sort can be true of the Ammonites, because to this day their place has not been taken. Simply they are gone. Unknown conditions made it possible for them to live in the Mesozoic seas, and then some unknown change made life impossible for them. No genus of Ammonite survives to-day of all that vast variety, but there still exists one insolated genus very closely related to the Ammonites, the Pearly Nautilus. It is found, it is to be noted, in the warm waters of the Indian and Pacific oceans.

And as for the Mammals competing with and ousting the less fit reptiles, a struggle of which people talk at times, there is not a scrap of evidence of any such direct competition. To judge by the Record of the Rocks as we know it to-day, there is much more reason for believing that first the reptiles in some inexplicable way perished, and then that later on, after a very hard, time for all life upon the earth, the mammals, as conditions became more genial again, developed and spread to fill the vacant world.

5.5 The First Appearance of Fur and Feathers

Were there mammals in the Mesozoic period?

This is a question not yet to be answered precisely. Patiently and steadily the geologist's gather fresh evidence and reason out completer conclusions. At any time some new deposit may reveal fossils that will illuminate this question. Certainly either mammals, or the ancestors of the mammals, must have lived throughout the Mesozoic period. In the very opening chapter of the Mesozoic volume of the Record there were those Theriomorphous Reptiles to which we have already alluded, and in the later Mesozoic a number of small jawbones are found, entirely mammalian in character. But there is not a scrap, not a bone, to suggest that there lived any Mesozoic Mammal which could look a dinosaur in the face. The Mesozoic mammals or mammal-like reptiles"for we do not know clearly which they were"seem to have been All obscure little beasts of the size of mice and rats, more like a downtrodden order of reptiles than a distinct class; probably they still laid eggs and were developing only slowly their distinctive covering of hair. They lived away from big waters, and perhaps in the desolate uplands, as marmots do now; probably they lived there beyond the pursuit of the carnivorous dinosaurs. Some perhaps went on all fours, some chiefly went on their hind-legs and clambered with their fore limbs. They became fossils only so occasionally that chance has not yet revealed a single complete skeleton in the whole vast record of the Mesozoic rocks by which to check these guesses.

These little Theriomorphs, these ancestral mammals, developed hair. Hairs, like feathers, are long and elaborately specialized scales. Hair is perhaps the clue to, the salvation of the early mammals. Leading lives upon the margin of existence, away from the marshes and the warmth, they developed an outer covering only second in its warmth-holding (or heat-resisting) powers to the down and. feathers of the Arctic seabirds. And so they held out through the age of hardship between the Mesozoic and Cainozoic ages, to which most of the true reptiles succumbed.

[Fig 0035 Hesperornis]

[Fig 0035]

All the main characteristics of this flora and sea and land fauna that came to an end with the end of the Mesozoic age were such as were adapted to an equable climate and to shallow and swampy regions. But in the case of their Cainozoic successors, both hair and feathers gave a power of resistance to variable temperatures such as no reptile possessed, and with it gave a range far greater than any animal had hitherto attained.

The range of life of the Lower Palaeozoic Period was confined to warm water.

The range of life of the Upper Palaeozoic Period was confined to warm water or to warm swamps and wet ground.

The range of life of the Mesozoic Period as we know it was confined to water and fairly low-lying valley regions under equable conditions.

Meanwhile in each of these periods there were types involuntarily extending the range of life beyond the limits prevailing in that period; and when ages of extreme, conditions prevailed, it was these marginal types which survived to inherit the depopulated world.

That perhaps is the most general statement we can make about the story of the geological record; it is a story of widening range. Classes, genera, and species of animals appear and disappear, but the range widens. It widens always. Life has never had so great a range as it has to-day. Life to-day, in the form of man, goes higher in the air than it has ever done before; man's geographical range is from pole to pole, he goes under the water in submarines, he sounds the cold, lifeless darkness of the deepest seas, he burrows into virgin levels of the rocks, and in thought and knowledge he pierces to the centre of the earth and reaches out to the uttermost star. Yet in all the relics of the Mesozoic time we find no certain memorials of his ancestry. His ancestors, like the ancestors of all the kindred mammals, must have been creatures so rare, so obscure, and so remote that they have left scarcely a trace amidst the abundant vestiges of the monsters that wallowed rejoicing in the steamy air and lush vegetation of the Mesozoic lagoons, or crawled or hopped or fluttered over the great river plains of that time.

6.0 The Age of Mammals

6.1 A New Age of Life

6.2 Tradition Comes Into the World

6.3 An Age of Brain Growth

6.4 The World Grows Hard Again

6.1 A New Age of Life

The third great division of the geological record, the Cainozoic opens with a world already physically very like the world we live in to-day. Probably the day was at first still perceptibly shorter, but the scenery had become very modern in it character. Climate was, of course, undergoing, age by age, its incessant and irregular variations; lands that are temperate to-day have passed, since the Cainozoic age began, through phases of great warmth, intense cold, and extreme dryness; but the landscape, if it altered, altered to nothing that cannot still be paralleled to-day in some part of the world or other. In the place of the cycads, sequoias, and strange conifers of the Mesozoic, the plant names that now appear in the lists of fossils include birch, beech, holly, tulip trees, ivy, sweet gum, bread-fruit trees. Flowers had developed concurrently with bees and butterflies. Palms were now very important. Such plants had already been in evidence in the later levels of the (American Cretaceous,) Mesozoic, but now they dominated the scene altogether. Grass was becoming a great fact in the world. Certain grasses, too, had appeared in the later Mesozoic, but only with the Cainozoic period came grass plains and turf spreading wide over a world that was once barren stone.

The period opened with a long phase of considerable warmth; then the world cooled. And in the opening of this third part of the record, this Cainozoic period, a gigantic crumpling of the earth's crust and an upheaval of mountain ranges was in progress. The Alps, the Andes, the Himalayas, are all Cainozoic mountain ranges; the background of an early Cainozoic scene to be typical should display an active, volcano or so. It must have been an age of great earthquakes.

Geologists make certain main divisions of the Cainozoic period, and it will be convenient to name them here and to indicate their climate. First comes the Eocene (dawn of recent life), an age of exceptional warmth in the world's history, subdivided into an older and newer Eocene; then the Oligocene, (but little of recent life), in which the climate was still equable. The Miocene (with living species still in a minority) was the great age of mountain building, and the general temperature was falling. In the Pliocene (more living than extinct species), climate was very much as its present phase; but with the Pleistocene (a great majority of living species) there set in a long period of extreme conditions-it was the Great Ice Age. Glaciers spread from the poles towards the equator, until England to the Thames was covered in ice. Thereafter to our own time came a period of partial recovery. We may be moving now towards a warmer phase. Half a million years hence this may be a much sunnier and pleasanter world to live in than it is to-day.

6.2 Tradition Comes Into the World

In the forests and. following the grass over the Eocene plains there appeared for the first time a variety and abundance of mammals. Before we proceed to any description of these mammals, it may be well to note in general terms what a mammal is.

From the appearance of the, vertebrated animals in the Lower Palaeozoic Age, when the fish first swarmed out into the sea, there has been a steady progressive development of vertebrated creatures. A fish is a vertebrated animal that breathes by gills and can live only in water. An amphibian may be described as a fish that has added to its gill-breathing the power of breathing air with its swimming-bladder in adult life, and that has also developed limbs with five toes to them in place of the fins of a fish. A tadpole is for a time, a fish, it becomes a land creature as it develops. A reptile is a further stage in this detachment from water; it is an amphibian that is no longer amphibious; it passes through its tadpole stage its fish stage that is in an egg. From the beginning it must breathe in air; it can never breathe under water as a tadpole can do.

[Fig 0039 Some Oligocene Mammals]

[Fig 0039]