494,99 €
This comprehensive three-volume handbook brings together a review of the current state together with the latest developments in sol-gel technology to put forward new ideas.
The first volume, dedicated to synthesis and shaping, gives an in-depth overview of the wet-chemical processes that constitute the core of the sol-gel method and presents the various pathways for the successful synthesis of inorganic and hybrid organic-inorganic materials, bio- and bio-inspired materials, powders, particles and fibers as well as sol-gel derived thin films, coatings and surfaces.
The second volume deals with the mechanical, optical, electrical and magnetic properties of sol-gel derived materials and the methods for their characterization such as diffraction methods and nuclear magnetic resonance, infrared and Raman spectroscopies.
The third volume concentrates on the various applications in the fields of membrane science, catalysis, energy research, biomaterials science, biomedicine, photonics and electronics.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 3041
Veröffentlichungsjahr: 2015
Cover
Related Titles
Title Page
Copyright
Preface
List of Contributors
Volume One: Synthesis and Processing
Part One: Sol–Gel Chemistry and Methods
Chapter 1: Chemistry and Fundamentals of the Sol–Gel Process
1.1 Introduction
1.2 Hydrolysis and Condensation Reactions
1.3 Sol–Gel Transition (Gelation)
1.4 Aging and Drying
1.5 Postsynthesis Processing
1.6 Concluding Remarks
References
Chapter 2: Nonhydrolytic Sol–Gel Methods
2.1 Introduction
2.2 Nonaqueous Sol–Gel Routes to Metal Oxide Nanoparticles
2.3 Nonaqueous Sol–Gel Synthesis beyond Metal Oxides
2.4 Chemical Reaction and Crystallization Mechanisms
2.5 Assembly and Processing
2.6 Summary and Outlook
References
Chapter 3: Integrative Sol–Gel Chemistry
3.1 Introduction
3.2 Design of 0D Structures
3.3 Design of 1D Macroscopic Structures
3.4 Design of Extended 2D Structures
3.5 Design of Extended 3D Structures
3.6 Conclusions
References
Chapter 4: Synthetic Self-Assembly Strategies and Methods
4.1 Introduction
4.2 Templated Synthesis of Inorganic Materials
4.3 Self-Assembled Organosilicas
4.4 Conclusions
References
Chapter 5: Processing of Sol–Gel Films from a Top-Down Route
5.1 Introduction
5.2 Top-Down Processing by UV Photoirradiation
5.3 Laser Irradiation and Writing
5.4 Electron Beam Lithography
5.5 Top-Down Processing by Hard X-Rays
5.6 Soft X-Ray Lithography
References
Chapter 6: Sol–Gel Precursors
6.1 Introduction
6.2 Simple Silicon Alkoxides
6.3 Functional and Mixed Ligand Silicon Alkoxides for More Facile Hydrolysis
6.4 Functional Silicon Alkoxides: Precursors of Hybrid Materials
6.5 Simple Metal Alkoxides
6.6 Functional and Mixed Ligand Metal Alkoxides for More Facile Hydrolysis and Stabilization of Resulting Colloids
6.7 Precursor and Solvent Choice for Nonhydrolytic Sol–Gel Processes
6.8 Synthesis of Complex Materials: Single-Source Precursor Approach
6.9 Sol–Gel Precursors for Special Applications: Biomedical and Luminescent
Abbreviations
References
Part Two: Sol–Gel Materials
Chapter 7: Nanoparticles and Composites
7.1 Introduction
7.2 Aqueous Sol–Gel Process
7.3 Nonaqueous Sol–Gel Process
7.4 Surface Functionalization of Nanoparticles
7.5 Nanocomposites
7.6 Conclusions
References
Chapter 8: Oxide Powders and Ceramics
8.1 Oxide Powders Obtained by Sol–Gel Methods
8.2 Ceramics from Sol–Gel Oxide Powders
8.3 Pure and Doped Single Oxide Ceramics
8.4 Multicomponent Ceramics
8.5 Composite Ceramics
8.6 Conclusions
References
Chapter 9: Thin Film Deposition Techniques
9.1 Introduction
9.2 General Aspects of Liquid Deposition Techniques
9.3 Spin Coating
9.4 Dip Coating
9.5 Alternative and Emerging Techniques
9.6 General Perspectives
References
Chapter 10: Monolithic Sol–Gel Materials
10.1 Introduction
10.2 Principles of Sol–Gel Monolith Fabrication
10.3 Routes for Fabrication of Monoliths
10.4 Summary
References
Chapter 11: Hollow Inorganic Spheres
11.1 Introduction
11.2 General Strategies
11.3 Typical Synthesis Procedures
11.4 Applications
11.5 Summary
References
Chapter 12: Sol–Gel Coatings by Electrochemical Deposition
12.1 Introduction
12.2 Mechanism of the Sol–Gel Electrochemical Deposition
12.3 Manipulation of the Sol–Gel Electrochemical Deposition
12.4 Electrochemical Codeposition of Sol–Gel-Based Hybrid and Composite Films
12.5 Applications of Electrochemically Deposited Sol–Gel Films
12.6 Summary
Abbreviations for Silanes
Acknowledgments
References
Chapter 13: Nanofibers and Nanotubes
13.1 Introduction
13.2 Nanofibers
13.3 Nanotubes
13.4 Summary and Future Perspectives
References
Chapter 14: Nanoarchitectures by Sol–Gel from Silica and Silicate Building Blocks
14.1 Introduction
14.2 Porous Clay Nanoarchitectures Using Sol–Gel Approaches
14.3 Porous Nanoarchitectures from Delaminated Clays
14.4 Fibrous Silicates as Building Blocks in Sol–Gel Nanoarchitectures Derived from Clays
14.5 Conclusion
Acknowledgments
References
Chapter 15: Sol–Gel for Metal Organic Frameworks (MOFs)
15.1 Introduction
15.2 Design and Synthetic Strategies of MOF–Sol–Gel-Based Structures
15.3 Conclusion and Remarks
Acknowledgments
References
Chapter 16: Silica Ionogels and Ionosilicas
16.1 Introduction
16.2 Ionogels
16.3 Ionosilicas
16.4 Conclusion
References
Chapter 17: Aerogels
17.1 Introduction and Brief History
17.2 Synthesis and Processing
17.3 Characterization Methods
17.4 Selected Examples and Applications
17.5 Trends, Conclusion, and Outlook
References
Chapter 18: Ordered Mesoporous Sol–Gel Materials: From Molecular Sieves to Crystal-Like Periodic Mesoporous Organosilicas
18.1 Introduction
18.2 Synthesis Mechanisms of Periodic Mesoporous Silica Materials
18.3 Functionalization of Periodic Mesoporous Silica Materials
18.4 Periodic Mesoporous Organosilicas
18.5 Future Trends
Acknowledgments
References
Chapter 19: Biomimetic Sol–Gel Materials
19.1 Introduction
19.2 Natural Sol–Gel Materials
19.3 Biomimetic Sol–Gel Chemistry
19.4 Biohybrid Materials from Bioinspired Mineralization Strategies
19.5 Conclusions
References
Volume Two: Characterization and Properties of Sol-Gel Materials
Part Three: Characterization Techniques for Sol–Gel Materials
Chapter 20: Solid-State NMR Characterization of Sol–Gel Materials: Recent Advances
20.1 Introduction
20.2 Recent Advances in NMR Techniques
20.3 Recent Advances in NMR Modeling
20.4 Relevant Examples in the Field of Sol–Gel Materials
20.5 Conclusions
Acknowledgments
References
Chapter 21: Time-Resolved Small-Angle X-Ray Scattering
21.1 Introduction
21.2 Theory of SAXS
21.3 SAXS Experiments
21.4 In-Situ Studies on Sol–Gel Systems
References
Chapter 22: Characterization of Sol–Gel Materials by Optical Spectroscopy Methods
22.1 Introduction
22.2 Experimental
22.3 Representative Results
22.4 Summary
References
Chapter 23: Properties and Applications of Sol–Gel Materials: Functionalized Porous Amorphous Solids (Monoliths)
23.1 Sol–Gel-Derived Amorphous Systems
23.2 Porous Silica Monoliths
23.3 Functional Polyorganosiloxane Porous Materials from Tri- and Dialkoxysilanes
23.4 Porous Hydrogen Silsesquioxane Monoliths
References
Chapter 24: Sol–Gel Deposition of Ultrathin High-κ Dielectric Films
24.1 Introduction
24.2 High-κ Dielectric Properties and Applications
24.3 Challenges for Ultrathin Films
24.4 Deposition of Ultrathin Films
24.5 Examples of Sol–Gel Deposited Ultrathin Dielectric Films
24.6 Conclusions and Outlook
Acknowledgements
References
Part Four: Properties
Chapter 25: Functional (Meso)Porous Nanostructures
25.1 Introduction
25.2 TiO2-SiO2
25.3 Binary Si/Ti Oxide Xerogels
25.4 Mixed Oxide Aerogels
25.5 Materials with Periodically Arranged Mesopores
25.6 Hierarchically Organized Pore Architectures
25.7 Summary
References
Chapter 26: Sol–Gel Magnetic Materials
26.1 Introduction
26.2 Sol–Gel-Derived Magnetic Materials
26.3 Magnetic Properties
26.4 Magneto-Optical Properties
26.5 Bioapplications
26.6 Conclusions
Acknowledgements
References
Chapter 27: Sol–Gel Electroceramic Thin Films
27.1 Introduction
27.2 Chemical Solution Deposition of Electroceramic Thin Films
27.3 Examples of the Effect on the Electrical Properties of Features Associated with the Thin Film Form and Processing
27.4 Current Challenges for Solution-Derived Electroceramic Thin Films
27.5 Summary
References
Chapter 28: Organic–Inorganic Hybrids for Lighting
28.1 Introduction
28.2 Dye-Bridged Hybrids
28.3 Dye-Doped Hybrids
28.4 Amine- and Amide-Based Hybrids
28.5 Conclusions and Perspectives
References
Chapter 29: Sol–Gel TiO2 Materials and Coatings for Photocatalytic and Multifunctional Applications
29.1 Photocatalysis: Key Environmental Instrument
29.2 Properties of Titania
29.3 Conclusions
References
Chapter 30: Optical Properties of Luminescent Materials
30.1 Sol–Gel and Luminescent Materials
30.2 Incorporation of Luminescent Species
30.3 Perspectives and Concluding Remarks
Acknowledgments
References
Chapter 31: Better Catalysis with Organically Modified Sol–Gel Materials
31.1 Introduction
31.2 The Entrapment of Organometallic Catalysts within Sol–Gel Materials: From Homogeneous to Heterogeneous Catalysis
31.3 Porosity Effects on Catalytic Properties: Natural, Periodic, and Imprinted Porosities
31.4 Two Coentrapped Catalysts: Synergism and Multisteps
31.5 The Use of Opposing Reagents and Catalysts in One Pot
31.6 Systems Involving Sol–Gel Materials and Emulsions
31.7 Enantioselective Catalysis
31.8 Photocatalysis
31.9 Comments on Biocatalysis
31.10 Commercialization of Organically Modified Sol–Gel Catalysts
Acknowledgments
References
Chapter 32: Hierarchically Structured Porous Materials
32.1 Introduction
32.2 Synthesis Strategies for Hierarchically Structured Porous Materials
32.3 Applications of Hierarchically Structured Porous Materials
32.4 Conclusions
References
Chapter 33: Structures and Properties of Ordered Nanostructured Oxides and Composite Materials
33.1 Introduction
33.2 Optical Properties of Nanostructured Materials
33.3 Optical Response of OMPO Layers: A Toolbox for Characterization
33.4 Synthesis and Characterization of OMPO by Sol–Gel Method
33.5 Synthesis of Composite Nanostructures and Their Optical Properties: Toward the Design of Photonic Structures
33.6 Photonic Crystals
33.7 Confined Nanoparticles in OMPO
33.8 Conclusions
Acknowledgments
References
Volume Three: Application of Sol-Gel Materials
Part Five: Applications
Chapter 34: Sol–Gel for Environmentally Green Products
34.1 The Green Potential of Doped Sol–Gel Glasses
34.2 Environment-Friendly Sol–Gel Coatings
34.3 Sol–Gel Catalysts for Fine Chemicals
34.4 Sol–Gel Photobioreactors
34.5 Perspectives and Conclusions
Acknowledgments
References
Chapter 35: Sol–Gel Materials for Batteries and Fuel Cells
35.1 Introduction
35.2 Sol–Gel Materials for Fuel Cells
35.3 Sol–Gel Materials for Li Ion Batteries
References
Chapter 36: Sol–Gel Materials for Energy Storage
36.1 Introduction
36.2 Background on Electrochemical Energy Storage
36.3 Sol–Gel Materials for Lithium Ion Batteries
36.4 Ion Substitution for Lithium Ion Batteries
36.5 Morphology
36.6 Conclusions
Acknowledgements
References
Chapter 37: Sol–Gel Materials for Pigments and Ceramics
37.1 Traditional Ceramics and Sol–Gel Materials
37.2 Colored Glazed Ceramics
37.3 Ceramic Pigment and Sol–Gel Process
37.4 Sol–Gel Process and Pigments for Inkjet
37.5 Summary
References
Chapter 38: Sol–Gel for Gas Sensing Applications
38.1 Introduction
38.2 Binary Metal Oxides
38.3 Ternary/Quaternary Oxides and Other Compounds
References
Chapter 39: Reinforced Sol–Gel Silica Coatings
39.1 Introduction
39.2 Reinforcing Sol–Gel Silica Coatings for Mechanical Improvement
39.3 Reinforcing Sol–Gel Silica Coatings with Particles
39.4 Reinforcing Sol–Gel Silica Coatings with Layered Silicates
39.5 Nanofiber-Reinforced Sol–Gel Silica Coatings
39.6 Incorporation of CNTs into Sol–Gel Silica Coatings
39.7 Properties of CNT–Silica Coatings
39.8 Conclusions
References
Chapter 40: Sol–Gel Optical and Electro-Optical Materials
40.1 Introduction
40.2 Gel-Glass-Dispersed Liquid Crystal (GDLC) Materials
40.3 Electro-Optical Devices Based on Biofilm Structures
40.4 Electrochromic Windows
40.5 Photochromic Sol–Gel Materials
40.6 Photonic Sol–Gel Materials
40.7 Optical Sensors
40.8 UV Protective Sol–Gel Coatings
40.9 Filters and Solar Absorbers
40.10 Waveguides
40.11 Reflective and Antireflective (AR) Coatings
40.12 Refractive and Photorefractive Sol–Gel Materials
40.13 Magneto-Optical Materials
40.14 Other Optical Sol–Gel Materials
40.15 Conclusions
References
Chapter 41: Luminescent Solar Concentrators and the Ways to Increase Their Efficiencies
41.1 Foreword
41.2 Introduction
41.3 General Description of the Sol–Gel Process
41.4 Luminescent Solar Concentrators Based on the Sol–Gel Method
41.5 Non-Self-Absorbing Systems Based on Proton Transfer
41.6 Lanthanide Complexes as a Way to Prevent Self-Absorption
41.7 Summary
41.8 Conclusions
Acknowledgments
References
Chapter 42: Mesoporous Silica Nanoparticles for Drug Delivery and Controlled Release Applications
42.1 Introduction
42.2 Selective Targeting
42.3 Stimuli-Responsive Drug Delivery
References
Chapter 43: Sol–Gel Materials for Biomedical Applications
43.1 The Need for New Biomaterials
43.2 Bioactive Glass, Bioglass, and Bioactivity
43.3 Bioactive Sol–Gel Glass
43.4 Bioactive Glass Scaffolds
43.5 Sol–Gel Hybrid Scaffolds
43.6 Submicron Particles and Nanoparticles
43.7 Summary
References
Chapter 44: Self-Healing Coatings for Corrosion Protection of Metals
44.1 Introduction
44.2 Production of Nanoparticles and Nanocontainers
44.3 Multifunctional Coatings
References
Chapter 45: Aerogel Insulation for Building Applications
45.1 Introduction
45.2 Thermal Background
45.3 Synthesis
45.4 Properties of Silica Aerogels
45.5 Building Applications of Aerogels
45.6 Other High-Performance Thermal Insulation Materials and Solutions
45.7 Conclusions
Acknowledgments
References
Chapter 46: Sol–Gel Nanocomposites for Electrochemical Sensor Applications
46.1 Introduction
46.2 Electrochemical Sensors
46.3 Sol–Gel Nanocomposites: Synthesis Routes
46.4 Electrochemical Sensors Based on Nanocomposites by Sol–Gel
46.5 Application of Sol–Gel Nanocomposites in Electrochemical Sensors
46.6 Conclusions and Future Prospects
Acknowledgments
References
Index
EULA
Table 3.1
Table 3.2
Table 5.1
Table 6.1
Table 6.2
Table 7.1
Table 8.1
Table 14.1
Table 14.2
Table 17.1
Table 18.1
Table 18.2
Table 18.3
Table 18.4
Table 19.1
Table 21.1
Table 24.1
Table 26.1
Table 27.1
Table 27.2
Table 27.3
Table 27.4
Table 27.5
Table 27.6
Table 28.1
Table 28.2
Table 32.1
Table 34.1
Table 36.1
Table 36.2
Table 39.1
Table 39.2
Table 39.3
Table 39.4
Table 39.5
Table 41.1
Table 41.2
Table 44.1
Table 44.2
Table 44.3
Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9
Figure 1.10
Figure 1.11
Figure 1.12
Figure 1.13
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Scheme 2.1
Scheme 2.2
Scheme 2.3
Figure 2.7
Figure 2.8
Scheme 2.4
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18
Figure 3.19
Figure 3.20
Scheme 3.1
Figure 3.21
Figure 3.22
Figure 3.23
Figure 3.24
Figure 3.25
Figure 3.26
Figure 3.27
Figure 3.28
Figure 3.29
Figure 3.30
Figure 3.31
Scheme 4.1
Scheme 4.2
Figure 4.1
Scheme 4.3
Scheme 4.4
Figure 4.2
Scheme 4.5
Scheme 4.6
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Scheme 4.7
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Scheme 4.8
Figure 4.16
Figure 4.17
Figure 4.18
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 6.1
Scheme 6.1
Figure 6.2
Figure 6.3
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7
Figure 9.8
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7
Figure 10.8
Figure 10.9
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8
Figure 11.9
Figure 11.10
Figure 11.11
Figure 11.12
Figure 11.13
Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4
Figure 12.5
Figure 12.6
Figure 12.7
Figure 12.8
Figure 12.9
Figure 12.10
Figure 12.11
Figure 12.12
Figure 12.13
Figure 12.14
Figure 12.15
Figure 12.16
Figure 12.17
Figure 12.18
Figure 12.19
Figure 12.20
Figure 12.21
Figure 12.22
Figure 12.23
Figure 12.24
Figure 12.25
Figure 12.26
Figure 12.27
Figure 12.28
Figure 12.29
Figure 12.30
Figure 12.31
Figure 12.32
Figure 13.1
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5
Figure 13.6
Figure 13.7
Figure 13.8
Figure 13.9
Figure 13.10
Figure 13.11
Figure 13.12
Figure 14.1
Figure 14.2
Figure 14.3
Figure 14.4
Figure 14.5
Figure 14.6
Figure 14.7
Figure 14.8
Figure 14.9
Figure 14.10
Figure 15.1
Figure 15.2
Figure 15.3
Figure 15.4
Figure 15.5
Figure 15.6
Figure 15.7
Scheme 16.1
Scheme 16.2
Scheme 16.3
Scheme 16.4
Scheme 16.5
Scheme 16.6
Scheme 16.7
Scheme 16.8
Scheme 16.9
Scheme 16.10
Figure 17.1
Figure 17.2
Figure 17.3
Figure 17.4
Figure 17.5
Figure 17.6
Figure 17.7
Figure 17.8
Figure 17.9
Figure 17.10
Figure 18.1
Figure 18.2
Figure 18.3
Figure 18.4
Figure 19.1
Figure 19.2
Figure 19.3
Figure 19.4
Figure 19.5
Figure 19.6
Figure 19.7
Figure 19.8
Figure 19.9
Figure 19.10
Figure 19.11
Figure 19.12
Figure 19.13
Figure 19.14
Figure 19.15
Figure 20.1
Figure 20.2
Figure 20.3
Figure 20.4
Figure 20.5
Figure 20.6
Figure 20.7
Figure 20.8
Figure 21.1
Figure 21.2
Figure 21.3
Figure 21.4
Figure 21.5
Figure 21.6
Figure 21.7
Figure 21.8
Figure 21.9
Figure 22.1
Figure 22.2
Figure 22.3
Figure 22.4
Figure 22.5
Figure 22.6
Figure 22.7
Figure 22.8
Figure 22.9
Figure 22.10
Figure 22.11
Figure 22.12
Figure 22.13
Figure 22.14
Figure 22.15
Figure 22.16
Figure 22.17
Figure 22.18
Figure 22.19
Figure 22.20
Figure 22.21
Figure 22.22
Figure 23.1
Figure 23.2
Figure 23.3
Figure 23.4
Figure 23.5
Figure 23.6
Figure 23.7
Figure 23.8
Figure 23.9
Figure 23.10
Figure 23.11
Figure 24.1
Figure 24.2
Figure 24.3
Figure 24.4
Figure 24.5
Figure 24.6
Figure 24.7
Figure 25.1
Figure 25.2
Figure 25.3
Figure 25.4
Figure 25.5
Figure 25.6
Scheme 25.1
Figure 25.7
Figure 25.8
Figure 25.9
Figure 25.10
Figure 25.11
Figure 25.12
Figure 25.13
Figure 26.1
Figure 26.2
Figure 26.3
Figure 26.4
Figure 26.5
Figure 26.6
Figure 26.7
Figure 26.8
Figure 26.9
Figure 26.10
Figure 27.1
Figure 27.2
Figure 27.3
Scheme 27.1
Scheme 27.2
Scheme 27.3
Scheme 27.4
Scheme 27.5
Scheme 27.6
Scheme 27.7
Scheme 27.8
Figure 27.4
Figure 27.5
Figure 27.6
Figure 27.7
Figure 27.8
Figure 27.9
Figure 27.10
Figure 27.11
Figure 27.12
Figure 27.13
Figure 27.14
Figure 27.15
Figure 27.16
Figure 27.17
Figure 27.18
Figure 27.19
Figure 27.20
Figure 27.21
Figure 27.22
Figure 27.23
Figure 27.24
Figure 28.1
Figure 28.2
Figure 28.3
Figure 28.4
Figure 28.5
Figure 28.6
Figure 28.7
Figure 28.8
Figure 28.9
Figure 28.10
Figure 29.1
Figure 29.2
Figure 29.3
Figure 29.4
Figure 29.5
Figure 29.6
Figure 29.7
Figure 29.8
Figure 29.9
Figure 30.1
Figure 30.2
Figure 30.3
Figure 30.4
Figure 30.5
Figure 30.6
Figure 30.7
Figure 30.8
Figure 30.9
Figure 30.10
Figure 30.11
Figure 30.12
Figure 30.13
Figure 30.14
Figure 30.15
Figure 30.16
Figure 30.17
Figure 30.18
Figure 30.19
Figure 30.20
Figure 30.21
Figure 30.22
Figure 31.1
Figure 31.2
Figure 31.3
Figure 31.4
Figure 31.5
Figure 31.6
Figure 31.7
Figure 31.8
Figure 31.9
Figure 31.10
Figure 31.11
Figure 31.12
Figure 31.13
Figure 31.14
Figure 31.15
Figure 31.16
Figure 31.17
Figure 31.18
Figure 32.1
Figure 32.2
Figure 32.3
Figure 32.4
Figure 32.5
Figure 32.6
Figure 32.7
Figure 32.8
Figure 32.9
Figure 32.10
Figure 32.11
Figure 32.12
Figure 32.13
Figure 32.14
Figure 32.15
Figure 32.16
Figure 32.17
Figure 32.18
Figure 32.19
Figure 32.20
Figure 32.21
Figure 33.1
Figure 33.2
Figure 33.3
Figure 33.4
Figure 33.5
Figure 33.6
Figure 33.7
Figure 33.8
Figure 33.9
Figure 33.10
Figure 34.1
Figure 34.2
Figure 34.3
Figure 34.4
Figure 34.5
Figure 34.6
Scheme 34.1
Figure 34.7
Figure 35.1
Figure 35.2
Figure 35.3
Figure 35.4
Figure 35.5
Figure 35.6
Figure 35.7
Figure 35.8
Figure 35.9
Figure 36.1
Figure 36.2
Figure 36.3
Figure 36.4
Figure 36.5
Figure 36.6
Figure 36.7
Figure 37.1
Figure 37.2
Figure 37.3
Figure 37.4
Figure 37.5
Figure 37.6
Figure 38.1
Figure 38.2
Figure 38.3
Figure 38.4
Figure 38.5
Figure 38.6
Figure 38.7
Figure 38.8
Figure 38.9
Figure 39.1
Figure 39.2
Figure 39.3
Figure 39.4
Figure 39.5
Figure 39.6
Figure 39.7
Figure 39.8
Figure 39.9
Figure 39.10
Figure 39.11
Figure 39.12
Figure 40.1
Figure 40.2
Figure 40.3
Figure 40.4
Figure 40.5
Figure 40.6
Figure 40.7
Figure 40.8
Figure 40.9
Figure 40.10
Figure 40.11
Figure 40.12
Figure 40.13
Figure 40.14
Figure 40.15
Figure 40.16
Figure 40.17
Figure 41.1
Figure 41.2
Figure 41.3
Figure 41.4
Figure 41.5
Figure 41.6
Figure 42.1
Figure 42.2
Figure 42.3
Figure 42.4
Figure 42.5
Figure 42.6
Figure 42.7
Figure 42.8
Figure 42.9
Figure 42.10
Figure 42.11
Figure 43.1
Figure 43.2
Figure 43.3
Figure 43.4
Figure 43.5
Figure 43.6
Figure 43.7
Figure 43.8
Figure 43.9
Figure 43.10
Figure 44.1
Figure 44.2
Figure 44.3
Figure 44.4
Figure 44.5
Figure 44.6
Figure 44.7
Figure 44.8
Figure 44.9
Figure 44.10
Figure 44.11
Figure 44.12
Figure 44.13
Figure 45.1
Figure 45.2
Figure 45.3
Figure 45.4
Figure 45.5
Figure 45.6
Figure 45.7
Figure 45.8
Figure 45.9
Figure 45.10
Figure 45.11
Figure 45.12
Figure 45.13
Figure 45.14
Figure 45.15
Figure 46.1
Figure 46.2
Figure 46.3
Figure 46.4
Figure 46.5
Figure 46.6
Figure 46.7
Figure 46.8
Figure 46.9
Figure 46.10
Figure 46.11
Figure 46.12
Cover
Table of Contents
Begin Reading
Part 1
Chapter 1
ii
iii
iv
xv
xvi
xvii
xviii
xix
xx
xxi
xxii
xxiii
xxiv
xxv
xxvi
xxvii
xxix
xxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
Kickelbick, G. (ed.)
Hybrid Materials
Synthesis, Characterization, and Applications
Second Edition
2015
Print ISBN: 978-3-527-33844-3 (Also available in a variety of electronic formats)
Liu, X.Y., Li, J.L. (eds.)
Soft Fibrillar Materials
Fabrication and Applications
2013
Print ISBN: 978-3-527-33162-8 (Also available in a variety of electronic formats)
Tadros, T.F. (ed.)
Emulsion Formation and Stability
2013
Print ISBN: 978-3-527-31991-6 (Also available in a variety of electronic formats)
Schubert, H., Hüsing, N.
Synthesis of Inorganic Materials
Third Edition
2012
Print ISBN: 978-3-527-32714-0 (Also available in a variety of electronic formats)
Lyon, L.A., Serpe, M.J. (eds.)
Hydrogel Micro and Nanoparticles
2012
Print ISBN: 978-3-527-33033-1 (Also available in a variety of electronic formats)
Corriu, R., Anh, N.T.
Molecular Chemistry of Sol-Gel Derived Nanomaterials
2009
Print ISBN: 978-0-470-72117-9 (Also available in a variety of electronic formats)
Hamley, I.W.
Introduction to Soft Matter
Synthetic and Biological Self-Assembling Materials
2007
Print ISBN: 978-0-470-51609-6 (Also available in a variety of electronic formats)
Ruiz-Hitzky, E., Ariga, K., Lvov, Y.M. (eds.)
Bio-inorganic Hybrid Nanomaterials
Strategies, Syntheses, Characterization and Applications
2008
Print ISBN: 978-3-527-31718-9 (Also available in a variety of electronic formats)
Tadros, T.F. (ed.)
Self-Organized Surfactant Structures
2011
Print ISBN: 978-3-527-31990-9 (Also available in a variety of electronic formats)
Tadros, T.F.
Rheology of Dispersions
Principles and Applications
2010
Print ISBN: 978-3-527-32003-5 (Also available in a variety of electronic formats)
Platikanov, D., Exerowa, D. (eds.)
Highlights in Colloid Science
2009
Print ISBN: 978-3-527-32037-0 (Also available in a variety of electronic formats)
Fernandez-Nieves, A., Wyss, H., Mattsson, J., Weitz, D.A. (eds.)
Microgel Suspensions
Fundamentals and Applications
2011
Print ISBN: 978-3-527-32158-2 (Also available in a variety of electronic formats)
Tadros, T.F.
Dispersion of Powders
In Liquids and Stabilization of Suspensions
2012
Print ISBN: 978-3-527-32941-0 (Also available in a variety of electronic formats)
Volume 1: Synthesis and Processing
Volume 2: Characterization and Properties of Sol-Gel Materials
Volume 3: Application of Sol-Gel Materials
Edited by
David Levy and Marcos Zayat
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-33486-5
ePDF ISBN: 978-3-527-67084-0
ePub ISBN: 978-3-527-67083-3
Mobi ISBN: 978-3-527-67082-6
oBook ISBN: 978-3-527-67081-9
Sol–gel materials are known since the early 1960s, when the first inorganic materials were prepared using this method. Sol–gel processing methods were first used historically for basic materials. In the last 30 years, many new applications have been developed. Materials scientists and engineers have showed increasing interest in this technology, as an alternative method of preparation of materials with new properties. Several books and handbooks have been written on this topic since the publication of the fantastic book Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing by C. Jeffrey Brinker and George W. Scherer in 1990. The comprehensive volume, Handbook of Sol–Gel Science and Technology: Processing Characterization and Applications, edited by Prof. Sumio Sakka, was published in 2004 and has served as one of the key references in the field. Since then, a remarkable scientific and technological development has taken place in the field of sol–gel materials, as reflected by the enormous increase in the number of ongoing researches in the field. The extensive use of sol–gel techniques in multidisciplinary and well-accepted materials preparation route is evidenced by the large number of works being published in diverse areas such as sol–gel-derived organic–inorganic hybrid materials, sol–gel-derived biomaterials, and sol–gel environmental materials. The huge number of papers dealing with sol–gel materials published during the last 5 years (more than 30 000) accounts for the popularity and relevance of the sol–gel technology in the preparation of novel materials. The sol–gel technology can be considered as one of the key technologies of the twenty-first century.
The field of hybrid materials is one of the most developed research areas in the last three decades. Promising properties of the materials and the possibility of different functions with one material make hybrid materials a very promising technology. The combination of functional inorganic components with functional organic and biological components made hybrid materials probably the most inclusive available route of different disciplines in materials science, such as photonics and optics, microelectronics, ceramics and polymer composites, catalysis and porous materials, functional coatings, energy, and the rapidly growing biotechnology applications with the advantage of easy integration in the devices, which also contribute to spread of this growing multidisciplinary field.
The hybrid approach and novel synthetic methods have brought a great revolution in the field. A new generation of advanced materials has evolved, which was not possible with other methods. Novel different routes for new compositions as well as control of the structure of these materials could be developed through bottom-up approaches that permit the tailoring of properties from the atomic to the macroscopic length scales. This is probably due to the mild, low-energy conditions used. Sol–gel technology has reached a relatively mature situation, with some products already available on the market. However, many difficulties related to the replacement of existing technologies make it difficult to fully accomplish some of the new proposed developments. There is still much work to do in terms of multidisciplinary research in the areas of chemistry and physics to exploit this technical opportunity of creating novel materials that satisfy the requirements of a variety of applications and devices. Many important contributions are expected in the coming years from the multidisciplinary research on novel hybrid functional sol–gel materials.
This Handbook focuses not only on scientific research but also on related industrial needs and developments. It covers the most relevant topics in basic research and those having potential technological applications. We acknowledge the considerable effort of each of the authors who has made excellent contributions to this excellent book.
We have intended to bring together all aspects of the sol–gel technology, from the laboratory preparation and processing techniques to the characterization and potential applications of the resulting materials. Readers will find in this Handbook the latest developments made in this interesting and growing research area. A special section has been devoted to the already existing important applications of these materials in the industry.
26 May 2015
David Levy
Marcos Zayat
Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, Spain
Carole Aimé
Sorbonne Universités
UPMC Univ Paris 06
CNRS, UMR 7574
Laboratoire de Chimie de la Matière Condensée de ParisJussieu
75005 Paris
France
Rui M. Almeida
Universidade de Lisboa
Instituto Superior Técnico
Departamento de Engenharia Química/CQE
Av. Rovisco Pais
1049-001 Lisbon
Portugal
David Almendro
CSIC
Instituto de Ciencia de Materiales de Madrid (ICMM)
Sol-Gel Group (SGG)
Sor Juana Inés de la Cruz, 3
28049 Madrid
Spain
Mario Aparicio
CSIC
Instituto de Cerámica y Vidrio
Kelsen 5, Campus de Cantoblanco
28049 Madrid
Spain
Pîlar Aranda
CSIC
Insitituto de Ciencia de Materiales de Madrid
c/Sor Juana Inés de la Cruz 3
28049 Madrid
Spain
Paulo Almeida
University of Beira Interior
Chemistry Department and CICS – Health Sciences Research Centre
6200-001 Covilhã
Portugal
David Avnir
The Hebrew University of Jerusalem
Institute of Chemistry
Centre for Nanoscience and Nanotechnology
91904 Jerusalem
Israel
Florence Babonneau
Sorbonne UniversitésUPMC Univ Paris 06
CNRS – Collège de France
Laboratoire de Chimie de la Matière Condensée de Paris
11 place Marcelin Berthelot
75005 Paris
France
R. Backov
Université de Bordeaux
Centre de Recherche Paul Pascal
Office 115, UPR 8641-CNRS
115 Avenue Albert Schweitzer
33600 Pessac
France
Ruben Baetens
KU Leuven (KUL)
Department of Civil Engineering
3000 Leuven
Belgium
Alejandro Baeza
Universidad Complutense de Madrid
Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12
Facultad de Farmacia
Departamento de Química Inorgánica y Bioinorgánica
Plaza Ramón y Cajal s/n
28040 Madrid
Spain
and
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)
Spain
Carolina Belver
Universidad Autónoma de Madrid
Departamento de Química Física Aplicada
Facultad de Ciencias
c/Francisco Tomás y Valiente 7
28049 Madrid
Spain
Rogier Besselink
University of Twente
MESA+ Institute for Nanotechnology
Drienerlolaan 5
7522 NB Enschede
The Netherlands
Sara A. Bilmes
Universidad de Buenos Aires
Facultad de Ciencias Exactas y
Naturales
INQUIMAE
Departamento de Química
Inorgánica
Analítica y Química Física
Pabellón 2
Intendente Güiraldes 2160
Ciudad Universitaria
C1428EHA Buenos Aires
Argentina
Jochanan Blum
The Hebrew University of Jerusalem
Institute of Chemistry
Centre for Nanoscience and Nanotechnology
91904 Jerusalem
Israel
Cédric Boissière
Université Pierre et Marie Curie (Paris VI)
Laboratoire de Chimie de la Matière Condensée de Paris
4 place Jussieu, Tour 54, E.5, C 54–55
75252 Paris Cedex
France
Christian Bonhomme
Université Pierre et Marie Curie
CNRS – Collège de France
Laboratoire de Chimie de la Matière Condensée de Paris
11 place Marcelin Berthelot
75005 Paris
France
José Maurício A. Caiut
University of São Paulo
FFCLRP
Department of Chemistry
Av. Bandeirantes 3900
14040-901 Ribeirão Preto
Brazil
María Lourdes Calzada
Consejo Superior de Investigaciones Científicas (CSIC)
Instituto de Ciencia de Materiales de Madrid (ICMM)
C/Sor Juana Inés de la Cruz, 3, Cantoblanco
28049 Madrid
Spain
Luis D. Carlos
University of Aveiro
Physics Department and CICECO
3810-193 Aveiro
Portugal
Hessel L. Castricum
University of Amsterdam
Van 't Hoff Institute for Molecular Sciences
Science Park 9041098 XH Amsterdam
The Netherlands
Yolanda Castro
CSIC
Instituto de Cerámica y Vidrio
Kelsen 5, Campus de Cantoblanco
28040 Madrid
Spain
Li-Hua Chen
Wuhan University of Technology
State Key Laboratory of Advanced Technology for Material Synthesis and Processing
Luoshi Road 122
Wuhan 430070
China
Seon-Jin Choi
Korea Advanced Institute of Science and Technology
Department of Materials Science and Engineering
291 Daehak-ro, Yuseong-gu
Daejeon 305-701
Republic of Korea
Rosaria Ciriminna
CNR
Istituto per lo Studio dei Materiali Nanostrutturati
via Ugo La Malfa 153
90146 Palermo
Italy
Montserrat Colilla
Universidad Complutense de Madrid
Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12
Facultad de Farmacia
Departamento de Química Inorgánica y Bioinorgánica
Plaza Ramón y Cajal s/n
28040 Madrid
Spain
and
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)
Spain
Thibaud Coradin
Sorbonne Universités
UPMC Univ Paris 06
CNRS, UMR 7574
Laboratoire de Chimie de la Matière Condensée de ParisJussieu
75005 Paris
France
Olivier Dautel
Ecole Nationale Supérieure de Chimie de Montpellier
Architectures Moléculaires et Matériaux Nanostructurés
CNRS UMR 5253 ICGM
8 rue de l'Ecole Normale
34296 Montpellier Cedex
France
Enrico Della Gaspera
CSIRO
Materials Science and Engineering
Clayton, Victoria 3168
Australia
M. Depardieu
Université de Bordeaux
Centre de Recherche Paul Pascal
Office 115, UPR 8641-CNRS
115 Avenue Albert Schweitzer
33600 Pessac
France
Rupali Deshmukh
ETH Zurich
Department of Materials
Laboratory for Multifunctional Materials
Vladimir-Prelog-Weg 5
8093 Zurich
Switzerland
Verónica de Zea Bermudez
University of Trás-os-Montes e Alto Douro
Chemistry Department and CQ-VR
5000-801 Vila Real
Portugal
Molíria V. dos Santos
São Paulo State University – UNESP
Institute of Chemistry
Lab Mat Foton
CP 355
14801-970 Araraquara
Brazil
Bruce Dunn
University of California, Los Angeles
Department of Materials Science and Engineering
California NanoSystems Institute
410 Westwood Plaza
Los Angeles, CA 90095
USA
Alicia Durán
CSIC
Instituto de Cerámica y Vidrio
Kelsen 5, Campus de Cantoblanco
28040 Madrid
Spain
Eleni K. Efthimiadou
National Center of Scientific Research “Demokritos”
Institute of Nanoscience and Nanotechnology
Sol–Gel Laboratory
Agia Paraskevi Attikis
15310 Athens
Greece
Paolo Falcaro
CSIRO Process Science and Engineering
Materials Science and Engineering
Gate 5, Normanby Road
Clayton, VIC 3168
Australia
César Fernández-Sánchez
César Fernández-Sánchez
Consejo Superior de Investigaciones
Científicas (CSIC)
Instituto de Microelectrónica de
Barcelona (IMB-CNM)
Carrer dels Til.lers
Campus de la Universitat
Autònoma de Barcelona
08193 Bellaterra, Catalunya
Spain
Rute Amorim S. Ferreira
University of Aveiro
Physics Department and CICECO
3810-193 Aveiro
Portugal
Vânia Teixeira Freitas
University of Aveiro
Physics Department and CICECO
3810-193 Aveiro
Portugal
Shuhei Furukawa
Kyoto University
Institute for Integrated Cell Material Sciences (WPI-iCeMS)
Yoshida, Sakyo-ku
Kyoto 606–8501
Japan
Marco Faustini
Université Pierre et Marie Curie (Paris VI)
Laboratoire de Chimie de la Matière Condensée de Paris
4 place Jussieu, Tour 54, E.5, C 54–55
75252 Paris Cedex
France
Andrea Feinle
Salzburg University
Materials Chemistry
Hellbrunner Straße 34
5020 Salzburg
Austria
Francisco M. Fernandes
Sorbonne Universités
UPMC Univ Paris 06
CNRS, UMR 7574
Laboratoire de Chimie de la Matière Condensée de ParisJussieu
75005 Paris
France
Martí Gich
Consejo Superior de Investigaciones
Científicas (CSIC)
Institut de Ciència de Materials de
Barcelona (ICMAB)
Carrer dels Til.lers
Campus de la Universitat
Autònoma de Barcelona
08193 Bellaterra, Catalunya
Spain
Rogéria R. Gonçalves
University of São Paulo
FFCLRP
Department of Chemistry
Av. Bandeirantes 3900
14040-901 Ribeirão Preto
Brazil
David Grosso
Université Pierre et Marie Curie (Paris VI)
Laboratoire de Chimie de la Matière Condensée de Paris
4 place Jussieu, Tour 54, E.5, C 54–55
75252 Paris Cedex
France
Massimo Guglielmi
Università degli Studi di Padova
Dipartimento di Ingegneria Industriale
Sede M - Via Marzolo 9
35131 Padua
Italy
Arild Gustavsen
Norwegian University of Science and Technology (NTNU)
Department of Architectural Design, History and Technology
7491 Trondheim
Norway
Lucía Gutiérrez
Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC
Sor Juana Inés de la Cruz 3 28049 Madrid
Spain
Raz Gvishi
Soreq NRC
Division of Applied Physics
Photonic Materials Group
81800 Yavne
Israel
An Hardy
Hasselt University
Institute for Materials Research
Inorganic and Physical Chemistry
Martelarenlaan 42
3500 Hasselt
Belgium
Peter Hesemann
UMR 5253 CNRS-UM2-ENSCM-UM1
Institut Charles Gerhardt, Montpellier 2
Place Eugène Bataillon, CC1701
34095 Montpellier
France
Nicola Hüsing
Salzburg University
Materials Chemistry
Hellbrunner Straße 34
5020 Salzburg
Austria
Plinio Innocenzi
Università di Sassari and CR-INSTM
Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT) – D.A.D.U.
Palazzo Pou Salit
Piazza Duomo 6
07041 Alghero (SS)
Italy
Bjørn Petter Jelle
SINTEF Building and Infrastructure
Department of Materials and Structures
7465 Trondheim
Norway
and
Norwegian University of Science and Technology (NTNU)
Department of Civil and Transport Engineering
7491 Trondheim
Norway
Julian R. Jones
Imperial College London
Department of Materials
South Kensington Campus
London SW7 2AZ
UK
Vadim G. Kessler
Department of Chemistry and Biotechnology
SLU BioCenter
Almas allé 5, Box 7015
SE-75007 Uppsala
Sweden
Guido Kickelbick
Saarland University
Inorganic Chemistry
Am Markt Zeile 3
66125 Saarbrücken
Germany
and
INM – Leibniz Institute of New Materials
Campus D22
66123 Saarbrücken
Germany
Il-Doo Kim
Korea Advanced Institute of Science and Technology
Department of Materials Science and Engineering
291 Daehak-ro, Yuseong-gu
Daejeon 305-701
Republic of Korea
N. Kinadjian
Université de Bordeaux
Centre de Recherche Paul Pascal
Office 115, UPR 8641-CNRS
115 Avenue Albert Schweitzer
33600 Pessac
France
and
University of Waterloo
Department of Chemistry
200 University Avenue West
Waterloo, N2L 3G1 Ontario
Canada
and
University of Liège
Department of Chemistry
GREENMAT-LCIS, B6 Sart Tilman
4000 Liege
Belgium
Matthias M. Koebel
Swiss Federal Laboratories for Materials Science and Technology – EMPA
Laboratory for Building Energy Materials and Components
Überlandstrasse 129
8600 Dübendorf
Switzerland
and
Swiss Federal Laboratories for Materials Science and Technology – EMPA
Laboratory for Building Technologies
Überlandstrasse 129
8600 Dübendorf
Switzerland
George Kordas
National Center of Scientific Research “Demokritos”
Institute of Nanoscience and Nanotechnology
Sol–Gel Laboratory
Agia Paraskevi Attikis
15310 Athens
Greece
David Levy
CSIC
Instituto de Ciencia de Materiales de Madrid (ICMM)
Sol-Gel Group (SGG)
Sor Juana Inés de la Cruz, 3
28049 Madrid
Spain
Kang Liang
CSIRO Process Science and Engineering
Materials Science and Engineering
Gate 5, Normanby Road
Clayton, VIC 3168
Australia
Liang Liu
The Hebrew University of Jerusalem
Institute of Chemistry
Jerusalem 9190401
Israel
Antonio Julio López
Universidad Rey Juan Carlos
ESCET, Departamento de Ciencia e Ingeniería de Materiales
Campus de Móstoles, C/Tulipán s/n
28933 Móstoles, Madrid
Spain
Luca Malfatti
Università di Sassari and CR-INSTM
Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT) – D.A.D.U.
Palazzo Pou Salit
Piazza Duomo 6
07041 Alghero (SS)
Italy
Ryan Maloney
University of California, Los Angeles
Department of Materials Science and Engineering
California NanoSystems Institute
410 Westwood Plaza
Los Angeles, CA 90095
USA
Daniel Mandler
The Hebrew University of Jerusalem
Institute of Chemistry
Jerusalem 9190401
Israel
Marina S. Manic
Separex S.A.
Rue Jacques Monod, BP 9
54250 Champigneulles
France
Alessandro Martucci
CSIRO
Materials Science and Engineering
Clayton, Victoria 3168
Australia
and
Università degli Studi di Padova
Dipartimento di Ingegneria Industriale
Sede M - Via Marzolo 9
35131 Padua
Italy
Guillermo Monrós
Jaume I University
Department of Inorganic & Organic Chemistry
Avgda. Sos Baynat s/n
12071 Castellon de la Plana
Spain
María del Puerto Morales
Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC
Sor Juana Inés de la Cruz 3 28049 Madrid
Spain
Joël J.E. Moreau
Ecole Nationale Supérieure de Chimie de Montpellier
Architectures Moléculaires et Matériaux Nanostructurés
CNRS UMR 5253 ICGM
8 rue de l'Ecole Normale
34296 Montpellier Cedex
France
Jadra Mosa
CSIC
Instituto de Cerámica y Vidrio
Kelsen 5, Campus de Cantoblanco
28049 Madrid
Spain
Zackaria Nairoukh
The Hebrew University of Jerusalem
Institute of Chemistry
Centre for Nanoscience and Nanotechnology
91904 Jerusalem
Israel
Kazuki Nakanishi
Kyoto University
Graduate School of Science
Department of Chemistry
Kitashirakawa, Sakyo-ku
Kyoto 606-8502
Japan
Markus Niederberger
ETH Zurich
Department of Materials
Laboratory for Multifunctional Materials
Vladimir-Prelog-Weg 5
8093 Zurich
Switzerland
Pengfei Niu
Consejo Superior de Investigaciones
Científicas (CSIC)
Institut de Ciència de Materials de
Barcelona (ICMAB)
Carrer dels Til.lers
Campus de la Universitat
Autònoma de Barcelona
08193 Bellaterra, Catalunya
Spain
Sílvia C. Nunes
University of Beira Interior
Chemistry Department and CICS – Health Sciences Research Centre
6200-001 Covilhã
Portugal
and
University of Trás-os-Montes e Alto Douro
Chemistry Department
5000-801 Vila Real
Portugal
Mario Pagliaro
CNR
Istituto per lo Studio dei Materiali Nanostrutturati
via Ugo La Malfa 153
90146 Palermo
Italy
Giovanni Palmisano
Masdar Institute of Science and Technology
Institute Center for Water and Environment (iWater)
Department of Chemical and Environmental Engineering
PO BOX 54224
Abu Dhabi, UAE
Édison Pecoraro
São Paulo State University – UNESP
Institute of Chemistry
Lab Mat Foton
CP 355
14801-970 Araraquara
Brazil
D. Portehault
Sorbonne Universités
UPMC Univ Paris 06
UMR 7574, Chimie de la Matière Condensée de Paris
75005 Paris
France
and
CNRS
UMR 7574, Chimie de la Matière Condensée de Paris
75005 Paris
France
and
Chimie de la Matière Condensée de Paris
Collège de France
11 place Marcelin Berthelot
75231 Paris Cedex 05
France
Luminita Predoana