The Sol-Gel Handbook -  - E-Book

The Sol-Gel Handbook E-Book

0,0
494,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

This comprehensive three-volume handbook brings together a review of the current state together with the latest developments in sol-gel technology to put forward new ideas.
The first volume, dedicated to synthesis and shaping, gives an in-depth overview of the wet-chemical processes that constitute the core of the sol-gel method and presents the various pathways for the successful synthesis of inorganic and hybrid organic-inorganic materials, bio- and bio-inspired materials, powders, particles and fibers as well as sol-gel derived thin films, coatings and surfaces.
The second volume deals with the mechanical, optical, electrical and magnetic properties of sol-gel derived materials and the methods for their characterization such as diffraction methods and nuclear magnetic resonance, infrared and Raman spectroscopies.
The third volume concentrates on the various applications in the fields of membrane science, catalysis, energy research, biomaterials science, biomedicine, photonics and electronics.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 3041

Veröffentlichungsjahr: 2015

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



CONTENTS

Cover

Related Titles

Title Page

Copyright

Preface

List of Contributors

Volume One: Synthesis and Processing

Part One: Sol–Gel Chemistry and Methods

Chapter 1: Chemistry and Fundamentals of the Sol–Gel Process

1.1 Introduction

1.2 Hydrolysis and Condensation Reactions

1.3 Sol–Gel Transition (Gelation)

1.4 Aging and Drying

1.5 Postsynthesis Processing

1.6 Concluding Remarks

References

Chapter 2: Nonhydrolytic Sol–Gel Methods

2.1 Introduction

2.2 Nonaqueous Sol–Gel Routes to Metal Oxide Nanoparticles

2.3 Nonaqueous Sol–Gel Synthesis beyond Metal Oxides

2.4 Chemical Reaction and Crystallization Mechanisms

2.5 Assembly and Processing

2.6 Summary and Outlook

References

Chapter 3: Integrative Sol–Gel Chemistry

3.1 Introduction

3.2 Design of 0D Structures

3.3 Design of 1D Macroscopic Structures

3.4 Design of Extended 2D Structures

3.5 Design of Extended 3D Structures

3.6 Conclusions

References

Chapter 4: Synthetic Self-Assembly Strategies and Methods

4.1 Introduction

4.2 Templated Synthesis of Inorganic Materials

4.3 Self-Assembled Organosilicas

4.4 Conclusions

References

Chapter 5: Processing of Sol–Gel Films from a Top-Down Route

5.1 Introduction

5.2 Top-Down Processing by UV Photoirradiation

5.3 Laser Irradiation and Writing

5.4 Electron Beam Lithography

5.5 Top-Down Processing by Hard X-Rays

5.6 Soft X-Ray Lithography

References

Chapter 6: Sol–Gel Precursors

6.1 Introduction

6.2 Simple Silicon Alkoxides

6.3 Functional and Mixed Ligand Silicon Alkoxides for More Facile Hydrolysis

6.4 Functional Silicon Alkoxides: Precursors of Hybrid Materials

6.5 Simple Metal Alkoxides

6.6 Functional and Mixed Ligand Metal Alkoxides for More Facile Hydrolysis and Stabilization of Resulting Colloids

6.7 Precursor and Solvent Choice for Nonhydrolytic Sol–Gel Processes

6.8 Synthesis of Complex Materials: Single-Source Precursor Approach

6.9 Sol–Gel Precursors for Special Applications: Biomedical and Luminescent

Abbreviations

References

Part Two: Sol–Gel Materials

Chapter 7: Nanoparticles and Composites

7.1 Introduction

7.2 Aqueous Sol–Gel Process

7.3 Nonaqueous Sol–Gel Process

7.4 Surface Functionalization of Nanoparticles

7.5 Nanocomposites

7.6 Conclusions

References

Chapter 8: Oxide Powders and Ceramics

8.1 Oxide Powders Obtained by Sol–Gel Methods

8.2 Ceramics from Sol–Gel Oxide Powders

8.3 Pure and Doped Single Oxide Ceramics

8.4 Multicomponent Ceramics

8.5 Composite Ceramics

8.6 Conclusions

References

Chapter 9: Thin Film Deposition Techniques

9.1 Introduction

9.2 General Aspects of Liquid Deposition Techniques

9.3 Spin Coating

9.4 Dip Coating

9.5 Alternative and Emerging Techniques

9.6 General Perspectives

References

Chapter 10: Monolithic Sol–Gel Materials

10.1 Introduction

10.2 Principles of Sol–Gel Monolith Fabrication

10.3 Routes for Fabrication of Monoliths

10.4 Summary

References

Chapter 11: Hollow Inorganic Spheres

11.1 Introduction

11.2 General Strategies

11.3 Typical Synthesis Procedures

11.4 Applications

11.5 Summary

References

Chapter 12: Sol–Gel Coatings by Electrochemical Deposition

12.1 Introduction

12.2 Mechanism of the Sol–Gel Electrochemical Deposition

12.3 Manipulation of the Sol–Gel Electrochemical Deposition

12.4 Electrochemical Codeposition of Sol–Gel-Based Hybrid and Composite Films

12.5 Applications of Electrochemically Deposited Sol–Gel Films

12.6 Summary

Abbreviations for Silanes

Acknowledgments

References

Chapter 13: Nanofibers and Nanotubes

13.1 Introduction

13.2 Nanofibers

13.3 Nanotubes

13.4 Summary and Future Perspectives

References

Chapter 14: Nanoarchitectures by Sol–Gel from Silica and Silicate Building Blocks

14.1 Introduction

14.2 Porous Clay Nanoarchitectures Using Sol–Gel Approaches

14.3 Porous Nanoarchitectures from Delaminated Clays

14.4 Fibrous Silicates as Building Blocks in Sol–Gel Nanoarchitectures Derived from Clays

14.5 Conclusion

Acknowledgments

References

Chapter 15: Sol–Gel for Metal Organic Frameworks (MOFs)

15.1 Introduction

15.2 Design and Synthetic Strategies of MOF–Sol–Gel-Based Structures

15.3 Conclusion and Remarks

Acknowledgments

References

Chapter 16: Silica Ionogels and Ionosilicas

16.1 Introduction

16.2 Ionogels

16.3 Ionosilicas

16.4 Conclusion

References

Chapter 17: Aerogels

17.1 Introduction and Brief History

17.2 Synthesis and Processing

17.3 Characterization Methods

17.4 Selected Examples and Applications

17.5 Trends, Conclusion, and Outlook

References

Chapter 18: Ordered Mesoporous Sol–Gel Materials: From Molecular Sieves to Crystal-Like Periodic Mesoporous Organosilicas

18.1 Introduction

18.2 Synthesis Mechanisms of Periodic Mesoporous Silica Materials

18.3 Functionalization of Periodic Mesoporous Silica Materials

18.4 Periodic Mesoporous Organosilicas

18.5 Future Trends

Acknowledgments

References

Chapter 19: Biomimetic Sol–Gel Materials

19.1 Introduction

19.2 Natural Sol–Gel Materials

19.3 Biomimetic Sol–Gel Chemistry

19.4 Biohybrid Materials from Bioinspired Mineralization Strategies

19.5 Conclusions

References

Volume Two: Characterization and Properties of Sol-Gel Materials

Part Three: Characterization Techniques for Sol–Gel Materials

Chapter 20: Solid-State NMR Characterization of Sol–Gel Materials: Recent Advances

20.1 Introduction

20.2 Recent Advances in NMR Techniques

20.3 Recent Advances in NMR Modeling

20.4 Relevant Examples in the Field of Sol–Gel Materials

20.5 Conclusions

Acknowledgments

References

Chapter 21: Time-Resolved Small-Angle X-Ray Scattering

21.1 Introduction

21.2 Theory of SAXS

21.3 SAXS Experiments

21.4 In-Situ Studies on Sol–Gel Systems

References

Chapter 22: Characterization of Sol–Gel Materials by Optical Spectroscopy Methods

22.1 Introduction

22.2 Experimental

22.3 Representative Results

22.4 Summary

References

Chapter 23: Properties and Applications of Sol–Gel Materials: Functionalized Porous Amorphous Solids (Monoliths)

23.1 Sol–Gel-Derived Amorphous Systems

23.2 Porous Silica Monoliths

23.3 Functional Polyorganosiloxane Porous Materials from Tri- and Dialkoxysilanes

23.4 Porous Hydrogen Silsesquioxane Monoliths

References

Chapter 24: Sol–Gel Deposition of Ultrathin High-κ Dielectric Films

24.1 Introduction

24.2 High-κ Dielectric Properties and Applications

24.3 Challenges for Ultrathin Films

24.4 Deposition of Ultrathin Films

24.5 Examples of Sol–Gel Deposited Ultrathin Dielectric Films

24.6 Conclusions and Outlook

Acknowledgements

References

Part Four: Properties

Chapter 25: Functional (Meso)Porous Nanostructures

25.1 Introduction

25.2 TiO2-SiO2

25.3 Binary Si/Ti Oxide Xerogels

25.4 Mixed Oxide Aerogels

25.5 Materials with Periodically Arranged Mesopores

25.6 Hierarchically Organized Pore Architectures

25.7 Summary

References

Chapter 26: Sol–Gel Magnetic Materials

26.1 Introduction

26.2 Sol–Gel-Derived Magnetic Materials

26.3 Magnetic Properties

26.4 Magneto-Optical Properties

26.5 Bioapplications

26.6 Conclusions

Acknowledgements

References

Chapter 27: Sol–Gel Electroceramic Thin Films

27.1 Introduction

27.2 Chemical Solution Deposition of Electroceramic Thin Films

27.3 Examples of the Effect on the Electrical Properties of Features Associated with the Thin Film Form and Processing

27.4 Current Challenges for Solution-Derived Electroceramic Thin Films

27.5 Summary

References

Chapter 28: Organic–Inorganic Hybrids for Lighting

28.1 Introduction

28.2 Dye-Bridged Hybrids

28.3 Dye-Doped Hybrids

28.4 Amine- and Amide-Based Hybrids

28.5 Conclusions and Perspectives

References

Chapter 29: Sol–Gel TiO2 Materials and Coatings for Photocatalytic and Multifunctional Applications

29.1 Photocatalysis: Key Environmental Instrument

29.2 Properties of Titania

29.3 Conclusions

References

Chapter 30: Optical Properties of Luminescent Materials

30.1 Sol–Gel and Luminescent Materials

30.2 Incorporation of Luminescent Species

30.3 Perspectives and Concluding Remarks

Acknowledgments

References

Chapter 31: Better Catalysis with Organically Modified Sol–Gel Materials

31.1 Introduction

31.2 The Entrapment of Organometallic Catalysts within Sol–Gel Materials: From Homogeneous to Heterogeneous Catalysis

31.3 Porosity Effects on Catalytic Properties: Natural, Periodic, and Imprinted Porosities

31.4 Two Coentrapped Catalysts: Synergism and Multisteps

31.5 The Use of Opposing Reagents and Catalysts in One Pot

31.6 Systems Involving Sol–Gel Materials and Emulsions

31.7 Enantioselective Catalysis

31.8 Photocatalysis

31.9 Comments on Biocatalysis

31.10 Commercialization of Organically Modified Sol–Gel Catalysts

Acknowledgments

References

Chapter 32: Hierarchically Structured Porous Materials

32.1 Introduction

32.2 Synthesis Strategies for Hierarchically Structured Porous Materials

32.3 Applications of Hierarchically Structured Porous Materials

32.4 Conclusions

References

Chapter 33: Structures and Properties of Ordered Nanostructured Oxides and Composite Materials

33.1 Introduction

33.2 Optical Properties of Nanostructured Materials

33.3 Optical Response of OMPO Layers: A Toolbox for Characterization

33.4 Synthesis and Characterization of OMPO by Sol–Gel Method

33.5 Synthesis of Composite Nanostructures and Their Optical Properties: Toward the Design of Photonic Structures

33.6 Photonic Crystals

33.7 Confined Nanoparticles in OMPO

33.8 Conclusions

Acknowledgments

References

Volume Three: Application of Sol-Gel Materials

Part Five: Applications

Chapter 34: Sol–Gel for Environmentally Green Products

34.1 The Green Potential of Doped Sol–Gel Glasses

34.2 Environment-Friendly Sol–Gel Coatings

34.3 Sol–Gel Catalysts for Fine Chemicals

34.4 Sol–Gel Photobioreactors

34.5 Perspectives and Conclusions

Acknowledgments

References

Chapter 35: Sol–Gel Materials for Batteries and Fuel Cells

35.1 Introduction

35.2 Sol–Gel Materials for Fuel Cells

35.3 Sol–Gel Materials for Li Ion Batteries

References

Chapter 36: Sol–Gel Materials for Energy Storage

36.1 Introduction

36.2 Background on Electrochemical Energy Storage

36.3 Sol–Gel Materials for Lithium Ion Batteries

36.4 Ion Substitution for Lithium Ion Batteries

36.5 Morphology

36.6 Conclusions

Acknowledgements

References

Chapter 37: Sol–Gel Materials for Pigments and Ceramics

37.1 Traditional Ceramics and Sol–Gel Materials

37.2 Colored Glazed Ceramics

37.3 Ceramic Pigment and Sol–Gel Process

37.4 Sol–Gel Process and Pigments for Inkjet

37.5 Summary

References

Chapter 38: Sol–Gel for Gas Sensing Applications

38.1 Introduction

38.2 Binary Metal Oxides

38.3 Ternary/Quaternary Oxides and Other Compounds

References

Chapter 39: Reinforced Sol–Gel Silica Coatings

39.1 Introduction

39.2 Reinforcing Sol–Gel Silica Coatings for Mechanical Improvement

39.3 Reinforcing Sol–Gel Silica Coatings with Particles

39.4 Reinforcing Sol–Gel Silica Coatings with Layered Silicates

39.5 Nanofiber-Reinforced Sol–Gel Silica Coatings

39.6 Incorporation of CNTs into Sol–Gel Silica Coatings

39.7 Properties of CNT–Silica Coatings

39.8 Conclusions

References

Chapter 40: Sol–Gel Optical and Electro-Optical Materials

40.1 Introduction

40.2 Gel-Glass-Dispersed Liquid Crystal (GDLC) Materials

40.3 Electro-Optical Devices Based on Biofilm Structures

40.4 Electrochromic Windows

40.5 Photochromic Sol–Gel Materials

40.6 Photonic Sol–Gel Materials

40.7 Optical Sensors

40.8 UV Protective Sol–Gel Coatings

40.9 Filters and Solar Absorbers

40.10 Waveguides

40.11 Reflective and Antireflective (AR) Coatings

40.12 Refractive and Photorefractive Sol–Gel Materials

40.13 Magneto-Optical Materials

40.14 Other Optical Sol–Gel Materials

40.15 Conclusions

References

Chapter 41: Luminescent Solar Concentrators and the Ways to Increase Their Efficiencies

41.1 Foreword

41.2 Introduction

41.3 General Description of the Sol–Gel Process

41.4 Luminescent Solar Concentrators Based on the Sol–Gel Method

41.5 Non-Self-Absorbing Systems Based on Proton Transfer

41.6 Lanthanide Complexes as a Way to Prevent Self-Absorption

41.7 Summary

41.8 Conclusions

Acknowledgments

References

Chapter 42: Mesoporous Silica Nanoparticles for Drug Delivery and Controlled Release Applications

42.1 Introduction

42.2 Selective Targeting

42.3 Stimuli-Responsive Drug Delivery

References

Chapter 43: Sol–Gel Materials for Biomedical Applications

43.1 The Need for New Biomaterials

43.2 Bioactive Glass, Bioglass, and Bioactivity

43.3 Bioactive Sol–Gel Glass

43.4 Bioactive Glass Scaffolds

43.5 Sol–Gel Hybrid Scaffolds

43.6 Submicron Particles and Nanoparticles

43.7 Summary

References

Chapter 44: Self-Healing Coatings for Corrosion Protection of Metals

44.1 Introduction

44.2 Production of Nanoparticles and Nanocontainers

44.3 Multifunctional Coatings

References

Chapter 45: Aerogel Insulation for Building Applications

45.1 Introduction

45.2 Thermal Background

45.3 Synthesis

45.4 Properties of Silica Aerogels

45.5 Building Applications of Aerogels

45.6 Other High-Performance Thermal Insulation Materials and Solutions

45.7 Conclusions

Acknowledgments

References

Chapter 46: Sol–Gel Nanocomposites for Electrochemical Sensor Applications

46.1 Introduction

46.2 Electrochemical Sensors

46.3 Sol–Gel Nanocomposites: Synthesis Routes

46.4 Electrochemical Sensors Based on Nanocomposites by Sol–Gel

46.5 Application of Sol–Gel Nanocomposites in Electrochemical Sensors

46.6 Conclusions and Future Prospects

Acknowledgments

References

Index

EULA

List of Tables

Table 3.1

Table 3.2

Table 5.1

Table 6.1

Table 6.2

Table 7.1

Table 8.1

Table 14.1

Table 14.2

Table 17.1

Table 18.1

Table 18.2

Table 18.3

Table 18.4

Table 19.1

Table 21.1

Table 24.1

Table 26.1

Table 27.1

Table 27.2

Table 27.3

Table 27.4

Table 27.5

Table 27.6

Table 28.1

Table 28.2

Table 32.1

Table 34.1

Table 36.1

Table 36.2

Table 39.1

Table 39.2

Table 39.3

Table 39.4

Table 39.5

Table 41.1

Table 41.2

Table 44.1

Table 44.2

Table 44.3

List of Illustrations

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.7

Figure 1.8

Figure 1.9

Figure 1.10

Figure 1.11

Figure 1.12

Figure 1.13

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Scheme 2.1

Scheme 2.2

Scheme 2.3

Figure 2.7

Figure 2.8

Scheme 2.4

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 3.16

Figure 3.17

Figure 3.18

Figure 3.19

Figure 3.20

Scheme 3.1

Figure 3.21

Figure 3.22

Figure 3.23

Figure 3.24

Figure 3.25

Figure 3.26

Figure 3.27

Figure 3.28

Figure 3.29

Figure 3.30

Figure 3.31

Scheme 4.1

Scheme 4.2

Figure 4.1

Scheme 4.3

Scheme 4.4

Figure 4.2

Scheme 4.5

Scheme 4.6

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Scheme 4.7

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Scheme 4.8

Figure 4.16

Figure 4.17

Figure 4.18

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 6.1

Scheme 6.1

Figure 6.2

Figure 6.3

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5

Figure 8.6

Figure 9.1

Figure 9.2

Figure 9.3

Figure 9.4

Figure 9.5

Figure 9.6

Figure 9.7

Figure 9.8

Figure 10.1

Figure 10.2

Figure 10.3

Figure 10.4

Figure 10.5

Figure 10.6

Figure 10.7

Figure 10.8

Figure 10.9

Figure 11.1

Figure 11.2

Figure 11.3

Figure 11.4

Figure 11.5

Figure 11.6

Figure 11.7

Figure 11.8

Figure 11.9

Figure 11.10

Figure 11.11

Figure 11.12

Figure 11.13

Figure 12.1

Figure 12.2

Figure 12.3

Figure 12.4

Figure 12.5

Figure 12.6

Figure 12.7

Figure 12.8

Figure 12.9

Figure 12.10

Figure 12.11

Figure 12.12

Figure 12.13

Figure 12.14

Figure 12.15

Figure 12.16

Figure 12.17

Figure 12.18

Figure 12.19

Figure 12.20

Figure 12.21

Figure 12.22

Figure 12.23

Figure 12.24

Figure 12.25

Figure 12.26

Figure 12.27

Figure 12.28

Figure 12.29

Figure 12.30

Figure 12.31

Figure 12.32

Figure 13.1

Figure 13.2

Figure 13.3

Figure 13.4

Figure 13.5

Figure 13.6

Figure 13.7

Figure 13.8

Figure 13.9

Figure 13.10

Figure 13.11

Figure 13.12

Figure 14.1

Figure 14.2

Figure 14.3

Figure 14.4

Figure 14.5

Figure 14.6

Figure 14.7

Figure 14.8

Figure 14.9

Figure 14.10

Figure 15.1

Figure 15.2

Figure 15.3

Figure 15.4

Figure 15.5

Figure 15.6

Figure 15.7

Scheme 16.1

Scheme 16.2

Scheme 16.3

Scheme 16.4

Scheme 16.5

Scheme 16.6

Scheme 16.7

Scheme 16.8

Scheme 16.9

Scheme 16.10

Figure 17.1

Figure 17.2

Figure 17.3

Figure 17.4

Figure 17.5

Figure 17.6

Figure 17.7

Figure 17.8

Figure 17.9

Figure 17.10

Figure 18.1

Figure 18.2

Figure 18.3

Figure 18.4

Figure 19.1

Figure 19.2

Figure 19.3

Figure 19.4

Figure 19.5

Figure 19.6

Figure 19.7

Figure 19.8

Figure 19.9

Figure 19.10

Figure 19.11

Figure 19.12

Figure 19.13

Figure 19.14

Figure 19.15

Figure 20.1

Figure 20.2

Figure 20.3

Figure 20.4

Figure 20.5

Figure 20.6

Figure 20.7

Figure 20.8

Figure 21.1

Figure 21.2

Figure 21.3

Figure 21.4

Figure 21.5

Figure 21.6

Figure 21.7

Figure 21.8

Figure 21.9

Figure 22.1

Figure 22.2

Figure 22.3

Figure 22.4

Figure 22.5

Figure 22.6

Figure 22.7

Figure 22.8

Figure 22.9

Figure 22.10

Figure 22.11

Figure 22.12

Figure 22.13

Figure 22.14

Figure 22.15

Figure 22.16

Figure 22.17

Figure 22.18

Figure 22.19

Figure 22.20

Figure 22.21

Figure 22.22

Figure 23.1

Figure 23.2

Figure 23.3

Figure 23.4

Figure 23.5

Figure 23.6

Figure 23.7

Figure 23.8

Figure 23.9

Figure 23.10

Figure 23.11

Figure 24.1

Figure 24.2

Figure 24.3

Figure 24.4

Figure 24.5

Figure 24.6

Figure 24.7

Figure 25.1

Figure 25.2

Figure 25.3

Figure 25.4

Figure 25.5

Figure 25.6

Scheme 25.1

Figure 25.7

Figure 25.8

Figure 25.9

Figure 25.10

Figure 25.11

Figure 25.12

Figure 25.13

Figure 26.1

Figure 26.2

Figure 26.3

Figure 26.4

Figure 26.5

Figure 26.6

Figure 26.7

Figure 26.8

Figure 26.9

Figure 26.10

Figure 27.1

Figure 27.2

Figure 27.3

Scheme 27.1

Scheme 27.2

Scheme 27.3

Scheme 27.4

Scheme 27.5

Scheme 27.6

Scheme 27.7

Scheme 27.8

Figure 27.4

Figure 27.5

Figure 27.6

Figure 27.7

Figure 27.8

Figure 27.9

Figure 27.10

Figure 27.11

Figure 27.12

Figure 27.13

Figure 27.14

Figure 27.15

Figure 27.16

Figure 27.17

Figure 27.18

Figure 27.19

Figure 27.20

Figure 27.21

Figure 27.22

Figure 27.23

Figure 27.24

Figure 28.1

Figure 28.2

Figure 28.3

Figure 28.4

Figure 28.5

Figure 28.6

Figure 28.7

Figure 28.8

Figure 28.9

Figure 28.10

Figure 29.1

Figure 29.2

Figure 29.3

Figure 29.4

Figure 29.5

Figure 29.6

Figure 29.7

Figure 29.8

Figure 29.9

Figure 30.1

Figure 30.2

Figure 30.3

Figure 30.4

Figure 30.5

Figure 30.6

Figure 30.7

Figure 30.8

Figure 30.9

Figure 30.10

Figure 30.11

Figure 30.12

Figure 30.13

Figure 30.14

Figure 30.15

Figure 30.16

Figure 30.17

Figure 30.18

Figure 30.19

Figure 30.20

Figure 30.21

Figure 30.22

Figure 31.1

Figure 31.2

Figure 31.3

Figure 31.4

Figure 31.5

Figure 31.6

Figure 31.7

Figure 31.8

Figure 31.9

Figure 31.10

Figure 31.11

Figure 31.12

Figure 31.13

Figure 31.14

Figure 31.15

Figure 31.16

Figure 31.17

Figure 31.18

Figure 32.1

Figure 32.2

Figure 32.3

Figure 32.4

Figure 32.5

Figure 32.6

Figure 32.7

Figure 32.8

Figure 32.9

Figure 32.10

Figure 32.11

Figure 32.12

Figure 32.13

Figure 32.14

Figure 32.15

Figure 32.16

Figure 32.17

Figure 32.18

Figure 32.19

Figure 32.20

Figure 32.21

Figure 33.1

Figure 33.2

Figure 33.3

Figure 33.4

Figure 33.5

Figure 33.6

Figure 33.7

Figure 33.8

Figure 33.9

Figure 33.10

Figure 34.1

Figure 34.2

Figure 34.3

Figure 34.4

Figure 34.5

Figure 34.6

Scheme 34.1

Figure 34.7

Figure 35.1

Figure 35.2

Figure 35.3

Figure 35.4

Figure 35.5

Figure 35.6

Figure 35.7

Figure 35.8

Figure 35.9

Figure 36.1

Figure 36.2

Figure 36.3

Figure 36.4

Figure 36.5

Figure 36.6

Figure 36.7

Figure 37.1

Figure 37.2

Figure 37.3

Figure 37.4

Figure 37.5

Figure 37.6

Figure 38.1

Figure 38.2

Figure 38.3

Figure 38.4

Figure 38.5

Figure 38.6

Figure 38.7

Figure 38.8

Figure 38.9

Figure 39.1

Figure 39.2

Figure 39.3

Figure 39.4

Figure 39.5

Figure 39.6

Figure 39.7

Figure 39.8

Figure 39.9

Figure 39.10

Figure 39.11

Figure 39.12

Figure 40.1

Figure 40.2

Figure 40.3

Figure 40.4

Figure 40.5

Figure 40.6

Figure 40.7

Figure 40.8

Figure 40.9

Figure 40.10

Figure 40.11

Figure 40.12

Figure 40.13

Figure 40.14

Figure 40.15

Figure 40.16

Figure 40.17

Figure 41.1

Figure 41.2

Figure 41.3

Figure 41.4

Figure 41.5

Figure 41.6

Figure 42.1

Figure 42.2

Figure 42.3

Figure 42.4

Figure 42.5

Figure 42.6

Figure 42.7

Figure 42.8

Figure 42.9

Figure 42.10

Figure 42.11

Figure 43.1

Figure 43.2

Figure 43.3

Figure 43.4

Figure 43.5

Figure 43.6

Figure 43.7

Figure 43.8

Figure 43.9

Figure 43.10

Figure 44.1

Figure 44.2

Figure 44.3

Figure 44.4

Figure 44.5

Figure 44.6

Figure 44.7

Figure 44.8

Figure 44.9

Figure 44.10

Figure 44.11

Figure 44.12

Figure 44.13

Figure 45.1

Figure 45.2

Figure 45.3

Figure 45.4

Figure 45.5

Figure 45.6

Figure 45.7

Figure 45.8

Figure 45.9

Figure 45.10

Figure 45.11

Figure 45.12

Figure 45.13

Figure 45.14

Figure 45.15

Figure 46.1

Figure 46.2

Figure 46.3

Figure 46.4

Figure 46.5

Figure 46.6

Figure 46.7

Figure 46.8

Figure 46.9

Figure 46.10

Figure 46.11

Figure 46.12

Guide

Cover

Table of Contents

Begin Reading

Part 1

Chapter 1

Pages

ii

iii

iv

xv

xvi

xvii

xviii

xix

xx

xxi

xxii

xxiii

xxiv

xxv

xxvi

xxvii

xxix

xxx

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Related Titles

Kickelbick, G. (ed.)

Hybrid Materials

Synthesis, Characterization, and Applications

Second Edition

2015

Print ISBN: 978-3-527-33844-3 (Also available in a variety of electronic formats)

Liu, X.Y., Li, J.L. (eds.)

Soft Fibrillar Materials

Fabrication and Applications

2013

Print ISBN: 978-3-527-33162-8 (Also available in a variety of electronic formats)

Tadros, T.F. (ed.)

Emulsion Formation and Stability

2013

Print ISBN: 978-3-527-31991-6 (Also available in a variety of electronic formats)

Schubert, H., Hüsing, N.

Synthesis of Inorganic Materials

Third Edition

2012

Print ISBN: 978-3-527-32714-0 (Also available in a variety of electronic formats)

Lyon, L.A., Serpe, M.J. (eds.)

Hydrogel Micro and Nanoparticles

2012

Print ISBN: 978-3-527-33033-1 (Also available in a variety of electronic formats)

Corriu, R., Anh, N.T.

Molecular Chemistry of Sol-Gel Derived Nanomaterials

2009

Print ISBN: 978-0-470-72117-9 (Also available in a variety of electronic formats)

Hamley, I.W.

Introduction to Soft Matter

Synthetic and Biological Self-Assembling Materials

2007

Print ISBN: 978-0-470-51609-6 (Also available in a variety of electronic formats)

Ruiz-Hitzky, E., Ariga, K., Lvov, Y.M. (eds.)

Bio-inorganic Hybrid Nanomaterials

Strategies, Syntheses, Characterization and Applications

2008

Print ISBN: 978-3-527-31718-9 (Also available in a variety of electronic formats)

Tadros, T.F. (ed.)

Self-Organized Surfactant Structures

2011

Print ISBN: 978-3-527-31990-9 (Also available in a variety of electronic formats)

Tadros, T.F.

Rheology of Dispersions

Principles and Applications

2010

Print ISBN: 978-3-527-32003-5 (Also available in a variety of electronic formats)

Platikanov, D., Exerowa, D. (eds.)

Highlights in Colloid Science

2009

Print ISBN: 978-3-527-32037-0 (Also available in a variety of electronic formats)

Fernandez-Nieves, A., Wyss, H., Mattsson, J., Weitz, D.A. (eds.)

Microgel Suspensions

Fundamentals and Applications

2011

Print ISBN: 978-3-527-32158-2 (Also available in a variety of electronic formats)

Tadros, T.F.

Dispersion of Powders

In Liquids and Stabilization of Suspensions

2012

Print ISBN: 978-3-527-32941-0 (Also available in a variety of electronic formats)

The Sol-Gel Handbook

Volume 1: Synthesis and Processing

Volume 2: Characterization and Properties of Sol-Gel Materials

Volume 3: Application of Sol-Gel Materials

Edited by

David Levy and Marcos Zayat

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33486-5

ePDF ISBN: 978-3-527-67084-0

ePub ISBN: 978-3-527-67083-3

Mobi ISBN: 978-3-527-67082-6

oBook ISBN: 978-3-527-67081-9

Preface

Sol–gel materials are known since the early 1960s, when the first inorganic materials were prepared using this method. Sol–gel processing methods were first used historically for basic materials. In the last 30 years, many new applications have been developed. Materials scientists and engineers have showed increasing interest in this technology, as an alternative method of preparation of materials with new properties. Several books and handbooks have been written on this topic since the publication of the fantastic book Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing by C. Jeffrey Brinker and George W. Scherer in 1990. The comprehensive volume, Handbook of Sol–Gel Science and Technology: Processing Characterization and Applications, edited by Prof. Sumio Sakka, was published in 2004 and has served as one of the key references in the field. Since then, a remarkable scientific and technological development has taken place in the field of sol–gel materials, as reflected by the enormous increase in the number of ongoing researches in the field. The extensive use of sol–gel techniques in multidisciplinary and well-accepted materials preparation route is evidenced by the large number of works being published in diverse areas such as sol–gel-derived organic–inorganic hybrid materials, sol–gel-derived biomaterials, and sol–gel environmental materials. The huge number of papers dealing with sol–gel materials published during the last 5 years (more than 30 000) accounts for the popularity and relevance of the sol–gel technology in the preparation of novel materials. The sol–gel technology can be considered as one of the key technologies of the twenty-first century.

The field of hybrid materials is one of the most developed research areas in the last three decades. Promising properties of the materials and the possibility of different functions with one material make hybrid materials a very promising technology. The combination of functional inorganic components with functional organic and biological components made hybrid materials probably the most inclusive available route of different disciplines in materials science, such as photonics and optics, microelectronics, ceramics and polymer composites, catalysis and porous materials, functional coatings, energy, and the rapidly growing biotechnology applications with the advantage of easy integration in the devices, which also contribute to spread of this growing multidisciplinary field.

The hybrid approach and novel synthetic methods have brought a great revolution in the field. A new generation of advanced materials has evolved, which was not possible with other methods. Novel different routes for new compositions as well as control of the structure of these materials could be developed through bottom-up approaches that permit the tailoring of properties from the atomic to the macroscopic length scales. This is probably due to the mild, low-energy conditions used. Sol–gel technology has reached a relatively mature situation, with some products already available on the market. However, many difficulties related to the replacement of existing technologies make it difficult to fully accomplish some of the new proposed developments. There is still much work to do in terms of multidisciplinary research in the areas of chemistry and physics to exploit this technical opportunity of creating novel materials that satisfy the requirements of a variety of applications and devices. Many important contributions are expected in the coming years from the multidisciplinary research on novel hybrid functional sol–gel materials.

This Handbook focuses not only on scientific research but also on related industrial needs and developments. It covers the most relevant topics in basic research and those having potential technological applications. We acknowledge the considerable effort of each of the authors who has made excellent contributions to this excellent book.

We have intended to bring together all aspects of the sol–gel technology, from the laboratory preparation and processing techniques to the characterization and potential applications of the resulting materials. Readers will find in this Handbook the latest developments made in this interesting and growing research area. A special section has been devoted to the already existing important applications of these materials in the industry.

26 May 2015

David Levy

Marcos Zayat

Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, Spain

List of Contributors

Carole Aimé

Sorbonne Universités

UPMC Univ Paris 06

CNRS, UMR 7574

Laboratoire de Chimie de la Matière Condensée de ParisJussieu

75005 Paris

France

Rui M. Almeida

Universidade de Lisboa

Instituto Superior Técnico

Departamento de Engenharia Química/CQE

Av. Rovisco Pais

1049-001 Lisbon

Portugal

David Almendro

CSIC

Instituto de Ciencia de Materiales de Madrid (ICMM)

Sol-Gel Group (SGG)

Sor Juana Inés de la Cruz, 3

28049 Madrid

Spain

Mario Aparicio

CSIC

Instituto de Cerámica y Vidrio

Kelsen 5, Campus de Cantoblanco

28049 Madrid

Spain

Pîlar Aranda

CSIC

Insitituto de Ciencia de Materiales de Madrid

c/Sor Juana Inés de la Cruz 3

28049 Madrid

Spain

Paulo Almeida

University of Beira Interior

Chemistry Department and CICS – Health Sciences Research Centre

6200-001 Covilhã

Portugal

David Avnir

The Hebrew University of Jerusalem

Institute of Chemistry

Centre for Nanoscience and Nanotechnology

91904 Jerusalem

Israel

Florence Babonneau

Sorbonne UniversitésUPMC Univ Paris 06

CNRS – Collège de France

Laboratoire de Chimie de la Matière Condensée de Paris

11 place Marcelin Berthelot

75005 Paris

France

R. Backov

Université de Bordeaux

Centre de Recherche Paul Pascal

Office 115, UPR 8641-CNRS

115 Avenue Albert Schweitzer

33600 Pessac

France

Ruben Baetens

KU Leuven (KUL)

Department of Civil Engineering

3000 Leuven

Belgium

Alejandro Baeza

Universidad Complutense de Madrid

Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12

Facultad de Farmacia

Departamento de Química Inorgánica y Bioinorgánica

Plaza Ramón y Cajal s/n

28040 Madrid

Spain

and

Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)

Spain

Carolina Belver

Universidad Autónoma de Madrid

Departamento de Química Física Aplicada

Facultad de Ciencias

c/Francisco Tomás y Valiente 7

28049 Madrid

Spain

Rogier Besselink

University of Twente

MESA+ Institute for Nanotechnology

Drienerlolaan 5

7522 NB Enschede

The Netherlands

Sara A. Bilmes

Universidad de Buenos Aires

Facultad de Ciencias Exactas y

Naturales

INQUIMAE

Departamento de Química

Inorgánica

Analítica y Química Física

Pabellón 2

Intendente Güiraldes 2160

Ciudad Universitaria

C1428EHA Buenos Aires

Argentina

Jochanan Blum

The Hebrew University of Jerusalem

Institute of Chemistry

Centre for Nanoscience and Nanotechnology

91904 Jerusalem

Israel

Cédric Boissière

Université Pierre et Marie Curie (Paris VI)

Laboratoire de Chimie de la Matière Condensée de Paris

4 place Jussieu, Tour 54, E.5, C 54–55

75252 Paris Cedex

France

Christian Bonhomme

Université Pierre et Marie Curie

CNRS – Collège de France

Laboratoire de Chimie de la Matière Condensée de Paris

11 place Marcelin Berthelot

75005 Paris

France

José Maurício A. Caiut

University of São Paulo

FFCLRP

Department of Chemistry

Av. Bandeirantes 3900

14040-901 Ribeirão Preto

Brazil

María Lourdes Calzada

Consejo Superior de Investigaciones Científicas (CSIC)

Instituto de Ciencia de Materiales de Madrid (ICMM)

C/Sor Juana Inés de la Cruz, 3, Cantoblanco

28049 Madrid

Spain

Luis D. Carlos

University of Aveiro

Physics Department and CICECO

3810-193 Aveiro

Portugal

Hessel L. Castricum

University of Amsterdam

Van 't Hoff Institute for Molecular Sciences

Science Park 9041098 XH Amsterdam

The Netherlands

Yolanda Castro

CSIC

Instituto de Cerámica y Vidrio

Kelsen 5, Campus de Cantoblanco

28040 Madrid

Spain

Li-Hua Chen

Wuhan University of Technology

State Key Laboratory of Advanced Technology for Material Synthesis and Processing

Luoshi Road 122

Wuhan 430070

China

Seon-Jin Choi

Korea Advanced Institute of Science and Technology

Department of Materials Science and Engineering

291 Daehak-ro, Yuseong-gu

Daejeon 305-701

Republic of Korea

Rosaria Ciriminna

CNR

Istituto per lo Studio dei Materiali Nanostrutturati

via Ugo La Malfa 153

90146 Palermo

Italy

Montserrat Colilla

Universidad Complutense de Madrid

Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12

Facultad de Farmacia

Departamento de Química Inorgánica y Bioinorgánica

Plaza Ramón y Cajal s/n

28040 Madrid

Spain

and

Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)

Spain

Thibaud Coradin

Sorbonne Universités

UPMC Univ Paris 06

CNRS, UMR 7574

Laboratoire de Chimie de la Matière Condensée de ParisJussieu

75005 Paris

France

Olivier Dautel

Ecole Nationale Supérieure de Chimie de Montpellier

Architectures Moléculaires et Matériaux Nanostructurés

CNRS UMR 5253 ICGM

8 rue de l'Ecole Normale

34296 Montpellier Cedex

France

Enrico Della Gaspera

CSIRO

Materials Science and Engineering

Clayton, Victoria 3168

Australia

M. Depardieu

Université de Bordeaux

Centre de Recherche Paul Pascal

Office 115, UPR 8641-CNRS

115 Avenue Albert Schweitzer

33600 Pessac

France

Rupali Deshmukh

ETH Zurich

Department of Materials

Laboratory for Multifunctional Materials

Vladimir-Prelog-Weg 5

8093 Zurich

Switzerland

Verónica de Zea Bermudez

University of Trás-os-Montes e Alto Douro

Chemistry Department and CQ-VR

5000-801 Vila Real

Portugal

Molíria V. dos Santos

São Paulo State University – UNESP

Institute of Chemistry

Lab Mat Foton

CP 355

14801-970 Araraquara

Brazil

Bruce Dunn

University of California, Los Angeles

Department of Materials Science and Engineering

California NanoSystems Institute

410 Westwood Plaza

Los Angeles, CA 90095

USA

Alicia Durán

CSIC

Instituto de Cerámica y Vidrio

Kelsen 5, Campus de Cantoblanco

28040 Madrid

Spain

Eleni K. Efthimiadou

National Center of Scientific Research “Demokritos”

Institute of Nanoscience and Nanotechnology

Sol–Gel Laboratory

Agia Paraskevi Attikis

15310 Athens

Greece

Paolo Falcaro

CSIRO Process Science and Engineering

Materials Science and Engineering

Gate 5, Normanby Road

Clayton, VIC 3168

Australia

César Fernández-Sánchez

César Fernández-Sánchez

Consejo Superior de Investigaciones

Científicas (CSIC)

Instituto de Microelectrónica de

Barcelona (IMB-CNM)

Carrer dels Til.lers

Campus de la Universitat

Autònoma de Barcelona

08193 Bellaterra, Catalunya

Spain

Rute Amorim S. Ferreira

University of Aveiro

Physics Department and CICECO

3810-193 Aveiro

Portugal

Vânia Teixeira Freitas

University of Aveiro

Physics Department and CICECO

3810-193 Aveiro

Portugal

Shuhei Furukawa

Kyoto University

Institute for Integrated Cell Material Sciences (WPI-iCeMS)

Yoshida, Sakyo-ku

Kyoto 606–8501

Japan

Marco Faustini

Université Pierre et Marie Curie (Paris VI)

Laboratoire de Chimie de la Matière Condensée de Paris

4 place Jussieu, Tour 54, E.5, C 54–55

75252 Paris Cedex

France

Andrea Feinle

Salzburg University

Materials Chemistry

Hellbrunner Straße 34

5020 Salzburg

Austria

Francisco M. Fernandes

Sorbonne Universités

UPMC Univ Paris 06

CNRS, UMR 7574

Laboratoire de Chimie de la Matière Condensée de ParisJussieu

75005 Paris

France

Martí Gich

Consejo Superior de Investigaciones

Científicas (CSIC)

Institut de Ciència de Materials de

Barcelona (ICMAB)

Carrer dels Til.lers

Campus de la Universitat

Autònoma de Barcelona

08193 Bellaterra, Catalunya

Spain

Rogéria R. Gonçalves

University of São Paulo

FFCLRP

Department of Chemistry

Av. Bandeirantes 3900

14040-901 Ribeirão Preto

Brazil

David Grosso

Université Pierre et Marie Curie (Paris VI)

Laboratoire de Chimie de la Matière Condensée de Paris

4 place Jussieu, Tour 54, E.5, C 54–55

75252 Paris Cedex

France

Massimo Guglielmi

Università degli Studi di Padova

Dipartimento di Ingegneria Industriale

Sede M - Via Marzolo 9

35131 Padua

Italy

Arild Gustavsen

Norwegian University of Science and Technology (NTNU)

Department of Architectural Design, History and Technology

7491 Trondheim

Norway

Lucía Gutiérrez

Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC

Sor Juana Inés de la Cruz 3 28049 Madrid

Spain

Raz Gvishi

Soreq NRC

Division of Applied Physics

Photonic Materials Group

81800 Yavne

Israel

An Hardy

Hasselt University

Institute for Materials Research

Inorganic and Physical Chemistry

Martelarenlaan 42

3500 Hasselt

Belgium

Peter Hesemann

UMR 5253 CNRS-UM2-ENSCM-UM1

Institut Charles Gerhardt, Montpellier 2

Place Eugène Bataillon, CC1701

34095 Montpellier

France

Nicola Hüsing

Salzburg University

Materials Chemistry

Hellbrunner Straße 34

5020 Salzburg

Austria

Plinio Innocenzi

Università di Sassari and CR-INSTM

Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT) – D.A.D.U.

Palazzo Pou Salit

Piazza Duomo 6

07041 Alghero (SS)

Italy

Bjørn Petter Jelle

SINTEF Building and Infrastructure

Department of Materials and Structures

7465 Trondheim

Norway

and

Norwegian University of Science and Technology (NTNU)

Department of Civil and Transport Engineering

7491 Trondheim

Norway

Julian R. Jones

Imperial College London

Department of Materials

South Kensington Campus

London SW7 2AZ

UK

Vadim G. Kessler

Department of Chemistry and Biotechnology

SLU BioCenter

Almas allé 5, Box 7015

SE-75007 Uppsala

Sweden

Guido Kickelbick

Saarland University

Inorganic Chemistry

Am Markt Zeile 3

66125 Saarbrücken

Germany

and

INM – Leibniz Institute of New Materials

Campus D22

66123 Saarbrücken

Germany

Il-Doo Kim

Korea Advanced Institute of Science and Technology

Department of Materials Science and Engineering

291 Daehak-ro, Yuseong-gu

Daejeon 305-701

Republic of Korea

N. Kinadjian

Université de Bordeaux

Centre de Recherche Paul Pascal

Office 115, UPR 8641-CNRS

115 Avenue Albert Schweitzer

33600 Pessac

France

and

University of Waterloo

Department of Chemistry

200 University Avenue West

Waterloo, N2L 3G1 Ontario

Canada

and

University of Liège

Department of Chemistry

GREENMAT-LCIS, B6 Sart Tilman

4000 Liege

Belgium

Matthias M. Koebel

Swiss Federal Laboratories for Materials Science and Technology – EMPA

Laboratory for Building Energy Materials and Components

Überlandstrasse 129

8600 Dübendorf

Switzerland

and

Swiss Federal Laboratories for Materials Science and Technology – EMPA

Laboratory for Building Technologies

Überlandstrasse 129

8600 Dübendorf

Switzerland

George Kordas

National Center of Scientific Research “Demokritos”

Institute of Nanoscience and Nanotechnology

Sol–Gel Laboratory

Agia Paraskevi Attikis

15310 Athens

Greece

David Levy

CSIC

Instituto de Ciencia de Materiales de Madrid (ICMM)

Sol-Gel Group (SGG)

Sor Juana Inés de la Cruz, 3

28049 Madrid

Spain

Kang Liang

CSIRO Process Science and Engineering

Materials Science and Engineering

Gate 5, Normanby Road

Clayton, VIC 3168

Australia

Liang Liu

The Hebrew University of Jerusalem

Institute of Chemistry

Jerusalem 9190401

Israel

Antonio Julio López

Universidad Rey Juan Carlos

ESCET, Departamento de Ciencia e Ingeniería de Materiales

Campus de Móstoles, C/Tulipán s/n

28933 Móstoles, Madrid

Spain

Luca Malfatti

Università di Sassari and CR-INSTM

Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT) – D.A.D.U.

Palazzo Pou Salit

Piazza Duomo 6

07041 Alghero (SS)

Italy

Ryan Maloney

University of California, Los Angeles

Department of Materials Science and Engineering

California NanoSystems Institute

410 Westwood Plaza

Los Angeles, CA 90095

USA

Daniel Mandler

The Hebrew University of Jerusalem

Institute of Chemistry

Jerusalem 9190401

Israel

Marina S. Manic

Separex S.A.

Rue Jacques Monod, BP 9

54250 Champigneulles

France

Alessandro Martucci

CSIRO

Materials Science and Engineering

Clayton, Victoria 3168

Australia

and

Università degli Studi di Padova

Dipartimento di Ingegneria Industriale

Sede M - Via Marzolo 9

35131 Padua

Italy

Guillermo Monrós

Jaume I University

Department of Inorganic & Organic Chemistry

Avgda. Sos Baynat s/n

12071 Castellon de la Plana

Spain

María del Puerto Morales

Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC

Sor Juana Inés de la Cruz 3 28049 Madrid

Spain

Joël J.E. Moreau

Ecole Nationale Supérieure de Chimie de Montpellier

Architectures Moléculaires et Matériaux Nanostructurés

CNRS UMR 5253 ICGM

8 rue de l'Ecole Normale

34296 Montpellier Cedex

France

Jadra Mosa

CSIC

Instituto de Cerámica y Vidrio

Kelsen 5, Campus de Cantoblanco

28049 Madrid

Spain

Zackaria Nairoukh

The Hebrew University of Jerusalem

Institute of Chemistry

Centre for Nanoscience and Nanotechnology

91904 Jerusalem

Israel

Kazuki Nakanishi

Kyoto University

Graduate School of Science

Department of Chemistry

Kitashirakawa, Sakyo-ku

Kyoto 606-8502

Japan

Markus Niederberger

ETH Zurich

Department of Materials

Laboratory for Multifunctional Materials

Vladimir-Prelog-Weg 5

8093 Zurich

Switzerland

Pengfei Niu

Consejo Superior de Investigaciones

Científicas (CSIC)

Institut de Ciència de Materials de

Barcelona (ICMAB)

Carrer dels Til.lers

Campus de la Universitat

Autònoma de Barcelona

08193 Bellaterra, Catalunya

Spain

Sílvia C. Nunes

University of Beira Interior

Chemistry Department and CICS – Health Sciences Research Centre

6200-001 Covilhã

Portugal

and

University of Trás-os-Montes e Alto Douro

Chemistry Department

5000-801 Vila Real

Portugal

Mario Pagliaro

CNR

Istituto per lo Studio dei Materiali Nanostrutturati

via Ugo La Malfa 153

90146 Palermo

Italy

Giovanni Palmisano

Masdar Institute of Science and Technology

Institute Center for Water and Environment (iWater)

Department of Chemical and Environmental Engineering

PO BOX 54224

Abu Dhabi, UAE

Édison Pecoraro

São Paulo State University – UNESP

Institute of Chemistry

Lab Mat Foton

CP 355

14801-970 Araraquara

Brazil

D. Portehault

Sorbonne Universités

UPMC Univ Paris 06

UMR 7574, Chimie de la Matière Condensée de Paris

75005 Paris

France

and

CNRS

UMR 7574, Chimie de la Matière Condensée de Paris

75005 Paris

France

and

Chimie de la Matière Condensée de Paris

Collège de France

11 place Marcelin Berthelot

75231 Paris Cedex 05

France

Luminita Predoana